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The high-temperature expansion of the quantum-mechanical second virial coefficient B(T) of a gas of
particles interacting via a hard-core pair potential is determined to fourth order in the ratio of the thermal
wavelength A= (42/2xmkT)1/2 to the extension d of the hard core. The result is

B(T)—swd“[1+2\3/72 ,lr(d) 161r\/2(d) 101'”2(2) :I

The first term is the classical value. The second term was found by Uhlenbeck and Beth. The third term,
apart from a missing factor of 2, was obtained by Mohling. The correct value 1/, together with the fourth
term, was obtained by Handelsman and Keller. Our calculation is based upon the method of Handelsman and
Keller, viz., an expansion of the thermal Green’s function and its boundary conditions in powers of \/d.
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Our exact value for the coefficient of (\/d)* confirms a numerical estimate of

Larsen, and Kilpatrick.

I. INTRODUCTION

HE quantum-mechanical second virial coefficient
B(T) for a gas of hard spheres has two noteworthy
features, viz., that it cannot be obtained by Wigner and
Kirkwood’s! high-temperature expansion, and moreover
that at high temperatures all symmetrization effects are
negligible, or, more precisely, exponentially small.? In
a series expansion of B(T) in powers of the ratio of the
thermal de Broglie wavelength \= (h2/27xmkT)'/2 to the
hard-sphere diameter 4 it therefore suffices to consider
the spin-independent part Bgireot.
We employ the expansion method of Handelsman and
Keller® described below, with the result

B(T)= d3[1+ 2t )+ ! (A>3
b 7r( 167v2\d

“aa) ]

where the first term is the well-known classical value.
The first quantum correction to this was calculated by
Uhlenbeck and Beth.? One-half the third term was
found by Mohling.5 Handelsman and Keller? obtained
the correct result and also evaluated the fourth term.

1 E. Wigner, Phys. Rev. 40, 747 (1932); J. G. Kirkwood, 7bid.
44, 31 (1933). Their expansion is essentially an expansion in
powers of the gradient operator and is therefore inapplicable to the
singular hard-sphere potential.

2S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev.
140, A129 (1965). They show that the exchange part Bexn satisfied

Boxen (T) SN275/2(2541)7* exp(—2wd?/A?),

where s is the spin value. The correct asymptotic formula was
found by E. Lieb, J. Math. Phys. 8, 43 (1967), to be

In[Boxen (T)N"328/2(254-1) = — §w(@/A)*+OL (d/M)*/*].

3R. A. Handelsman and J. B. Keller, Phys. Rev. 148, 94 (1966).
4 G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936).
5 F. Mohling, Phys. Fluids 6, 1097 (1963).
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—0.000965 obtained by Boyd,

Boyd, Larsen, and Kilpatrick® calculated B(T) nu-
merically and obtained by fitting a polynomial in A/d
to their result the value —0.000965 for the coefficient of
(\/d)% They also offered the conjecture that the exact
value was —1/105x2.

II. CALCULATION

In terms of G(r;to;8), the propagator, or thermal
Green’s function, which satisfies

dG/ 38— DV*G=58(r—r0)8(8), 2
G=0 for |r—r.|<d/\, 3)
G(r; 1y; 0—)=0, 4)

the direct part of B(T) is given as”

Bair=1\3 f [1—2v2G(xo; ro; B)Jd%ro
=§-7rd3+‘%)\3/ [1—2\/2_6(1'0; T'o; ﬁ)]dsro
[ro—rsl <d/N

=%1rd3+21r)\3/ [1—2V2G(xo; 1o; B)]

X |to—r.|2d(|ro—1]). (5)

Here 8=1/kT and D=#%2/m\=1/2xB. In the differen-
tial equation (2), D and N are to be regarded as con-
stants. In the last line the spherical symmetry of
G(ro; 1o; B) around r, is used. Now the coordinate sys-
tem is chosen?® so that the x axis passes through r. and

6§ M. E. Boyd, S. Y. Larsen, and J. E. Kilpatrick, J. Chem.
Phys. 45, 499 (1966)

7 See Ref 3. We bave scaled all lengths with the thermal wave-
length X in order to have an expansion in the dimensionless param-
eter d/A throughout the calculation.
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1o, with r,=(—d/}, 0, 0) and ro= (x,0,0). Hence

Basem 2mdik-2m\8 / [1—2v2G(t; 10; B)]
’ X (2o+-d/N)?dxo.  (6)

In lowest approximation (d/\— ) the boundary
condition (3) means that G vanishes in the plane x=0,
and further approximations are obtained by expansion
of (3),

GL(a%/N2—p?)V2—d/N, y, 3; 10; 8]=0.

This yields
G(0,y,5)—(\/d)5p°G' (0,y,2)+(V/d)*3p°G" (0,3,2)

+ ()\/d)3[_ %P4G, (O)yyz) - <p6/48>G'”(0,y,Z):|
+0L(/d)*]=0. (7)

Here the arguments ro and 8 are omitted, the differentia-
tions are with respect to x, and p?=y24-22. Expanding,

G= Z=lo (\/d)"Gn, 8)

we obtain the following set of differential equations:

9Go/ 9— DV?Go=8(B)d(r—rv0) ©)

HARD-SPHERE GAS AT HIGH TEMPERATURES
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The solution of Eq. (9) complying with (11a) is (by

the method of images)
( P2+(x“xo)2)
xpl —————
4DB

CI)] I'e
8(wDB)¥
p*+ (x+x0)?
‘e"p<"—402;—“)]’ (12)

Go(r; ro; B)=

where ©(B) denotes the Heaviside step function.

