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We first find the spectral resolution of the low-frequency gravitational radiation emitted by a system of
colliding particles. This is done by applying Fourier analysis to Landau and Lifshitz’s formula for the
gravitational radiation intensity. The result is in accord with that recently obtained by Weinberg through
quantum-gravidynamical methods, which predicts 6X 10" erg/sec for the solar gravitational radiation power.
We then find the total gravitational radiation of the same scattering process for all frequencies and without
resolution into a Fourier integral. The calculation is free from any cutoff process which is needed for the
low-frequency power, and the result is one order of magnitude larger than the low-frequency power when

applied to the solar system.

1. INTRODUCTION

HE problem of gravitational radiation from a
system of interacting particles has recently been
subjected to a new kind of treatment by Weinberg!?
who applied his method of quantum gravidynamics to
derive a formula for the emission rate and spectrum of
soft gravitons in arbitrary collision processes, from
which he estimated the gravitational radiation emitted
during thermal collisions in the sun. It was found that
the solar thermal gravitational-radiation power due
to soft-gravitational inner bremsstrahlung in an
arbitrary nonrelativistic collision is P~6X10" erg/sec.
This is larger than the gravitational radiation from
classical sources, e.g., planetary motion such as that
of the Jupiter-Sun system, which gives 7.6X10%
erg/sec, or the Venus-Sun or Earth-Sun systems, which
radiate comparable amounts. Since other planets
radiate considerably less, Weinberg concludes that
“thermal gravitational radiation from the sun appears
to be the dominant source of gravitational radiation
from the solar system.” Noticing, furthermore, that a
binary star like Sirius A and B which gives off more
classical radiation will also give off more thermal
radiation, he arrives at the conclusion that “thermal
collisions possibly may provide the most important
source of gravitational radiation in the universe.”
Based on the linearized classical general-relativistic
theory, Landau and Lifshitz® have calculated the energy
loss of a system of interacting particles per unit time by
finding the outgoing energy flux in all directions, which
they found from the energy-momentum pseudotensor
of the gravitational field. Their calculation leads to
the following expression for the energy loss:

dE G (d“Dik)Z
b
dt  45¢5\ df
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1 S. Weinberg, in Lectures on Particles and Field Theory (Prentice-
Hall, Inc., Engelwood Cliffs, New Jersey, 1964), p. 405; other
references to Weinberg’s work on the quantum theory of massless
particles are given on p. 484 of this book.

2S. Weinberg, Phys. Rev. 140, B516 (1965).

3L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon Press, London, 1962), Sec. 104, p. 363.
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where Dy is the quadrupole moment of the mass (see
Sec. 3 below).

A material system acted upon by internal forces that
are much larger than the gravitational forces was then
considered by Peres and Rosen,* and the rate of work
of such a system against its own gravitational field was
computed. The result was shown to be equal to the
rate of radiated energy obtained by Landau and
Lifshitz, Eq. (1.1). Other general-relativistic methods
which treat this problem without being confined to the
linearized theory are also well known,>7 but general
agreement on this has not been achieved (see Sec. 5).

In this paper we first find the spectral resolution of
the gravitational radiation for a bounded system of
masses by applying classical Fourier-integral methods
and assuming that the total gravitational-radiation
intensity of the system is given by Eq. (1.1). It is well
known?® that in the spectral distribution of the radia-
tion accompanying a collision, the main part of the
intensity is contained in frequencies w~1/7, where r is
the order of magnitude of the duration of the collision.
For this interval of frequencies, however, one cannot
obtain a general formula for the distribution. The
“tail” of the distribution at low frequencies, satisfying
the condition wr<1, is, however, easier to handle. This
is in fact the case discussed by Weinberg through
quantum-electrodynamical methods, and this part of
our calculation might be considered as a classical ver-
sion of Weinberg’s treatment. So, assuming that the
collisions occurring in the system of masses are non-
relativistic Coulomb collisions, the result for the spectral
power of the gravitational radiation will be shown to
be in accord with the result of Weinberg. This is shown
in Sec. 3.

