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Acoustic Wave Mode in a Weakly Ionized Gas~
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The acoustic wave mode in a weakly ionized gas, which is a perturbed version of an ordinary sound wave
in a neutral gas, is investigated, At suKciently low frequencies, ~&&~,=O„(N„/N;) (T„/T,), the acoustic
oscillations of the electrons, ions, and neutrals are all in phase and have equal amplitudes (N„=neutral-
particle density, N;=ion-particle density, T =neutral temperature, T,= electron temperature, 0„=collision
frequency of a neutral particle with charged particles). However, at frequencies of the order of or larger
than eu„a marked phase difference between the oscillations of the different Quid components occurs. This
leads to charge separation and an electro-acoustic effect, i.e., an electric-field perturbation produced by a
sound wave. Previously reported wave amplification, predicted on the assumption that all particle species
oscillate in phase, is found to be consistent with the dispersion relation derived here at frequencies or«co. .
At frequencies ~&co„a reduction of the amplification takes place. As a consequence it is shown that, con-
trary to what previously has been believed, a decrease of the neutral-gas temperature does not always lead
to an increase in the wave amplification.

INTRODUCTION
' 'N a weakly ionized gas such as is encountered in an
- ~ ordinary laboratory glow discharge at pressures
greater than approximately 1 Torr, the electron-plasma
oscillations and the ion-acoustic waves are heavily
damped as a result of charged-particle collisions with the
neutral background gas, and the only truly propagating
longitudinal wave is the one that we call the acoustic
mode, which is a somewhat perturbed version of the
ordinary sound wave in a neutral gas. We wish to
investigate this wave mode and determine not only the
inQuence of the electrons and the ions on the dispersion
relation but also the possible electric-Geld perturbation
that might be produced by a sound wave entering a
weakly ionized gas. Our analysis is based on a three-
Quid model of the ionized gas, composed of neutrals,
ions, and electrons, and we account for both momentum
and energy transfer among the Quid components, as well
as entropy production within each component resulting
from viscosity and heat conduction.

The three-Quid equations for an ionized gas given, for
example, by Funfer and Lehner, ' have been used previ-
ously in less general form for the study of longitudinal
wave motion, but no adequate account of the role
played by the electrons and ions on this wave seems to
have been given. Sessler' considers only momentum
transfer among the Quid components, and so obtains
only part of the contribution of the electrons and ions to
the dispersion relation. Actually, for a weakly ionized
gas of the type considered here the energy transfer from
the electrons to the neutral-gas component can play a
more important role than momentum transfer, and it,
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has been pointed out recently that, as a result of this
energy transfer, acoustic amplification can occur. ' 5

This conclusion was reached, however, under the as-
sumption that the neutrals, ions, and electrons all move
together, having the same displacement amplitude and
phase in the wave. As we shall show here, this assump-
tion is justified only at comparatively low frequencies.
In general, a marked difference between the Quid dis-
placements results, both in amplitude and phase, and
this difference affects the role of the charged particles in
the dispersion relation in an essential way, Furthermore,
the difference between the ion and electron displace-
ments leads to a small charge separation which in turn
produces an electric-field perturbation that travels along
with the acoustic wave.

BASIC EQUATIONS

The linearized equations of motion for the neutrals,
ions, and electrons are quite similar, and rather than
write them all down we use, when possible, a single
representative equation for all components. Thus, if we
let the subscripts j and k stand for e (neutrals), i (ions),
and e (electrons), the space-time Fourier transforms of
the equations for mass and momentum balance can be
written

irdn, +ikN; v—,=0, (&)

itev,+ik—p, 'p, =re, s(vs v;)+ts, t—(vt v,)—
+ (q,/sr';) e f„(k,&v) v;, —

(j, k, l=n, i, eandpermutations). (2)