Besides being the first term in (8), G is also the
Green’s function for the set (10) of homogeneous equa-
tions. The standard procedure® using the adjoint Green’s
function yields the following general formula for G, in
terms of the nonhomogeneous boundary condition on
the plane x=0:

Gl 8 x o dr
n\X)yY,% —8(7rD)3I2‘/; (B~T)5I2

+x
X / / dy'dZ7'Gn(0,y',2'; )

0Ga/98—DV?Gr=0 (n>0), (10)
together with the boundary conditions Xexp[—x2+ b=y (—7) 2:' . (13)
GO(OJ,Z) =0, (11&) 4D(5— T)
G1(0,y,2) =%p%G¢'(0,y,2) , (11b) Now it is in principle straightforward to calculate the
, ” G.’s successively by shuttling back and forth between
=1 — 1,4
G2(0,9,2)=1p%G1'(0,9,2) = 2p*Go" (0,9,2) , (11c) Egs. (11) and (13): Equation (12) inserted in (11b)
G3(0,9,3) =30'Go’(0,y,3)+ (1/48)0°G¢""’ (0,y,2) determines G1(0,y,z), which by (13) determines Gi(r),
—3p'G1""(0,9,5)+1p°G5'(0,y,2), (11d) which by (11c) determines Gi(0,,2), and so on. We
etc. find®
Gy = ios [ gy it b el x/ADr—a3/aDG—1)], (10
1(r)= e P24 / TTT —7)” [ ——]exp — X0 T—X B—r)],
8(DxB)? 0 4DB(B—1)
and
” xxo exp(—p%/4DB) b dr exp(—x*/4D(B—1)) T J exp(—xo2/4Dn)
T Sag e / (—n)2 / " =]V
X{4D(B—7)—10*/B— (1+20*/2Dn)[47p*(B—1)/B*+8D(B—1)*/B+r%*/ADE*]}. (15)
We need only Gs(r) for r=(x,0,0):
x 2 B8 T—1I2
G'3(0,0,0)= / d7(B—7)127112 exp[—x¢?8/4D7(B— T):];6T'—'36—" (B—7)xe?/Dr—
4DrBt J o w(B—1)
T dE ¢ expl—wxe*(n+B—7)/4Dn(B—7)
X/ / dr P ’ ][8‘5;8—— 3324 678— 12867+ (x02/4Dn) (378%/ ¢
o (1=9Y2 /0 Ca(g—m)]12
—36°+12£8+4-678—18%7) + (xo!/4D™?) (268 — 2% — 8%/ E+478—3¢r) ], (16)

8 A. G. Mackie, Boundary Value Problems (Oliver and Boyd, Edinburgh, 1965), Sec. 54.

9 Equation (14) is in agreement with Handelsman and Keller [Ref. 3]. They have also found G, at the special point r= (x,,0,0),
and their formula agrees with our Eq. (15) at this point, except for a factor of 2 in the last term. This erroneous factor appears con-
sistently in their formulas (2.16), (2.17), (2.18), and (3.3). In their formula (3.3), also, three signs are misprinted.



116

Inserting the expansion (8) for G into (6) and extract-
ing the terms of order (\/d)* we obtain

)\ 4
Bdir(“h order)/%ﬂ.ds= — <;> 6-\/2

X/ [x0261+ 2x062+63:]dx0
0

=\/d) I+ 1+1s), 17

where the argument of the Green’s functions is r=ro
= (%0,0,0). Insertion of (14)-(16) and integration over

36D?
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%o yields
6 3
I,=—36D? “3/ dr(B—1)%rt= —— (18)
0 1072
and
B T dnn3/2
I,= —48026”3/%'1/ dr(B—1)3/%
0 o (r—nq)t/2
(27—pB) 8(8—1)? 39
X[ — ]=——— . (19)
(+B—7)* (p+p—7)*d 70

The integration in (19) is effected by introduction of the
new variable #=n-+8— instead of », and reversion of
the order of the integrations. The remaining integral,

I3=
B

is slightly more complicated. One starts best with the
integration over £, followed by a few simple variable

transformations. We obtain finally

Is=—(16/15)(DB)*= —4/15x2. (21)

B 5/2(R— r d ¢ P
f dr{s(ﬁ—7)47.2__(’3_7_)27_4 } B3B8 T)/ £ /- ndy
5 Jo 3 o (r—812 Jo (E—n)V2(BFn—r)¥2

9(8—1)
X[~3ﬂ2+8ﬁ£+6rﬂ—1227+————
2(8—71+n)

B—r
o

(485—B*+7B%/ E+287—6¢7)

2
) <265—262—Tﬁ2/s+4ﬁ7—3sr>]} . (0)
B—1—n

Addition yields
Ii+TIs4I3=—1/105x2, (22)

as stated in the Introduction.