We then turn to the problem of finding the total
gravitational radiation of all the frequencies of the
4 A. Peres and N. Rosen, Ann. Phys. (N.Y.) 10, 94 (1960).

8 A. Trautman, Lectures on General Relativity (King’s College,
London, 1958); A. Peres, in Recent Developments in General
Relativity (Pergamon Press, Warsaw, 1962), p. 361.

6 M. Carmeli, Phys. Letters 9, 132 (1964); Nuovo Cimento 37,
842 (1965).

7P. C. Peters, Phys. Rev. 136, B1224 (1964); S. F. Smith and
P. Havas, Phys. Rev. 138, B495 (1965).

8L. D. Landau and E. M. Lifshitz, Ref. 3, Secs. 66-71, pp.
195-218.
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spectrum without confining ourselves to the ‘“tail”;
of course, we expect the result to be larger than that
of the “tail” alone. The calculation is simple and free
from the cutoff process needed for estimating the “tail”
radiation alone (and also needed in the quantum ver-
sion of the calculation). For the case of the sun it
follows that the total radiation is only one order of
magnitude larger than that of the “tail.” This is shown
in Sec. 4, whereas in Sec. 2 we review Weinberg’s work
very briefly for comparison and completeness. Section 5
is devoted to concluding remarks.

2. GRAVITON EMISSION FROM MASSLESS-
PARTICLE LINES

For completeness, we review very briefly Weinberg’s
method on emission from massless-particle lines, con-
fining ourselves to the graviton case. For the complete
treatment, where the photon and graviton are discussed
on the same footing, the reader is referred to Weinberg’s
paper? and lecture notes.!

An infrared virtual graviton is defined as one which
connects two external lines and carries energy less
than some convenient energy A chosen small enough to
justify the approximation. In addition to the cutoff
|q| <A which defines the infrared lines, there is an-
other cutoff |q| >\ which displays the logarithmic
divergences In\, where X\ is very small, AA. This last
cutoff only affects the infrared lines, because only
these lines give infrared divergences for A=0. The term
‘“‘connecting external lines” used above means that the
infrared line may join onto a line that has already
emitted soft real quanta or virtual infrared quanta, but
not onto one which, by real or virtual emission, has
acquired a momentum far off its mass shell.

The corrections due to the infrared virtual graviton
for any process a — 3 are then given by

1 A
SpamSaal exp[; / d'q B<q>], 2.1)
A

where Sgo is the S matrix without virtual infrared
gravitons, and B(g) is the result of joining a pair of
factors of the form

(8TG)2 3 0 Nupntpu’/ (P g—17ne) (2.2)

with a graviton propagator. The effective virtual
graviton propagator for an internal line carrying mo-
mentum ¢ and joining a (uv) vertex with a (ps) vertex
has been shown by Weinberg to be given by

—1  (guogrotguoGro— uroo)
2(27)* '

— (2.3)
g>—1e

The factor given by Eq. (2.2) is the sum, over all
external lines in the diagram, of the extra factors

(8xG) Pnprpr/ (p-q—ine), (24)

MOSHE CARMELI

158

where u, v are the graviton polarization indices, and
n=-41 or —1 for an outgoing or incoming charged
particle. These are the extra factors needed when we
attach a soft-graviton line to an external line, and are
obtained from

1i(2m)4(87G) 2 (2p*+ng*) 2"+ g ) [— i (2m) ]
XL(p+ng)*+m*—ie]™?, (2.5)

in the limit ¢— 0 (because p*+m?=0). Although the
factor (2.5) holds only for the spin-zero external line
to which we attach the graviton, its limit for ¢— O,
Eq. (2.4), is valid for any spin. Also the dominance of
the 1/(p-q) pole in Eq. (2.4) implies that the effect
of attaching one soft-graviton line to an arbitrary
diagram is to supply the factor (2.2) over all external
lines in the diagram.