Here E and p=Em are the unperturbed particle and
mass densities, rs, p, v, and e are the perturbations in
particle density, pressure, velocity, and electric Geld,
cs/2v. is the acoustic frequency, and k is the propagation
constant. The 6rst two terms on the right-hand side in
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Eq. (2) express the rate of momentum transfer between
the Quid components. The constant of proportionality
co;I, (apart from a factor of the order of unity, or of the
mass ratio when k=e) is the collision frequency of a
particle of the jth type moving through the Quid com-
ponent k with EI, particles per unit volume. These con-
stants are related as follows: &o„,= (N,m, /N m„)co, , ~„
= (m,/m;)co„, and co„,= (N,m, /N nz„)(u;„(N;/N„)co, „

Under the conditions of interest, with gas pressures
around 1—20 Torr, electron densities around 10' —10"
cm ', and acoustic frequencies (10&a&&10'), the orders
of magnitude of the frequencies involved are co„;,co„,& 1,

co, = (4vN, q2/m, )~12 10S—109, (co„„co„;)&«o&&(co„co,). In-
elastic collisions and ion—neutral-energy transfer have
been ignored, since they do not contribute significantly
to acoustic dispersion. (The ratio between the energy
transfers to the neutrals from the electrons and from the
ions is approximately equal to the ratio between the
electron and ion mobilities, which is of the order
of 1000.)

In Eq. (2) we have also included a term fU(k, cu)v;

representing the viscous stress in the jth Quid compo-
nent. In the absence of boundaries we have, for example,
for the neutral component f~„(4/3) k' rl—/—p, where g is
the coefficient of shear viscosity, and p the mass
density. For wave propagation in a tube we have in
addition a viscous drag force from the walls. When the
acoustic viscous boundary layer thickness' is small
compared with the tube radius, it is possible to consider
the wave motion as one dimensional, and the drag force
from the wall can be included in the function f~ with a
term proportional to go&, as indicated later.

The linearized energy balance equation can be ex-
pressed as a relation between the temperature perturba-
tion and the density and velocity perturbations,

uvc„,8; =n;(e,,/—N,)+P,(8,/T, ) ik(KT, /fw, )v;—
fm;(kp&)c„,8, , —(j=l, i), (3)

—nc„P,= —ik (KT,/m, )v,—f2, (k,co)c„8,
pe [(Pmpn+P~ps) (8e/2'e)

+n p„(n„/N )+nip, (e,/N;)), (4)

where T is the unperturbed temperature, c„; is the

specific heat per unit mass at constant volume, and E is
Boltzmann's constant.

In the energy equations (3) for the neutrals and the
ions the terms involving the coeKcients n; and P,
express the energy transfer from the electrons, and the
term f2, (k,cv)8, accounts for the heat conduction in the
jth component. For example, for the neutral component
we have f2„=f2 k'(Kz/pc„„), w—her—e—Kr is the heat-
conduction coeS.cient. Analogous to the wall correction
to the viscosity term f&„in Eq. (2) the effect of the tube
wal)s on heat conduction in a wave travelling along the

' P. M. Morse and U. Ingard, in IIandblch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1961),. Vol. XI/1, pp. 14, 22.

tube can be accounted for in a one-dimensional descrip-
tion of motion if the acoustic thermal boundary layer
thickness is small compared with the tube radius. ' The
corresponding additional term in f~„ is proportional to
g&v [see Eq. (13)).

The energy-transfer coeflicients n; and P; are obtained
from the expression for the rate of energy transfer in the
elastic collisions between the electrons and the neutrals.
If the "average" collision cross section is O.,„and the
"average" electron velocity is v„ the rate of energy
transfer per unit volume will be of the form
4(m, /m„) (m, v,'/2) N, N„a,„,under the assumption that
the neutrals initially are at rest in the collision. The
meaning of "average" velocity and "average" cross
section is obtained in the usual manner from the
integral for the energy transfer, involving the electron
velocity distribution f(v, ) and the differential elastic
cross section, do, „/dQ. Thus, with

we define

',KT,= -m, v,'f—(v,)d'v„
2

2v.v,'(1—cosP)

~~Ten

f(v,)d (cosy) d'v „
dO

so that for a hard-sphere Maxwellian electron gas, we
obtain do, „/dQ=o, /4v. The rate of energy transfer per
unit mass of the neutral gas is given, in general, regard-
less of the form of f(v,), by

H = (8/7r)'~'(m, /m„)'(KT, /m, )'~'N, o,„ (5)

The terms involving n; and P; in the energy equations
(3) and (4) are the perturbation in this energy transfer
resulting from the perturbations 0, and e, in T, and E,.
Thus, it follows from (5) that

n„=B, P„=n„P+d(lna, „)/d(lnT, )]. (6)

The coefficients n, and P, are obtained in a similar
manner.

