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The high-temperature expansion of the quantum-mechanical second virial coeKcient B(T) of a gas of
particles interacting via a hard-core pair potential is determined to fourth order in the ratio of the thermal
wavelength X = (h'/2mmkT)'~' to the extension d of the hard core. The result is
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The hrst term is the classical value. The second term was found by Uhlenbeck and Beth. The third term,
apart from a missing factor of 2, was obtained by Mohling. The correct value 1/2l-, together with the fourth
term, was obtained by Handelsman and Keller. Our calculation is based upon the method of Handelsman and
Keller, viz. , an expansion of the thermal Green s function and its boundary conditions in powers of X/d.
Our exact value for the coetficient of (X/d)4 confirms a numerical estimate of —0.000965 obtained by Boyd,
Larsen, and Kilpatrick.

I. INTRODUCTION

'HE quantum-mechanical second virial coefBcient
B(T) for a gas of hard spheres has two noteworthy

features, viz. , that it cannot be obtained by%igner and
Kirkwood's' high-temperature expansion, and moreover
that at high temperatures all symmetrization effects are
negligible, or, more precisely, exponentially small. ' In
a series expansion of B(T) in powers of the ratio of the
thermal de Broglie wavelength ) = (h'/2srmkT)'ls to the
hard-sphere diameter d it therefore suQices to consider
the spin-independent part Bd;„.t.

Ke employ the expansion method of Handelsman and
Keller' described below, with the result
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II. CALCULATION

In terms of G(r;ro, P), the propagator, or thermal
Green's function, which satisfies

r)G//BP Dr/'G = b(r——ro) 5(P), (2)

G=O for Ir—r, I(d/),

G(r; ro, 0—)=0,
the direct part of B(T) is given asr

(3)

Boyd, Larsen, and Kilpatrick' calculated B(T) nu-

merically and obtained by fttting a polynomial in ) /d
to their result the value —0.000965 for the coeKcient of
(X/d)'. They also offered the conjecture that the exact
value was —1/105x'.
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where the erst term is the we11-known classical value.
The first quantum correction to this was calculated by
Uhlenbeck and Beth. 4 One-half the third term was
found by Mohling. ' Handelsman and Keller' obtained
the correct result and also evaluated the fourth term.
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~ E. Wigner, Phys. Rev. 40, 747 (1932); J. G. Kirkwood, ibid.

44, 31 (1933). Their expansion is essentially an expansion in
powers of the gradient operator and is therefore inapplicable to the
singular hard-sphere potential.

~ S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev.
140, A129 (1965).They show that the exchange part B, ,h satis6ed

Byes(T) (X 2 s~'(2s+i) ' exp( —2s'ds/X')

where s is the spin value. The correct asymptotic formula was
found by E. Lieb, J. Math. Phys. 8, 43 (1967), to be

inc Bgxas(T)X '2'ls(2s+1)g = —4~'(d/X)'+0[(d/X)'lsj.
' R. A. Handelsman and J.B.Keller, Phys. Rev. 148, 94 (1966).
4 G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936).' F. Mohling, Phys. Fluids 6, 1097 (1963).

Here P=1/kT and D= A'/mX'= 1/2srP. In the differen-
tial equation (2), D and ) are to be regarded as con-
stants. In the last line the spherical symmetry of
G(ro, ro, P) around r, is used. Now the coordinate sys-
tem is chosen' so that the x axis passes through r, and

6 M. E. Boyd, S. Y. Larsen, and J. E. Kilpatrick, J. Chem.
Phys. 45, 499 (1966).

7 See Ref. 3. We have scaled all lengths with the thermal wave-
length ) in order to have an expansion in the dimensionless param-
eter d/A, throughout the calculation.
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'fp with r.= (—d/)4, 0, 0) and rp ——(xp 0 0). Hence The solution of Eq. (9) complying with (11a) is (by
the method of images)

Bs;,= —',7rds+ 2s Xs [1—2V2G(rp, '
rp,

' P)g

X(x,+d/)) axes (6)
o(P) p'+(x —xo)')

Gp(r; rp, P)= exp—
8(4TDP)s/sL. 4DP

In lowest approximation (d/) —& &o) the boundary
condition (3) means that G vanishes in the plane x= 0,
and further approximations are obtained by expansion
of (3),

G[(d /)j, —ps) —d/h y s' r P]= 0

This yields

G(0 y s) —()t/d)s O'G'(O, y s)+() /d)'8 O'G" (0 y s)
+(I / d)'[—-', 'G'(O, y, )—(p'/48)G'"(O, y, s)j

+0[()/d)4]=o. (7)

Here the arguments r p and P are omitted, the differentia-
tions are with respect to x, and p'=y'+s'. Expanding,