The rate for a transition « — @ is given by the abso-
lute square of (2.1):

A

Tga=Tga’ exp{Re/ diq B(q)} . (2.6)
A
A direct calculation then gives
Tga=Tp"(N/A)?, 2.7

where B is a positive dimensionless constant

B=—3% Sl 1n<1+6"'"> (2.8)
= n N mMn Mo ) B
T n,m i Bnm(]-_ﬁnmz)ll2 1_',Bnm

with B.x the relative velocity defined by

Mn2m? 2
Bum= lrl—~——————i|
(Pn pm)?

The S-matrix element for emitting N real soft
gravitons in a process @ — 3 is obtained by multiplying
the nonradiative .S matrix for « — 8 by IV factors of the
form (2.2) and then contracting each of these factors
with the appropriate graviton “wave function”:

(2m)=32(2| q| )~ 2eu*(a,3h) & (0, 3R)

where q is the graviton momentum, z= 4-2 is its helicity,
and ¢, is the corresponding polarization vector. It
follows that the graviton-emission-matrix element is
given by

(2.9)

(2.10)

N
Spat(12+ - - N)=Sga I (2m)721%(2|q.|)7**

=1
X (87G)12 Y Nl P €*(qry3hr) I
" [pngr]

The rate for emission of N gravitons with energies
near wi---wy is given by integrating the square of
(2.11) over solid angles after summing over helicities
and dividing by N!, since gravitons are bosons. The

(2.11)
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result is

BN dw1 dwN
I‘ﬂasr(wl. . ‘wN)dwl' . 'dwN=—‘—I‘ﬂa_‘ ce—_
N! w1 wWN

(2.12)

where T'go=|Sg|2 By using the representation of the
step function, one finds for the rate of the transition
a— 3 accompanied by any number of soft gravitons
with total energy less than E, and with each individual
w, greater than the infrared cutoff A,

£ B ®  sinEo
dwy-+ / dwN/ do
A A —0 o

Xexp(ia Zr wr) Ppa(wl' . 'wN) .

Applying Eq. (2.13) to Eq. (2.12) one finds for the
graviton-emission rate

1 r* sinEo Edw
Pﬁa"'(<E)=—/ eXp{B/ ——e"‘"’}du. (2.14)
A

T)w O w

1 »
I‘ﬁa(SE)z_ Z

T N=0

(2.13)

For A — 0, Eq. (2.14) gives

Tpof*(< E)=(E/N)Pb(B)T'sa, (2.15)
where b(x) is some real function:
1 r~ sine ldw
b(x)=—/ do— exp(x/ —(e“""—l))
TJ - o 0 W
o~ ——rp?- - (2.16)

12

We notice that for A — 0 the factor (E/N\)B becomes
infinite, since B is a positive constant.

Using Eq. (2.7) in Eq. (2.15), one obtains

Tpaf*(< E)= (E/A)Pb(B)T'sa’, (2.17)
which shows no dependence on the infrared cutoff A.
The factor EZ in (2.17) represents the shape of the
energy spectrum for 0 ESA.

It should be mentioned that it is crucial in Wein-
berg’s work that the infrared divergences arise only
from diagrams in which the soft real or virtual graviton
is attached to an external line, with “external line”
not including the soft real gravitons themselves. While
this can be justified in electrodynamics and graviton
theory, it is not applicable to theories involving charged
massless particles, such as the Yang-Mills theory.

Also to the lowest order in G, Eq. (2.17) gives the
power spectrum of soft gravitons accompanying a re-
action ¢ — 8 as

EdTs4(< E)~BTs,%dE. (2.18)
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The rate of emission of energy (the power) in soft
gravitational radiation during collision is given by

A
P(<A)= f EdA(<E). (2.19)
0
Using (2.17), we obtain
B
P(SA)=——b(B)AT,
1+B
~BAT, (2.20)

since B~10"% and b(B)~1. For an elastic nonrela-
tivistic collision, it follows that B is

B=(16G/57)Q:;Q;, (2.21)

where
Qii=% Zn NaMnVnilnj 5 (222)

and repeated Latin indices are summed over 1, 2, 3.
For nonrelativistic elastic two-body scattering, for ex-
ample, one obtains

QiiQij=zu** sin’,, (2.23)

where p is the reduced mass, v= | vi—v,| is the relative
velocity, and 6. is the scattering angle in the center-of-
mass system. Thus we obtain

B=(8G/5m)u2v* sin%,. (2.24)

In applying Eq. (2.20) to actual calculations, T
might be taken as the collision rate ignoring gravita-
tion altogether. The rate for such collisions per cm3
per sec is then given by

To=wninq(do/dQ), (2.25)

where #; and #. are the number densities of particles 1
and 2. Hence Eq. (2.20) gives for the total power
emitted in soft gravitational radiation attributable to
1-2 collisions:

8Gu? do
P A)=———-—’u5n1nzVA/<—) sin?0.dQ, (2.26)
Swhc® aQ
where V is the volume of the source, and the factor
(%c®)~* has been inserted in order to convert the equa-
tion from units with c=#%=1 to cgs units, since the
latter will be used throughout the rest of this paper.
Equation (2.26) may be used directly to calculate the
thermal gravitational radiation from any hot body,
since everything in the universe is transparent to
gravitons.

3. FOURIER SPECTRAL RESOLUTION

A. The Spectral Resolution of the Intensity of
Dipole and Quadrupole Radiation

In discussing® the spectral distribution of the in-
tensity of radiation, one distinguishes between ex-
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pansions into Fourier series and Fourier integrals. In
the case of the collision of charged particles one deals
with the expansion into a Fourier integral; the quantity
of interest is the total energy radiated during the col-
lision in the form of waves with frequencies in an in-
terval (w, w+dw). This part of the total radiation lying
in the frequency interval dw is obtained from the usual
formula for the intensity by replacing the square of the
field with the square modulus of its Fourier component
and multiplying by 4.

The intensity of dipole radiation, for example, is
well known to be given by?®

I=(2/3c%5?,
$=) ex. @3.1)

Thus the energy radiated throughout the time of
collision in the form of waves with frequencies in the
interval dw is given by

d8(w)= (87/3¢%)[§(w) J2dw, 3.2)
where §(w) is given by
§(w)=(1/2m) | S8e'vtdt. (3.3)

—00

There is no dipole gravitational radiation and the
lowest multipole radiation comes from the quadrupole.
The intensity for the gravitational quadrupole radia-
tion is given by?

I=(G/45¢%)(d*Dy/dt)?, (34)

where G is the Newton gravitational constant and D;;
is the quadrupole moment of the mass:

D= / p(Baint— 6% xxs)d3 . 3.5)

Thus the formula for the spectral resolution of the in-
tensity of gravitational quadrupole radiation is

d8(w)= (47G/45¢%) [ Asn(w) J%dw, (3.6)
where
* d3Di
Ap(w)=(1/2m) e™tdt. 3.7
—w A}

B. Radiation of Low Frequencies in Collision

The major part of the intensity of radiation accom-
panying a collision is contained in frequencies w of order
1/7, where 7 is a characteristic time of the collision.®
There is no general formula for the spectrum in this
region. Instead, let us consider the “tail” of the dis-
tribution at low frequencies with the condition

wrkl. 3.8)

In the integrals (3.3) and (3.7) the field functions of
radiation, i.e., § and d®D;;/d#, are significantly different
from zero only during a time interval of the order of 7.
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Therefore, we can replace exp(iwf) in these integrals
with unity and obtain

8(w)=(1/2m)[8(f)—3() ],
[d2Dik(f ) d*Du(3)
ar s

(3.9)

Aunlw) = (1/27) ] (3.10)

where f and 4 mean after and before the collision.

For example, the spectral distribution of the total
resolution emitted by a charge when it is accelerated
from zero velocity to » can be obtained from (3.1),
(3.2), and (3.9) as

d8(w)=(2e%?/3mc)dw, (3.11)

a result which can also be obtained by different
methods.?

C. Gravitational Radiation in Nonrelativistic
Collisions

To find the spectral resolution of the gravitational
radiation we notice that® for a bounded system of
masses, d?D;/di? can be given in the form

d2D,'k
= 2 (3T¢k— BikT“)d""x 5 (312)
ar?
where 7, is
Tin=pvvk,
For a system of two particles we have therefore
d?*Dyy, ) )
=23 m(3viF— §%y%°%), (3.13)
ae
Let us introduce the quantity Qu:
d*Dy(f) d*Dy(3)
Ou=(1/12] ] e
de? a
or more explicitly,
Qir=% 20 1amMa(Va"0,P—386%0,%0,,%) ;  (3.15)

where n,=-1 or —1 if # is a final or an initial particle.
Using the conservation law of energy in its nonrela-
tivistic form,

2o nama(143v,5) =0,

we get for the last term on the right-hand side of
Eqg. (3.15),
+316% > unatn.

For nonrelativistic elastic scattering, this term is zero
and we obtain

Qik=% Zn nnmnvnivnk- (3.16)

But this is just the same function Qs introduced by
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Weinberg and given by Eq. (2.22). We thus obtain for
(3.6), using (3.10) and (3.16),

dg(w) = (16G/51I"65)Qiinkdw . (317)

For two-body scattering we have, according to
Eq. (2.23),

QiiQij=3u’* sin’f., (3.18)
where u is the reduced mass, v= | vi—vs| is the relative
velocity, and 6, is the scattering angle in the center-of-
mass system. Hence we get for the spectral distribution
of the gravitational radiation of such a scattering

d8(w)= (8Gu**/5mc5) sin?0.dw, (3.19)
or, using the relation dE="7dw,
d8(w) = (8Gu2*/57#c®) sin®0 dE. (3.20)

It will be noted [see Eq. (2.24)] that the expression
(8Guv*/5hic’) sin%,, appearing in Eq. (3.20), is just
Weinberg’s positive dimensionless constant B. Thus we
have

d8(w)=BdE (3.21)
for a scattering of two particles. The rate for such col-
lisions per cm?® per sec [compare Eq. (2.25)] is wmine
X (do/dQ), where ny and #, are the number densities
of particles 1 and 2. Hence we get for the total power
emitted in soft-gravitational radiation attributable to
1-2 collisions

8Gu? A do
P(SA)=—nmsV / dE / <—~> sin?0.dQ, (3.22)
Sahch 0 s

with ¥ the volume of the source and A an upper limit for
the energy. Equation (3.22) is identical with that ob-
tained by Weinberg, Eq. (2.26).

To conclude this section, we mention that in applying
Eq. (3.22), one encounters two cutoff processes. The
first is the upper cutoff energy A which is taken by
Weinberg as half the kinetic energy,

A~tu®. (3.23)

The second comes from the integral over the differen-
tial cross section. For the sun, assuming that the most
frequent collisions are the Coulomb collisions between
electrons and protons or electrons, we may take?

M=,
v=3KT/my)'?,
N1="MNe,

No="Ne+1Np=21,. (3.24)

The cross-section integral in Eq. (3.22) is then pro-
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portional to the diffusion coefficient and is estimated as?

do’
(—) sin20,dQ= | 2mpdp sin%0,
aQ

(3.25)

where Ap is the ratio of the Debye shielding radius
(used to cut off the integral) to the average impact
parameter.

In the next section we will use another method to
estimate the total gravitational radiation power without
referring to any of these cutoff processes.

4. TOTAL GRAVITATIONAL RADIATION

We now find the total gravitational radiation of the
scattering process described in Sec. 3, for all possible
frequencies, and without resolution into Fourier
integrals. The result of the previous sections cannot be
used to estimate the total gravitational radiation, since
Eq. (3.22) shows that the power spectrum as a function
of the frequency is constant and would therefore lead
to infinity.

Let us denote the gravitational radiation accompany-
ing a collision of two charged particles by A&. This is
the total energy radiated throughout the time of the
collision in the form of gravitational waves including all
possible frequencies. A8 is obtained from the intensity
I of Eq. (3.4) by integrating the latter over the time

interval (— o ,):
Ag= / Idt,

I=(G/45¢%)(d*Dyy/d1%)?.

(4.1)

with

Since the rate for such collisions per cm?® per sec is
[see Eq. (2.25)] wmmse(do/dS), we therefore obtain for
the total power radiated for any two particles 1 and 2

P=/VAé’vn1n2(d¢r/dﬂ)dQ
or

P= V'vnlnz/ A82wpdp . (4.2)
0

But the integral in (4.2) is the familiar effective radia-
tion.8 Its value for quadrupole gravitational radiation

9 L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), Chap. S.
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can easily be found to bel?

X=(327G/9c®)ue?3. 4.3)
Accordingly, we get for the total power
P=(322G/9c% ue*v*nnsV , 4.4)

or, using Eq. (3.24), we obtain for the total radiation
due to nonrelativistic collisions in the sun

P=(64rG/9c%)m;e*n 2(3KT)2V. 4.5)

Using the same data taken by Weinberg? for the sun’s
core, namely
T~10" °K,

723X 10% cm—3,
V~2X10% cm3. (4.6)

Eq. (4.5) gives for the solar gravitational radiation
power
P~5X10% erg/sec. 4.7

This result is about 10 times the one obtained when
Eq. (3.22) is applied. It has also been obtained without
referring to any cutoff process.

5. CONCLUDING REMARKS

We have compared the results obtained for the
gravitational radiation emitted by a system of particles
by a “quantum-gravidynamical” calculation developed

10 The effective radiation for the quadrupole electromagnetic
radiation is given by Landau and Lifshitz (Ref. 3, p. 217). For
the gravitational case the calculation is very similar. Using the
same notation as that of Landau and Lifshitz, we have for the
gravitatonal quadrupole moment

Dkl =,u(3xkxl—725kl)~

dxi/dt=uvs,
d%x/dt?= (¢*/ur®)xr,
d3xy/d3= (e /ur®) (vir — 3xv,).
The intensity is then found to be
I=(G/45¢%) (d®Di/dt3)?
= (8Get/15¢5%) (v2+11v42).

The effective radiation is obtained by integrating I over ¢ and p
as outlined in the above reference:

0 +w
xX= f ] Idt2mpdp
0 J—

= (327G /9¢5) nevo®.

Compare also V. V. Batygin and I. N. Toptygin, Problems in
Electrodynamics (Academic Press Inc., London, 1964), p. 442.

Also we get
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by Weinberg, with the results obtained by an applica-
tion of the classical “Landau-Lifshitz” formula that is
based on the linear approximation. We have seen that
under the same physical assumptions concerning the
scattering process the two formalisms predict the same
result. Using the linearized theory, however, enables
us to get the total power without referring to the cutoff
process that was needed for the low-frequency power
by both methods.

Let us finally mention that the great amount of work
on both classical and quantum theory of gravitational
radiation in the last years shows that both these
domains contain basic problems far more difficult to
resolve than had been believed before. The linearized
theory of gravitation has long been considered as sus-
pect. Even the existence of gravitational radiation as a
legitimate solution of Einstein’s field equations with
sources has been questioned by some workers.!!

On the other hand, after the initial enthusiasm first
for quantization of the linearized theory, then for the
quantization of the full theory (implying quantization
of geometry), there has been fairly general disappoint-
ment and a widespread realization that neither the
physical nor the mathematical problems are fully
understood, much less overcome.1?

It thus seems that our calculations should not be
interpreted as a demonstration of agreement of two
well-established theories. The numerical results ob-
tained cannot be considered as a definite experimental
prediction of the general theory of relativity. Even if
these results were to be found in disagreement with
experiment, this could not be taken as a reflection on
general relativity.
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