Finally, the perturbation e in the electric 6eld is
related to the density per turbations through the
Poisson equation

ike = 4v q (e,—N.), (7)

where g is the absolute value of the electronic charge,
and the pressure perturbation p can be expressed in
terms of the density and temperature perturbations
through the equation of state,

p;= (8P/&p) z m,m;+ (8P/8T), 8; = c,~y; 'tn,m+N, K8;,
(j=e, i, e). (8)

Here E and p are the unperturbed pressure and density,
c=(yKT/m)v" is the adiabatic speed of sound, and
'y = cv/cg.
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Av„+Bv,+Cv, =0,
Dv„+Ev,+Fv, =0,
Gv„+IIv,+Iv, = 0.

(9)

This completes the set of linearized equations of
motion which is the basis for our analysis. Elimination
of all but the velocity variables from these equations
leads to three homogeneous equations for v„, v;, and v„
namely,

The expressions for the coefhcients 3, 8, etc. , in their
complete form, are rather lengthy and we leave these for
the Appendix. Here we present only the approximate
expressions that are consistent with our intention to
limit the present study to the acoustic mode of motion
and to a gas with a comparatively low degree of
ionization as encountered in most laboratory glow
discharges. Under these conditions, the essential con-
tributions to these coefticients are

~n'+~n~ ne
1— +i + B leo~—;,/co ) C— i +—

q

+nn CO M7'

(10)

+e ~es2

G i/; —B ,(—
We have introduced co„„, which is of the order of the
neutral-neutral collision frequency,

1n+ 2n ~

out of phase with the gas density and tends to reduce
the magnitude of the amplification eRect at very low
frequencies.

DISPERSION RELATION

This term accounts for the well-known KirchhoR wave
attenuation caused by viscosity and heat conduction in
a neutral gas. The characteristic frequency, co,;, is
defined in a similar manner.

The eRect of the heating of the neutrals by the
electrons is expressed through the term 1/a&r defined by

Since H is the rate of energy transferred to the neutrals

per unit mass from the electrons, it follows that the
characteristic time v. can be interpreted as the time

required, to approximately double the thermal energy of
the neutrals. ~ Using the expression of H given in Eq.
(5), we find that for ordinary glow-discharge conditions
this time is of the order of 1 sec. The e6ect of this energy
transfer on the state of the electron gas is expressed in

the complete form of Eq. (10) as given in the Appendix
through the term containing the function E,. This term,
discussed further there, vanishes if the electron gas is

assumed to be isothermal or if the electron heat con-

ductivity is assumed to be infinite. This assumption that
the electron gas is an isothermal heat reservoir breaks
down at low frequencies, and the problem must then be
handled in the manner indicated in the Appendix. The
result is an electron temperature perturbation that is

7 Since the major portion of the electrical power supplied to a
glow discharge is transferred to the neutrals through elastic
collisions, one can identify II with the total power supplied to the
discharge per unit mass. Thus if the positive column contains n
moles of gas at a temperature T and absorbs a total power I', one
finds ~=ynRT /I'(y —1), where R is the gas constant and 7 the
specific-heat ratio.