G= P ()/d)"G. , (8)

p'+ (x+xp)'——exp —,(12)
4D

G-(,y, ;/)=
8(4TD)"' (/jj r) 5/s

where 0'(P) denotes the Heaviside step function.
Besides being the first term in (8), Gp is also the

('reen's function for the set (10) of homogeneous equa-
tions. The standard procedure' using the adjoint Green's
function yields the following general formula for G„ in
terms of the nonhomogeneous boundary condition on
the plane @=0:

we obtain the following set of diGerential equations:

BGp/BP D'j/'Gp —fj(P) fj(r———rjj),
BG /BP DV'G —=0 (/4) 0),

together with the boundary conditions

Gp(o, y,s) =0,

G, (O,y, s) =-', p'G, '(O,y,s),
G (o,y, )= l p'G '(o,y, )—lp'Go"(o, y, )

(9)

(10)

(11a)

(11b)

(11c)

Gs(o,y, s) = s p'Gp'(O, y,s)+ (1/48) p'Gp"'(O, y, s)

p G '(o,y, )+lp'G '(o,y, ), (11d)
etc.

/Ey'ds'G (O,y', s', T)

Xexp—
x'+ (y —y') '+ (s—s') '

. (13)

Now it is in principle straightforward to calculate the
G 's successively by shuttling back and forth between
Eqs. (11) and (13): Equation (12) inserted in (11b)
determines Gt(o,y,s), which by (13) determines G&(r),
which by (11c) determines Gs(o, y,s), and so on. We
6nd'

and

xxp
(14)

P

G,(r)= e j'"4D// dr r '/'(p r) '" 1+— exp[ xps//4DT xs/4D—(P r)j,— —
8(D4cP) ' p 4Dj8(P r)—

xxp exp( —ps/4DP) ~ dr exp( —x'/4D(P —T))
Gs(r) =

32Ps(Ds )4/s
p (P—r) s/s

exp( xps/4DT/)—
dn

[~(r—n)j"'
&&(4D(P r) Tp'/P —(1+—xp'/2DT/)[4r—p'(P r)/Ps+8D(P r—)'/P+rsp4/4DP—sj'f. (15)

We need only Gs(r) for r = (xp, o,o):
Xp'

Gs(xp, o,o) =
4''j84

p (T—g)"' p

dr(P T)' 'T' ' exp[ xp—'P/4DT(P T)j—6T 3P (P —r)xp'/D—r——
(~—)

eXp[ Xp'(g+P r)/4D—q(P T)j- —
dn [8 '/3 3Ps+ 6TP 12)—r+ (xps/4D—t/) (3TP /$

[~(~ ~)j"'-
—3P +12)P+6TP 18+)+(xp4/4D—T/)(2)P 2Ps TP /$+4TP 3—&r)j—. (16)—

A. G. Mackie, Boundary Value Problems (Oliver and Boyd, Edinburgh, 1965), Sec. 54.
Equation (14) is in agreement with Handelsman and Keller [Ref. 3].They have also found G4 at the special point r= (xjj,0,0),

and their formula agrees with our Kq. (15) at this point, except for a factor of 2 in the last term. This erroneous factor appears con-
sistently in their formulas (2.16), (2.17), (2.18), and (3.3). In their formula (3.3), also, three signs are misprinted.
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Inserting the expansion (8) for G into (6) and extract- xp yields

ing the terms of order (X/d)' we obtain
Ig ———36D'p ' dr(p r—)'r'=— (18)

107r2
X 4

(eeh order)/p~d 8

Lxp'Gg+ 2xpGp+ Gp]dxp

= (P/d)'(I, +Ip+Ip), (17)

where the argument of the Green's functions is r=ro
= (xp,0,0). Insertion of (14)—(16) and integration over

d~~3/2P

Ip= 48D—'P "'7r ' dr(P r)p/2
(r-~)"'

8 —v' 39( ) (p )
(19)

(~+P—.)' (~+P .)'—70~P

The integration in (19) is effected by introduction of the
new variable e= q+ p—r instead of rl, and reversion of
the order of the integrations. The remaining integral,

3t5D2 p' "(p r)—
dr 3(P—r)4r' —(P r)'r'+-

3m p (r ()'"— (~-~)"'(p+~- )'~'

9(P—r)
&& 3PP+ 8—P)+6rP 12$r+- (4P$ P'+ r—P'/(+2Pr 6$r)—

2(P +~)—
p r qp

+15
~

(2Pf 2P ——rP /$+4Pr 3)r),—(20)—,—„r

is slightly more complicated. One starts best with the
integration over $, followed by a few simple variable
transformations. Ke obtain 6nally

Addition yields

Ix+Ip+ Ip
= —1/105~', (22)

Ip
= —(16/1 5)(DP) '= —4/15m'. (21) as stated in the Introduction.