Using the expression for the coe%cients A, 8, etc, , as
given in Eq. (10), we obtain from Eq. (9) the following
dispersion relation for the acoustic wave mode:

k2~—

where

P 1 1
i +— ——,(13)

cur„co 1+2 ~r 1+@

-4.g
=fi + f2 = ("/')' —+(y 1)&r/pc-

'Tn Vn 3p

+ (vq/2pr ) J + (war/2pc r2)'~2,

It should be stressed that this expression for k is valid
only as long as the quantities in the second and third
terms in the brackets are small compared with unity.
Terms of higher order in these quantities have been
neglected. In this connection, we are reminded that the
continuum description of Quid motion used here is valid
only at acoustic frequencies lower than the neutral-
neutral collision frequency. At room temperature and
pressures 1 Torr, this means an upper frequency limit

10' Hz.
We note that there are three terms contributing to the

imaginary part of the propagation constant k. The erst
term (1/cur ) represents the damping produced by
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(14)

where

ymax =

co E,
n. X.
(y„—1)(8/s)'" m, T, S,

m„T *E &en.

In other words, if we neglect the dependence of Q„on
T„, it follows that for a constant electron temperature
T, the amplification term has a maximum value

y when the neutral gas temperature is T„~. This
temperature is proportional to the acoustic frequency,
and for a typical situation, with (a&/0 —100, X;/E„
~10 '), we see that T„*~0.01T,.For electron tempera-

viscosity and heat conduction, and the expression given
for (1/r„) refers to a wave propagating in a cylindrical
tube of radius r. The terms proportional to g&o and &o'

correspond to the losses at the walls and in the bulk of
the gas, respectively. Thus, at suKciently low frequen-
cies and tube radii, the boundary losses dominate over
the bulk losses. In a typical laboratory discharge at a
pressure 1 Torr and a tube radius 1 cm, the two loss
contributions are equal at a frequency of approximately
1000 Hz.

The second term in Kq. (13) represents the wave
damping resulting from the collisions between the
neutrals and the charged particles. At low frequencies
such that b(1 (typically this means frequencies less
than approximately 500—1000 Hz) this term is pro-
portional to the frequency and, consequently, has the
same frequency dependence as the viscous and heat-
conduction losses, but its magnitude is somewhat
smaller. In this low-frequency limit, however, the
boundary losses ordinarily dominate so that the bulk
loss terms can both be neglected. At high frequencies the
viscous bulk and heat-conduction losses will be con-
trolling, since the charged particle-neutral collisional
damping decreases with frequency as 1/&v after having
reached a maximum value at the frequency (1V„/X,)
X (T„/T,)y„Q„. But even at this optimum frequency,
the viscous and heat-conduction losses in the bulk
ordinarily dominate, so the charged particle-neutral
collisional damping plays a rather insignificant role in
the entire frequency range.

The third imaginary term in Kq. (13) accounts for the
energy transfer to the acoustic mode from the electrons,
and represents a negative damping or amplification.
From an experimental standpoint it is interesting to
investigate the dependence of this amplification term on
the temperatures of the electrons and the neutrals. By
introducing the expressions for r, H, and 6 given in
Kqs. (12), (5), and (13), we see that the dependence of
the amplification term on the neutral gas temperature
T„can be written

tures 1 eV this temperature is close to room
temperature.

Equation (14) shows that if the neutral-gas tempera-
ture has been adjusted for maximum amplification of an
acoustic frequency co* a change of T„ from T„~ to cT„*
will reduce the amplification of co* and transfer the
maximum amplification to a frequency em*. In other
words, contrary to what has been previously believed, 4

a decrease of the neutral-gas temperature does not
always increase the amplifica, iOn. . The condition for
acoustic-wave amplification is Im(k)(0, and if the
viscous and heat-conduction losses dominate, which is
generally the case, the condition for wave amplification
is r(1+2)(r„If w. e assume that the neutral-gas
temperature has been chosen to optimize r(1+2), and
if we use this optimum value given in Kq. (14), the
criterion for wave amplification can be expressed as

(c osnt)(m, /rn )(T,/T„")($,/E„)) r, /r„, (15)

in which we have introduced r,„=1/co, „.
Actually, this criterion can be inferred from quali-

tative considerations. The mechanism of amplification
is related to the fact that the perturbation in gas
density produced by an acoustic wave perturbs the
electron density, and therefore the rate of energy Row
from the electrons to the neutrals. This produces a
space-time distribution of energy Row to the neutral gas
that corresponds to an acoustic source distribution
favoring the growth of the wave. If the electron temper-
ature is considerably higher than the neutral gas
temperature, which is the case in most discharges, the
rate of energy transfer caused by electron-neutral elastic
collisions is of the order of r,„'(m,/m„)E, per unit
volume of the gas, where (m,/m„) is the electron-to-
neutral particle mass ratio, E,~E,kT, the thermal
electron energy per unit volume, ~, the electron-
neutral collision time, and E, the electron density.
Whereas in the absence of a sound wave this transferred
energy all goes into thermal energy in the neutral gas,
the presence of an acoustic density wave in the gas
causes some of the energy~to go into the collective
motion of the wave. If the wave energy per unit volume
is E„and the thermal energy of the neutral gas is
E E kT, it is reasonable to assume that the fraction
(E„/E„)of the energy Qow from the electrons goes into
the wave. If this is so, then the wave receives an energy
of the order of (E„/E„)(m,E./m ) in time r,„. Com-
peting with this energy transfer is the wave-energy loss
through various entropy-producing mechanisms, such as
viscosity and heat conduction, and if the corresponding
ra, te of wave-energy loss is E„/r„, where r„ is the
acoustic-wave decay time, the loss during the time r,„
is E (7, /r„) If the energy .gain is larger than the loss,
then wave amplification should result. Thus, apart
from a numerical factor, this condition is satisfied when
(m,/m„) (X,/X„) (T./T )) (r, /r ), in agreement with
Kq. (15).



ii0 U. I NGARD AND M. SCHULZ 158

We may be even more explicit about the amplification
criterion if we use the expression for 1/r in a cylindrical
tube as given in Kq. (13). Then, if we introduce the
length f= g/pc, which is of the order of the neutral mean
free path, and the neutral collision frequency or„, which
is of the order of c/f, the general criterion (15) takes on
either of two di6erent forms, depending on whether the
boundary losses or the bulk losses predominate. Then,
omitting the constant of the order of unity, we get

(~./~-) (2'./2'-') (N./N. )& (fir) ( * -)'" ~ (16)

for the case in which boundary losses predominate and

(m,/m„) (T,/7 *)(N,/N„) & (l/V)co*r. (1'I)

for the case of bulk-loss predominance, where P* is the
wavelength that corresponds to the frequency +*.

Comparing the results of the present analysis with
those previously obtained, 4 we note that the general
criterion (15) and the criterion (17) are consistent with
the past result, but that the criterion (16) is not. The
reason for the discrepancy is in part that the criterion
formerly used refers to the very low-frequency range in
which co~&&1. As pointed out in the Appendix, however,
the contributions from fi, f2, and r are not additive
when &or«1, in contrast with the previous assumption,
and the corresponding criterion cannot be correct with-
out further modification. The range of frequencies at
which err is less than unity is of little practical interest
and, furthermore, in this very low-frequency range the
acoustic boundary layer may be of the same order of
magnitude as the tube radius. Then, even the funda-
mental wave mode in the tube cannot be treated as one
dimensional, and under such conditions a complete re-
examination of the problem is required.

The amplification criterion (15), which was derived
for the spatial growth of an acoustic wave, applies also
for the spontaneous generation of an acoustic eigenmode
in a cavity. The attenuation constant (1/r ), which in

our analysis has been considered to result from viscous
and heat-conduction losses, may, of course, include
additional losses resulting, say, from absorptive bounda-
ries. In such cases (1/r ) may be difficult to calculate,
but it can always be determined from measurements of
the width of the acoustic resonance under consideration
in the neutral gas. Clearly, it is possible to obtain
experimental evidence of the inQuence of the amplifi-

cation mechanism even without satisfying the threshold
condition r /r&1+8'. The presence of the electron

energy transfer to the neutral gas sharpens the acoustic
resonance, thereby reducing the width from (1/r ) to

The presence of the charged particles not only sects
the attenuation, but also causes a (small) increase in the
phase velocity of the wave. It follows from Eq. (13)
that the phase velocity in the low-frequency region,

co(Q (N /N~)(T /T, ), is given by

1 T, E; j.
c'=c„' 1+— 1+y„T„Ã„Q„r

Apart from the factor 1+(1/Q„r) expressing the in-
Quence of energy transfer from the electrons to the
neutrals, this result is identical with the sound speed
expected for a gas mixture of an adiabatic neutral-gas
component and an isothermal electron gas.

&n e„
Ss~ )1+iI N„1+i'

where

(~*-/~)(~/~')'&

Q

~e +s

T„g„Q„

(20)

In other words, the assumption, used in previous
studies, that in the acoustic mode the velocities v;, e„
and v„are all the same is good only at frequencies much
less than the characteristic value co,=p„(T„/T,)
X (N„/N, )0„.As the frequency increases above a&„ the
ion and electron velocities decrease in amplitude and are
brought out of phase with the motion of the neutrals.

Since there is a (slight) difference in the ion and
electron velocities, the acoustic motion produces a
charge separation and therefore an electric-Geld per-
turbation. The electric field is obtained from Eq. (10)
and by expressing the particle perturbation m; in terms
of the velocity, using Kq. (2),

eg =Np,/((o/k), (21)

we obtain for the electric 6eld ike= 4m.g(N, /c„) (a,—a,),
which, on account of Eq. (20), leads to

(—Q) p~;„(—is)
e= 4m qN, cu, (~/a), )'

1+9 g 1+ib
(22)

The last relation in (22), which says that the electric
force perturbation qe on an ion is of the order of the

VELOCITY FIELD AND ELECTRO-
ACOUSTIC EFFECT

After having discussed the dispersion relation, it
remains for us to determine the relationship between the
various field components in the acoustic wave mode.
The velocity amplitudes of the ions and electrons follow
from Eq. (9), a,=w„(DI FG)/(F—B EI) an—d e,
=v„(EG DII)//(FII —EI), and u—sing Eq. (10), we
obtain
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sound pressure times the ion-neutral collision cross
section, was obtained by setting co;„e„o;„X„,co,&

=4xq'N, / m, , and N m,cv„p cv„=p
The existence of an acoustically driven perturbation

in the ion density and velocity, as given by (19), is
qualitatively consistent with measurements for a steplike

shock wave in a weakly ionized gas, and the electric
Geld given by (22) is qualitatively consistent with the
observation by Alexeff and Neidigh' of an electrical
oscillation at acoustic resonance frequencies of a spheri-
cal discharge tube during experiments on ion-acoustic
waves.

APPENDIX

The complete expressions for the coefGcients A, 8, C, etc., in Eq. (9) are

(cnk rn —1 Zf2n/N Rn/~&
A = 1—

~

1— + ji (f~n/&v)+i (cv„,+~..)/&o;
1+i(f2„/a)) 1+i(f2„/(v)

i(~.*/~—) (c.k/~—)'(R-/~r') (1+if2./~) '

C= i(~-/—~) ("k/—~)'(i/~r)L1+ (v. 1)((f-—/~. )R.)/(1+if2. /~);

D= B*; F.=A* (co;/co)'; F—=C*+ (co /&o)'

G= —i( ~ ( )+(c k/ )'(ii )(p /p. )(v.—1)(v —1) 'R.

H=G*+((o /(o)'

where

and

(cek ~en+~ee le (&eI= 1——
i

L1+(y,—1)R,]+i +i
p, E ~ M M (67

R,—'=1+if,/c + (i/edp, c.,l',) (P p„+P,p;)

R„=(y,—1)(P„y„/roc„') (P„/P,)R„

and where the asterisk denotes an interchange of roles between the ions and neutrals. One defines R; similarly. It
proves convenient also to define the functions

R=R. i(y. —1) [(—1+ix)(a„/P„)R„+(u,/P;)R;)

and R'= (P„/a&c„')R, and the parameter

1 m, (c,k 'C1+(y,—1)R)o& Te )
y, m„k o& ~,„+m~,„/m„y„T„) a;„)

The dispersion relation F(k,co) =0 obtained by using these coefGcients in Eq. (9) is of third order in k' if we
neglect heat-conduction and viscosity terms. Of the corresponding three characteristic wave modes, two may be
regarded as (degenerate) forms of a plasma oscillation and an ion-acoustic wave, respectively, which are heavily
damped in the acoustic frequency range of interest here (co&10' Hz). ' In our study of the role of the charged
particles on the dispersion relation in the remaining acoustic mode we have limited the calculation to frequencies for
which viscous and heat-conduction effects and collisional effects between Quid components are small enough that
they can be considered additive. It is not dificult to relax this assumption and to show explicitly how these effects
couple with each other. For example, in the low-frequency region in which 5«1 (fluid components move together)
the complete expression for the dispersion relation is

k' = (u/c„)'[1+if~„(k,cv)/~][1+if~„(k,co)/cv][1+i f~„(k,co)/~y„+i/~7+i (p„1)R'(k, &o)] '. —
8 K. %. Gentle and U. Ingard, Appl. Phys. Letters 5, 105 (1964).
~ I. Alexeff and R. V. Neidigh, Phys. Rev. 129, 516 (1963).
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The appropriate generalizations of (13) and (20) would be

and

X —+ (y„—1)R'
i /c. k ' f2.q

—'- 1—+(~„—1)R' =0
1+PS co M ) (dr-

me Ce~ co E
1+ (y.—1)R—

y, m„a) Q„g„

If free-space conditions are assumed for the electrons, so that f2,/co (cu/&u, „)(c,/c„)', one can write R(k, cu) as

R~[1 iy—,(c„/c,)2 (p„/p, )/(y 1)—cor5 (1+i (co/co, „)(c,/c„)2+i',[1+3 (d lno/d In 2',)5 (c„/c,)2 (p„/p, )/(y„—1)cur)

One finds, moreover, that
1 2 d(lno. )—+(y„—1)R'=—1+R 1+—

cur a&r 3 d(lnT, )

and that the real part of this expression vanishes as co —+ 0.
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Evaluation of the Pair Distribution Function of a Hard-Sphere
Bose Gas at Zero Temyerature*
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An explicit evaluation of the pair distribution function of a hard-sphere Bose gas at zero temperature
is made. The result correct to 6rst order in a hard-sphere diameter and based on a chain-diagram approxi-
mation is plotted, and the corresponding numerical values are given. Approximate analytical expressions
for the distribution function at various distances are also reported.

' 'HE pair distribution function p&'&(r) of a dilute
hard, -sphere Bose gas has been studied recently. '

As is well known, Lee, Huang, and Yang' evaluated the
low-lying energy states of such a gas and found a phonon
spectrum. Also, they found that the pair distribution
function decays as 1/r4 at large distances. More recently,
the distribution function has been evaluated in closed
form in chain-diagram approximation. ' The result
correct to first order in the hard. -sphere diameter be-
comes inaccurate at short distances, but since it is
expressed in terms of higher transcendental functions
we shall report some numerical results.

The pair distribution function in chain-diagram
approximation may be expressed by the following

* Work supported by the National Science Foundation.
f On leave of absence from IBM Watson Research Center.
' T. D. Lee, K. Huang, and C. ¹ Yang, Phys. Rev. 106, 1135

(1957).
~ A. Isihara and Daniel D. H. Yee, Phys. Rev. 136, 618 (1964);

Chester Nisteruk and A. Isihara, ibid. 154, 150 (1967).

integral:

p&'&(r) =n'(1 —4s. 'y 'aI(r))

I(r) =Re {1—q(g'+y) '") exp2iq rdq, (1)

g(r) =~ 'u"'(r),
g(r) —1=—(4~/r)k(x),

y (x) = Go (x) —x-'Gr (x),
G„(x)= I „(x)—L„(x),

x= 27'l'r.

(2)

where p=4~ae, in which e is the density and a is the
hard-sphere diameter. This result is obtained for the
lowest temperature and correct to the lowest order in
the hard-sphere diameter. The integral on the right-
hand side may be evaluated in terms of the modified
Bessel I,(x) and Struve functions L„(x) as follows:


