
PH YS ICAL REVIEW VOLUME 157, NUM BER 4 20 MA Y 1967

Integral Equations for Deuteron-Induced Nuclear Reactions*

IVI IAN V. NOBLE]

Palmer Physical Laboratory, Princeton Unioersity, Princeton, Neve Jersey]
(Received 21 October 1966)

A new treatment of deuteron-induced nuclear reactions is presented. Uncoupled Fredholm integral
equations for the reaction amplitudes are derived. Approximating the neutron-proton T matrix by a simple
separable form gives the optical potential for deuterons, in terms of the neutron-target and proton-target
interactions. All reaction amplitudes can be expressed, in this approximation, in terms of the off-shell (d,d )
scattering matrix. For the special case of a spinless, inert, in6nitely heavy target, the optical potential can
be constructed by quadratures. This is done explicitly, and the numerical behavior of the partial-wave
deuteron elastic-scattering equations is investigated for a simple model. Finally, the philosophy of this
approach to the study of direct reactions is discussed, and extensions of the theory (for the treatment of
local neutron-target and proton-target potentials) are suggested.

I. INTRODUCTION

~ 'HE distorted-wave Born-approximation (DWBA)
calculation of "direct" reaction amplitudes has

recently been criticized on a number of grounds. ''
The most serious of these is its inadequate treatment of
the three-body aspect of the underlying physical model.
(For instance, the DWBA series always diverges in
interesting cases and there is thus no inherent error
criterion in the DWBA; it is therefore impossible to
unequivocally distinguish effects of the model from
artifacts of the approximation. ) For this reason, a
number of authors have felt' ' that the best starting
point for an improved theory of direct reactions is the
correct treatment of the three-body problem.

It is by now well known that the extra degrees of
freedom in the three-body problem make the practical
application of Faddeev's' or Weinberg's' equations ex-
tremely diKcult. The purpose of this article is to dis-
cuss the calculation of amplitudes for deuteron-
induced reactions using an alternative formulation of
the three-body problem which is considerably easier to
apply than the Faddeev equations. ' All the amplitudes
may be expressed as quadratures involving the deuteron
elastic-scattering operator; this operator in turn may be
shown to satisfy an uncoupled Fredholm integral
equation. This equation is, in a sense, the "most
natural" one to investigate, since it is obtained with
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minimal effort from the Lippmann-Schwinger equa-
tion for this operator.

The paper has the following organization: Section II
shows. how the Lippmann-Schwinger equations may be
transformed into equations with completely continuous
("Fredhohn") kernels. In the case of deuteron-induced
reactions, approximating the rt pscatteri-ng matrix by
a separable form leads to a set of linear integral equa-
tions involving only the deuteron-scattering ampli-
tudes. This reduction is performed in Sec. III. The im-

portant physical case of a spinless, recoilless (inert)
"core" is especially simple because the kernel of the
"reduced" deuteron-scattering equations derived in
Sec. III may be constructed exactly by quadratures
(involving the rt-core and p-core scattering matrices).
The construction of this kernel is carried out explicitly
in Sec. IV. (Various elements of the formal approach
used here have been previously suggested by other
authors. In particular, Eqs. (15), (19), (32), and (34)
or their equivalents were also derived by Rosenberg. '
The simpli6cations of using the spin-zero, in6nite-mass

target have also been remarked by numerous other
authors. " 'j An extremely simple case of the recoilless,

spinless core model was solved numerically. A descrip-
tion of the case and of the results of the calculation is

given in Sec. V. Finally, conclusions and prognostica-
tions are presented in Sec. VI.

Appendix A is a straightforward calculation of the
kernel of the simple model of Sec. V. Appendix 8 con-

tains a description of the numerical methods employed
to solve this model. Appendix C is a derivation of the
functions r(s) appearing in (21) and (44), using the
two-body oR-shell unitarity condition. Finally, Appen-
dix D gives an estimate for the breakup (d,rtp) cross
section in terms of the elastic (d,d) cross section.
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II. THREE-BODY THEORY OF
DIRECT REACTIONS

We consider a model consisting of a neutron, a pro-
ton, and a heavy "core," which may have (discrete)
internal states. The total Hamiltonian for the system will
be written H =H p+ V +V„+V „, where V„and V~
are the neutron-core and proton-core interactions, and
V„„is the neutron-proton interaction; Ho is the sum of
the kinetic energy operators of the three-body system
and the "internal" Hamiltonian of the core.

Without justification, dehne the formal collision
operators, describing various reactions which can occur,
as follows. "
U~g(W) = V~+ V,

+(V +V „)(W H) '(V +—V„), (1)

U„(W)= V.+V,
+(V +V„)(W H) '(V—+V~), (2)

Ups(W)= V +V~+V „
+(V +V„+V ~)(W H) '(V —+V„), (3)

Urn(W) = V&+V.~
+(v+v „)(w—H) '(v +v„„). (4)

[The subscripts denote which particles are free in the
initial (right) and final (left) states; 0 corresponds to
all three free. $ The operators defined in (1) through (4)
above, when their matrix elements are taken between
appropriate @rave functions and when the limit as
W —+ E+irt is taken, respectively describe (d,p), (d, d'),
(d,pm), and (p, p') reactions. Consider (1) and (2): in
the usual way [that is, by using the identity A ' 8'—
=—8 '(8—A)A '—=A '(8—A)B ') we find that they
satisfy the Lippmann-Schvringer equations

U~g(W)= V~+V „
+U (W)[W Ho V) '(V + V—„) —(5)

Ugg(W)=v +V„
+Used(W)[W Hp V~) '(V—„+V—~). (6)

Also, we note that

(W—H) '=—(W—H —V ) '
+(W H) '(V +V~)(W—Hp V„) ' ('7)— —

so that

(W—H) '(V +V„)=(W Hp V„„) 'Ugg(W), — —
and therefore,

(W—H) '—= (W H —V ) '—
+(W—Ho —V ~) 'Ugg(W)(W Hp V„„) '. (8)——

All the scattering operators can (in principle) therefore
be determined by quadrature once Uqq(W) is known.
[Equation (1) takes a particularly simple form in terms

' M. I,. Goldberger and K. M. Watson, Collision Theory
(John Wiley tk Sons, Inc., New York, 1964}.

of Upq(W), as we shall eventually see.) We may thus
restrict our attention to Eq. (6).In terms of the neutron-
proton scattering matrix, dered by

t ~(W) = V „+V ~Gp(W)t „(W),
we may write

(W—Ho —V „) '—=Go(W)+Go(W) t,(W)Go(W) (10)

Then Eq. (6) may be rewritten

Ugg(W) = V +V„+Ugg(W)Go(IV)

X[1+t „(W)Go(W))(v„+V„). (11)

Clearly, the term Go(V„+V~) of the kernel of Eq. (11)
contains "dangerous" delta functions, and as Weinberg
has shown, ' it is for this reason not a completely con-
tinuous opera, tor. [Equation (11) is not of Fredholm
type. $ In order to proceed, we must remove this term
from the kernel of (11). If we knew how to construct
the operator [1—Go(W) (V„+V„)) ', we could formally
eliminate the Gp(V +V„) term from the kernel; this
would then leave the kernel Gp(W)t„~(W)Gp(W)
&&(V„+V„)[1—Gp(W)(V„+ V„)) ', which, under suit-
able conditions on V„„, V„, and V„, is presumably
the product of a comp1etely continuous' ' ""operator
and a bounded operator, and is thus also coInpletely
continuous. One must therefore consider how to con-
struct [1—Gp(W)(V +V„)) '. Note first that this
operator may be written

[1—G (W)(V +V )) 'G (W)G '(W)
—= (W Hp V„—V—) '(—W—Hp). (12)

Hence

Gp(W)(V +V„)[1—Gp(W)(V„+ V,))-'
=—[(lV—Ho —V —V„) '—Gp(W))Gp '(W), (13)

an identity we shall need later. In the circumstance that
Ho+ V„+V~ may be written H„+H„,with [H„,H„)=0, —
and assuming that the complete spectra of H„and
H„are known, it is straightforward to construct
Hp+ V„+V~ by a convolution' '""
(W—H —H )-'

=(2m~)
—')If rdz(z s) '(w r s,) ', o4)—— —

where I" and lV are chosen so that the contour 1 sepa-
rates the singuhrities of (Z—H„) ' and (W Z H~) ', — —
and is taken around the spectrum of II„in the positive
sense. Such a contour (with ImW) 0) is illustrated in
Fig. 1. This case, with [H„,H„)=0, is physically quite
important. It corresponds (in our model) to a "core"
with infinite mass, zero spin, and no internal degrees of
freedom.

"W. Hunziker, Phys. Rev. 135, 8800 (1964)."C.Lovelace, Phys. Rev. 135, 81225 (1964}.
~' Reference 5, p. 8255.
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and pH„,HP)&0. Equation (15) is the more general
form, however.

As it stands, Eq. (19) is not a significant improve-
ment over the (coupled) Faddeev-Lovelace" equations
from the computational point of view. A certain amount
of decoupling has been achieved, but only one transition
operator at a time is calculated, rather than three simul-
taneously. The next section introduces an approximation
which effects a considerable further simplification.

FrG. 1. Appropriate contour for convolution Eq. (14).

In case LH„,HP)WO, it is necessary to construct
$1—Ge(V„+VP)j ' in some other manner. Let us
define two operators, X„(w) and XP(ttl), by the follow-
ing equations:

X.=~.+~.G,X„ (15a)

X,= t„+t„G,X„, (15b)

t =V +V Got,

3„=V,+V,Gilt, .

(16a)

(16b)

By using Eqs. (15) and (16), it is easy to see that

[I Gll(V +VP))(1+Gll(X +XP)j= I (17)
and

(V„+VP) [I+GP(X„+XP)i= X„+X„. (18)

Therefore Eq. (11)may be transformed into

Udg(W) =X„(W)+X„(W)+Ugg(W)G p(W)

X t„„(W)Gp(W)$X„(W)+X„(W)i. (19)

Faddeev has shown' that the kernel of Eq. (15) is com-
pletely continuous for reasonable potentials, and so
X„and Xp are well defined by Eq. (15).Similarly, since
the X„and XP are bounded operators, the kernel of
(19) will also be completely continuous. By comparing
(17) with (12) and (13), we see that

(W Hp V —V ) '——Gp—(W)
=GP(W) fX„(W)+XP(W)$Gll(W) . (20)

Equation (20) explicitly demonstrates the connection
between the methods for the two cases (H,H„J=O

(K'q'rr'S Y
~
LUa~(W) —X„(W)—Xp(W) j ~

KqnSp)

where t„and tp are the I-core and P-core scattering
matrices, respectively, and themselves satisfy

and
M = 2m, pic/(pm, +2m)

(a) K=1.+k„,
(b) q= k(k- —kp)

(22)

(23)

In terms of these momenta and the reduced mass M,
the (diagonal) matrix elements of Ho are given by

(q'K'o. 'i Hei qKn)
O'E' h'q'

=S(q' —q)S(K' —K)b... + +h. ~, (2C)m ~ )
where the h are the (discrete) eigenvalues of the in-
ternal "core" Hamiltonian, H, . Then Eq. (19) becomes

III. THE REDUCED EQUATION
FOR (d,d') AMPLITUDES

At this point let us introduce the major approxima-
tion needed to make Eq. (19), together with Eq. (15),
a complete and simple description of deuteron scat-
tering: we write t „, in the e-p barycentric system, as

4,(s) = —I4.)Ar«(s)(4~I —I4e)A.«(s)(OoI . (»)
In this approximation, the r(s) have been chosen to
make t„„unitary both on and off-the-energy shell. "
They are derived explicitly in Appendix C. Here ~st&)

and ~gll) are the triplet and single n. Pform facto-rs,
and «(s) has a pole at s= —ed

———2.225 MeV. Ar and
AB are, respectively, the triplet ard singlet spin-
projection operators in the e-p spin space. At reasona-
bly low energies (in the I-p c.m. system), the higher
partial waves are not important, so only s-wave con-
tributions to ~@d) will be considered, although in a
more sophisticated treatment it would be necessary to
include a d-wave term representing the tensor forces.

Let us write (19) in the explicit basis of products of
plane waves for the relative motions of I, p, and the
core c, and the internal states of c. With m =m„=m,
define

Sl lyl Icr ~
/

(K'q' 'SY( U..(W)
~

K"q'V'S'V')(q" ~y, )
dq"

W —(O'K"'/2M) —(hmq"'/m) —h "
A'E"'

X~S" ~'—
235

Q s"
i
q"')(K"q"'n"s"p"

j )X„(w)+X„(w)j i Kqnsp)
dq///

W—(O'E"'/2M) —(h'q""/m) —ho ~

(25)

Here the neutron and proton spins have been coupled to total spin 5, with Z-projection v.
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To simplify the notation somewhat, delne

(0 s'
I
q') (k'q'n'S'v'

I
U«(W) I KqnSv) (ql es)

(K'SVn'I A (W) I KSvn) = dq' dq , (26)
(W—(O'E"/2M) —(h q"/m) —h~.)(W—(O'E'/2M) —(h'q'/m) h—~)

and similarly, define (K'S'v'n'I A~(W) I KSvn) by replacing U«(W) in (26) by X„(W)+Xv(W). We see that by
multiplying Eq. (25) by the appropriate factors, and by integrating over the appropriate indices, we obtain the
"reduced" equations

1 S"
(K'S'v'n'

I LA (W) —A s(W)) I KSvn) = —P P g dK"(K'S'v'n'
I
A (W) I

K"S"v"n")
S' =0 v"=S"u"

O'E"'
)(,Ts .

I
W— —h.- l(K"S"v"n"

I An(W) I
RSvn). (27)

2M

Let us consider the physical signilicance of Eq. (27): with appropriate normalization of (pdl q), rd(s) reduces to—(s+«) ' near the pole of t„v(s) (see Appendix C). By comparison of (21) with the well-known form for the residue
of t„~:

1„„(s) —:A,V.„II4)(s+«)-&(I41v.~„ (28)

we may identify (ql V„v~l fd) with —(qlps). However, the Schrodinger equation for the deuteron wave function
is, in momentum space,

and so

But the "energy shell" is defined by

(Asqs +" l(qll4)= -(ql v-.'l~.)
km i

(qlA)
(ql~4) =

ed+(h' q/m)

(29)

(30)

W= (Ii'E'/2M) —ps+a = (O'E"/2M) —«+h~, (31)

so that Eq. (26) is immediately seen to reduce to the definition of an element of the deuteron-scattering matrix
(with S'=S= 1), on the energy shell. Thus, Eq. (27) has the form of the coupled-channel Lippmann-Schwinger
equation for deuteron scattering" "with the role of the effective d-core potential being played by (K'S'v'n'I Az(w)
X I KSvn) IThe parall. el may be made more exact if we write rs(s) as —S(z)/(s+ez), and if we symmetrize Eq.
(27) by multiplying by LS(W—(O'E"/2M) —7s ))'l' on the left and by I S(W—(A'E'/2M) —h )]' ' on the right. )

As was previously mentioned, the stripping amplitude can easily be expressed in terms of the elastic-deuteron-
scattering amplitude. It is useful to note here how this is done: using the transformation by which Eq. (19) was
derived from Eq. (11), we obtain

Uvs(W) = Xv(W)+ V vLI+Gp(X +Xv)]+Uvs(W)Gp(W)I v(W)Gp(W) LX (W)+Xv(W)].

On comparing (32) with (19), we find that

Uvd(W) =Xv(W)+ V v+1 v(W)Gp(W) Uss(W)+Xv(W)Gp(W) I v(W)Gp(W) Uds(W) .

Bearing in mind the approximation (21) and the relations (26), (29), and (30), we have the result

(32)

(33)

(kv'u, 'IfMr
I
A vs(W) I KSvn) =

S"v"a"
dK"(kv'o. „'IrMr

I
A van" (W) I

K"S"v"n")

x 8s-s8.«.8 «.8(K"—K) —s-(s'—

'4 J. V. Noble, Phys. Rev. 148, 1528 (1966)."H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958).
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where

&k,'o„'1,3f,
~

A „P--(W)
~
KSvn& = dk„' dq g,r~,*(k„',o„' n)&-,

' ', o-„'ov'~5'v'&

&ql~.&

)& &k.'k, 'S'v'n'~ X„(W)
~

-', K+q, -', K—q, Svn&—
W —h2Z 2/2M —h2q'/m —h.

+PPr~ f (K—k ', o„' n)&-'-,' o'o '~&v)&-'K —k '~Ps) (33)

Here, pr~ir~ is the (bound-state) wave function of the n-core final state.
In general, the kernel of Eq. (27) must be constructed by solving Eqs. (15) and taking the appropriate projec-

tions as in Fq. (26). This will be a rather laborious procedure even taking separable forms for t„and t„and treating
c as infinitely massive. A considerable number of physical situations lend themselves to a model with m, = 00,
and (H„,Hv] = 0, however. ' ' 7 ' Furthermore, under certain conditions (see Sec. VI) it may make sense to neglect
internal excitations of a (spin-zero) core, even when they are quite low lying. Section IV, therefore, indicates how
to proceed when $H, Hv] =0, and A&(W) may be exactly constructed by quadratures.

IV. THE RECOILLESS SPIN-ZERO CORE WITH NO INTERNAL STATES

We wish to construct the resolvent (W H„H—v)
' u—sing the convolution (14); using the contour I' given in

Fig. 1, and denoting the lowest (discrete) eigenvalue of H by 8, we m—ay write

(W H„Hv) —'=—dx (W—x—Hv) '6(x—H ). (36)

Here the operator $(x—H„) is, as usual, defined in terms of the "spectral family" of H„,"

$(x—H„)= dl(E,)S(x—E,), (37)

where the Eq are the eigenvalues of H„, and an ordinary 8 function appears under the integral sign. We may con-
struct the spectral family of II„from its bound state and continuum eigenfunctions, if they are complete. In any
case considered here, they are complete because H„will always be assumed to be a self-adjoint (unbounded) opera-
tor."The bound-state wave functions are straightforward, and the scattering wave functions may be expressed
in terms of t„Lsee (16a)] by the well-known formula (m, = ao)

&p ~

t„((h'k„'/2m) +irt)
~
k„)

&n I A.')= &(u —k-)+
(h'/2m)(k ' k„')a—i'

(38)

We also require the identity'

&k„'~ (Z H) '~ kv) = (Z——h'k '/2m) '8(kv' —k„)+(Z—h'k "/2m) '&kv'~ tv(Z)
~
kv)(Z —h'k '/2m) ' (39)

Using (37)—(39), we obtain the following matrix elements of Go(X +Xv)Go Lsee Eq. (20); also note the implicit
spin labels in (40)]:

&k-'k. 'I Go(W) LX-(W)+X.(W)]Go(W) I
k-k.&

= (k-'k. 'I Go(W) Lt-(W)+t. (W)]Go(W) I
k-k.&

&k-'It-(h'k. '/2m+iv) Ik-)&k.'I t.(W—h'k-'/2m) Ik.&

jW—(h'/2m)(k '+k„")]L(h'/2m)(k '+ig —k "))$W—(h'/2m)(k 2+k ')]
&k.

'
~

t.(h'k. "/2m —ig)
~
k.)&kv'

~
t,(W—h'k. "/2m)

~
kv)

LW —(h'/2m)(k~" +k„")]$(h'/2m) (k~"—ig —k„'))(W—(h'/2m) (k„"+k„')]
&k„'I t„(h'k"'/2m+i')

I
k")(kv

I tv(W —(h'k'"/2m)) Ikv)&k"
I
t (h'k"'/2m —i') Ik )+ dk"

L(h'/2m) (k"'+ ig —k~")]LW—(h'/2m) (k"'+k„")]LW—(h'/2m) (k"'+k„')]L(h'/2m) (k"'—ig —k ')]
&k-'l0'&&k. 'It.(W+&*)Ik.&&&'Ik-&

+P . (40)
* LW+8 —(h'/2m)k "][W+8—(h'/2m)k ']

"R.Riesz and B. Sz-Nagy, Functional Analysis (Frederick Ungar Publishing Company, New York, 1955), p. 341.
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[tf;) and —8; are, respectively, the bound-state eigenfunctions and eigenvalues of H„.]Our next task is to take
the matrix elements implied by our definition (K'S'v'n'~ Az(W)

~
KSm).

The partial-wave matrix elements of Aii(W) are required for the numerical solution of Eqs. (27).Let us enumer-
ate some of their properties for the model we have been discussing. The e-p scattering matrix, t„v [Eq. (21)] has
been chosen to be rotation invariant. The rotation invariance of X„and Xv implies that

(1) that angular momentum and its s projection are conserved;

(2) the angular momenta are restricted by triangle inequalities: L'+S'& J&
)
L' S't a—nd L+S&J&

)
L St;—

also I+5'&L'&
~
I—S'~ and J+S&I&

)
J—S), where I. and L' are the orbital angular momenta of the initial

and 6nal d-c states, respectively.

Invoking parity conservation, we see that L' and L are further restricted by (—1)~'= (—1)~. The most general
form for the partial-wave equations corresponding to Eq. (27) is then (in the LSJ representation)

(E', J&1, 1
~
[A (W) —AQ (W)] ~

E, I+1, 1)

dE"K'"(E', J~1, 1
~

A ~(W)
)
K", 1+1,1)r i(W—(O' E"' /4m))( E", 1+1,1

( As~(W)
~
E, 7+1, 1)

dK"E" (K'J&1 1(A (W) jK",J—1, 1)ri(W—(O'E"2/4'))(E", J—1, 1[As (W)(K, I+1,1), (41a)

(E', Jw1, 1
I LA ~(W) AIi r(W)—]I E, Ja1, 1)

dE"E"'(E' J&1, 1[A (W) (E",J+1 1)ri(W—(O'K"'/4m))(E", J+1, 1[Aii (W) (E, I+1, 1)

dK"E"'(K', J&1, 1[A~(W)]E",J—1, 1)ri(W —(O' E"' /m4))( E", J—1, 1)Aii~(W)(K, J&1,1). (41b)

In Eq. (41), clarity has been sacrificed for brevity; the orbital angular-momentum indices are meant to be taken
one at a time, i.e., (41a) and (41b) represents the coupled pair of equations for the amplitudes J+1~J+1 and

J—1 —+ J+1 (upper sign), and also the independent coupled pair of equations for the J—1 —+ J—1 and J+1—&

J—1 amplitudes (lower sign). There are also coupled equations involving L =L=J, S=O —+ S=1 amplitudes:

(E',J)1([A (W) —AB (W)](EiJ,1)

dE"E"2(K',J,1
(
A ~(W)

)
K",J,1)ri(W (O'E"2/4m))(E", J—,1 (

Aii~(W)
~
E,J,1)

dE"E"'(E',J,1(A ~(W) (E",J)0)ro(W —(O' E"' /4rN))( E", JO)Aa~(W)
( K,J,1), (42a)

(E',J,1~ [A (W) —Aii (W)]~E J O)

dE "K"2(K',J,1
~

A J (W)
~

E",J,1)ri(W —(A2E"2/4r~i))(E", J,1
( Aii~(W)

~

E',I 0)

dE"E'"(E',J,1~A~(W)
~

"E, OJ)r ( oW—(&'E"'/4iri))(E", JP~Aa (W) )K,J,O) (42b)

The conservation of isospin requires the "spin-change" inatrix elements of As~ [i.e., such matrix elements as

(E',J,O)As~(W) ~E,J,1)] to vanish. (When nuclear cores are sufficiently massive that m, = ~ gives a sensible

approximation, the p-core Coulomb repulsion will give rise to "spin-change" forces comparable in magnitude with

the deuteron spin-orbit forces used in some optical-model calculations. One may conclude from this that any
realistic theory of deuteron-induced reactions must include "spin-change" as well as "spin-Qip" of the deuteron
if it is to be internally consistent. )
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In the most general case, Eqs. (41) and (42) represent three pairs of coupled. one-dimensional (singular) integral
equations of a type long familiar in coupled-channel potential scattering theory. The set to be solved actually
reduces to two pairs, because A»~(W) is symmetric:

(K'L's'I A~~(w)
I
KIs&=(KIsl A~~(w)

I
KIL's'). (43)

Equation (43) insures that the matrix (K„L'S'IA~(w)
I
E„I.S) and its transpose are simultaneously obtained, re-

ducing the labor by s. (Here K„, & =1, 2, is a discrete set of points in LO, ~), the "mesh" of the numerical solu-
tion. ) Equations (41)—(43) and the remarks associated with them are, of course, equally applicable to the spin-
zero inert core of finite mass.

V. NUMERICAL RESULTS IN THE STUDY OF A SIMPLE MODEL

As a test of the practicality and tractability of Eq. (27) from the standpoint of numerical approximation, an
extremely simple case of Eq. (42a) was solved numerically using an IBM-7044 computer. The I-core and P-core
scattering matrices were taken to be identical and to have one is separable term:

(k'~'I4(s) Ik~)=—( '~'Ii. (s) Ik~&= —(k'lf&r(s)&".(flk&

The "form factors" were taken to have the Yamaguchi" form:

With a similar choice for lp, &, i.e.,

(k I f&= (4~) "'&'»!(7s'+i3')

(ql $s& = (4s.) '&'1Vd/(qs+cr'),

(43)

(46)

the explicit partial-wave matrix elements of A» appearing in (42a) are seen to be

(K'L'S'IAa (W) IKLS&= —(K'K) 'lil dl'lil i(sl'&s abr, r2(2~/&')'

r r2mi'*'I ( '+'q) I'
&&I d (Q'+ ~—*') f (,K',Q')f (*,K; Q')+~, Iil' g&+(&,xK';Q')gt '(x,K;Q')

I as j ys+xs)s

2m x
+8r„s I 2Vi p I

'&r (7(xs+i»)gt+&(x, K'; Q') fp(x, K; Q')+r(x' —it&)fp(x,K'; Q )s&g- (&,xKQ') }
hs x'+ ps

r 2tn
+BL,ol cVt(sl m'

I
r(Q'+Rs+i&1)gt+&(i&c, K ' Qs)gt+&(i&c,Ki Qs)

I ~ (47&
hs

where Q'= (2m/&&l')E &r'= (2m/&&r')e, and 0&L—1&5
&L+1. The functions fI.(x,K) and g'+&(x,K) which
appear above are defined in Appendix A. We see that
the kernel may be de6ned by one one-dimensional in-
tegral. Unfortunately this integral must be done nu-
merically in practice, and turns out to be a major factor
in the large amount of computer time required to solve
even this simple example. The singularities of the func-
tions fr, (x,K) and g'+&(x,K) are at worst logarithmic.
They arise from the vanishing of the energy denomi-
nators [the Gs(w)] of expression (40) I

of course, sub-
stituted for GpUssGp in (26)j within the range of the
various angular integrations. Furthermore, for K' and
E real, the singularities can never coincide with the
pole of the propagator r(Q'+i» —x') and so the right-
hand side of (47) is never singular.

It may easily be shown that (K'L'S'I Ai&~(w)
I
KLS)

is analytic in both E' and E in a 6nite region of the

"Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

point Es——
I (4r&s/is' )(W+es))'is which is the only

singularity of the kernels in (41) and (42). Therefore,
Rubin's" method for analytically continuing potential
scattering amplitudes (defined for complex energy) to
real, positive energy may be applied without modi6ca-
tion to prove the analytic continuation of (K'L'S'I
)&A~(w)IKLS), both on- and off-the-energy shell.
This result may be generalized in obvious fashion'
to the case of arbitrary (well-behaved) interactions
V, V„, and V„„, and of 6nite m, . Therefore, well-
behaved interactions will generate amplitudes Lde-
fined by Eqs. (15) and (19)j with well-defined analytic
continuations to real positive energies, and which are
continuous in their momentum indices. Furthermore,
once the partial-wave amplitudes are known, there is
no doubt of the existence of the singular integrals which
de6ne the various reaction amplitudes in terms of the
(K'L's'I Aqw) I

KI.s).
's M. Rubin, Ph. D. thesis, Princeton Vniversity, 1964 (un-

published).
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TABLE I. Unitarity sum check.

ge-c binding energy
Deuteron energy 8 MeV

(MeV) —ImLAt(K, K; E)] Sum rule
2 MeV—Im[At(K, K; E)] Sum rule

8.44
9 48

10.00
10.52
11.04
11.55
12.07
12.59
13.11
13.63
14.15
14.66
15.70
16.74
17.77
18.81
19.85
20.88

4.07
4 49
4.97
4.66
4.69
4.76
4.79
4.80
4.74
4.74
4.78
4.58
4.53
4.65
4.41
3.86
4.62
4.23

2.95
6.09
5.07
5.69
5.72
5.06
5.41
5.24
4.75
5.07
5.43
4.92
5.70
5.28
3.49

10.15
7.25
4.65

6.00
6.72
6.18
5.68
6.25
6.17
5.52
6.52
6.28
6.09
5.91
5.73
5.41
5.15
5.41
5.12

9.75
6.09
6.73
9.45

10.39
7.03
6.65
3.67
4.71
4.83
6.09
6.33
7.00
7.75
5.48
5.28

The partial-wave equations were solved for a range
of c.m. energies, for two values of the neutron-binding
energy (i.e., for two Q values in the stripping reaction).
Differential and total cross sections for stripping and
elastic-deuteron scattering were calculated and plotted
as functions of the deuteron kinetic energy (Figs. 2—7).
The break-up amplitude was not calculated, as it takes
a Inore complicated form in terms of the deuteron-
elastic amplitude, and to compute it would have re-

quired more computer time than seemed worthwhile.
(The total breakup cross section was estimated and
found to be of the same order as the elastic cross sec-
tion; therefore it was small compared to the total
cross section (see Appendix D).j

From the unitarity relation and the definition of the
cross sections, it is easy to see that with the Goldberger
and Watson" normalizations used here the imaginary
part of the forward elastic-scattering amplitude [(d,d)j
obeys the followin, g sum rule:

)Note that o.(d+c —+ b+p)=o(d+c~ b'+e) in this
model. ] When comparing the calculated cross sections
with the above sum rule, the following sources of error
must be kept in mind:

(i) There is an inherent imprecision of the amplitudes
themselves.

~ 2
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Frc. 2. Deuteron reaction cross sections versus deuteron energy,
in the model of Sec. V. The circles are the total cross section, the
inverted triangles the unitarity limit, the triangles are the strip-
ping cross section, and the squares are the elastic cross section. The
neutron-binding energy is 8 MeV.

E {MeV)

FIG. 3. Same as Fig. 2 except that the unitarity limit was
now shown, and the neutron-binding energy is 2 MeV. In both
Fig. 2 and Fig. 3, P =4 fm '.
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FIG. 4. (a) Elastic Born differential cross section at 9.48-MeV
deuteron energy, with neutron bound by 8 MeV and p=4 fm '.
(b) elastic differential cross section, with the same parameters as
in (a).

Fio. 6. (a) Stripping Born ditferential cross section and (b)
stripping differential cross section, with the parameters of Fig.
4(a) and 4(b).
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FIG. 5. (a) Elastic Born di8erential cross section at 9.48-MeV
deuteron energy, with neutron bound by 2 MeV and p=4 fm '.
(b) same as (a) except elastic cross section.

(ii) Only the 6rst four partial waves were available
to calculate —ImLAqs+(E)].

(iii) o„s and o.„q, the stripping cross sections, con-
tained (positive) contributions from all partial waves.

(iv) o(d+c~ c+n+p) was, of course, not available
at all.

In view of the above remarks, the agreement, for
the most part appears to be good. In each case, there
were only two points (out of eighteen) which badly
violated (by a factor of 2) the above sum rule. For these
points it was found that the numerical-inversion process
had become unstable in calculating the 1=0 partial-
wave amplitude. (The imaginary parts of the I=O on-
shell elastic amplitudes had become positive for these
bad cases, indicating that these solutions were hardly
to be trusted. ) This instability was found to result from

FIG. 7. Stripping cross sections as in Fig. 6(a) and 6(b), with
parameters of Figs. 5(a) and 5(b).

certain technical difhculties in the calculation of the
elastic Born term, which only shouted up for some corn-
binations of deuteron energy and neutron-binding
energy. The remainder of the points are in good agree-
ment with the sum rule, and are tabulated in Table I.
The cross sections are plotted against deuteron energy
in Figs. 2 and 3. To give an idea of the physical magni-
tudes involved, the "geometrical" cross section, 4rr/Eq',
is also plotted in these figures. The general trend of each
set of points was indicated by fitting the curve (./Es'
to it by eye.

Several qualitative conclusions may be drawn from
the calculated results. (Some of them must be regarded
as still tentative, owing to the numerical inaccuracies
discussed previously. ) In the first place, it was found
that the effective deuteron-core potential is not definite
in sign, even when the p-core and e-core potentials are
both attractive. To see how this can come about, let us
again examine Eq. (27):

(K'I ~ (~) I K)= (K'I ~~(lI')
I K)+

h'
where we have written

(K'
I
2 (W) I

K")Ss(Ep'+ ig —E'")(K"
I
2n(W) I

E )dlt"
Ep'+ir) —E'" (49)

rd(W Osx. "'/4m) =—S.(Z,'+i&—Z"s)

(Ep'+ ig —E'")0'/4m

and plainly, Sz(0) = 1. If we symmetrize Eq. (44) by multiplying by the appropriate factors of QS, we have exactly
the Lippmann-Schwinger equation for d-core elastic scattering, in which all the inelastic effects have been included
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in the pseudopotential

vp(K' K; w) = [sa(E'p'+i' —E")]' '(K'I Aii(w) I K)[sa(Ep'+i' —K')]"'
A(K', K";W) Vp(K",K; W)

A (K' K' W) = Vp(K' K' W)+ dk"
W O'E—'"/4'+ pa

(50)

(51)

Equation (51) may be derived using projective tech-
niques, " and gives the equivalent expression for Vo'.

if B is the projection operator for the deuteron bound
state, B= Iipa)(QADI, and defining R=l —B, Vp may be
written

Vp(W) =B(V„+V,)B
+B(V„+V„)R[W—RHR]—'R(V„+V„)B. (52)

The sign of the imaginary part of Vp(W) is
—sgn[Im(W)], but above any of the thresholds in
[W RHE] —', the sign of the real part of Vp(W) is not
de6nite even though V and V„are both, say, negative-
definite. In this calculation, the matrix elements of
Aii(W) were rot definite in sign. This indicates a serious
shortcoming of the usual optical model (which is rot re-
paired by such expedients as taking nonlocal poten-
tials"), which assumes the real part of the optical
potential to be definite in sign. One cause of the low
quality of optical-model wave functions in the near zone
is undoubtedly the above dehciency.

The second qualitative result, which seemed rather
surprising, is that in this model, the breakup cross sec-
tion [as estimated in Appendix D, or from the unitarity
sum rule (48)] is almost negligible; most of the absorp-
tion comes from transitions to the stripping channels.
Also, the total stripping cross sections were considerably
larger than the elastic (d,d) cross section. This indicates
that the absorption is considerably less than maximum,
since for "black" nuclei, O-,i——0-;„=—', g~, t, as is well
known. (One would, of course, expect somewhat differ-
ent results if there were an asymmetry in the e-core
and p-core forces, and/or if there were many available
inelastic channels, so that the absorption approached
the blackbody value. ) Phillips'" results on m-d scat-
tering above the breakup threshold are quite similar,
qualitatively. Even with only the breakup channel
competing with the elastic channel (and with the con-
siderable asymmetry of the m-ii and p-ii forces),
Phillips finds that the breakup cross section is only a
small fraction of the total cross section.

To estimate the effect of the rescattering terms in
(40), the calculation was repeated at one energy using
only the first term on the right-hand side of Eq. (47);
i.e., approximating X„(W)+X„(W) by t„(W)+t„(W)
Clearly, in this simple model, the 1.)1 terms are un-
altered. However, the L=O elastic Born term, Aa(W),

"F.G. Percy, and B. Buck, Nucl. Phys. 32, 353 (1962). F. G.
Percy, in Direct Interactions and ENclear Reaction mechanisms
edited by E. Clementel and C. Villi (Gordon and Breach„Science
Publishers, Inc. , New York, 1963).

"A. C. Phillips, Phys. Rev. 142, 984 (1966).

was drastically altered (the real part changed sign),
indicating the great importance of rescattering at these
energies.

The absorption in the elastic channel shows up in
the elastic angular distribution as sharp diffraction
minima at 80 . The differences between the elastic
Born angular distributions (which are not very different
from the impulse approximation) and the actual elastic
angular distributions are striking. This also indicates
that rescattering effects are extremely important. Some
typical elastic angular distributions are shown in
Figs. 4 and 5.

The stripping angular distributions also show diffrac-
tion minima at about 8=40, and are peaked at 0=0
(as s-wave stripping patterns should be!).Some typical
stripping angular distributions are given in Figs. 6
and 7.

It should be noted that it is the /-value of the final
m-core wave function which determines the (forward)
angle at which. the stripping angular distribution is
peaked. This is because the stripping Born term [see
Eq. (35)] is dominated (at forward angles) by the term

2 A, ~,*(K—4',~-')(p 2~-'~n'I 1,~)4a(l pK—kn'I).

Obviously this term has a pole in the momentum trans-
fer, I

K—k~'I =Q, near the physical region (small,
imaginary Q). Furthermore, if /r is the t value of the
m-core state It riir~, this part of the Born term will have
a Q'& dependence for small Q (forward angles). The
situation is complicated by the presence of the X~
term in the stripping Born term (35); but in circum-
stances where the X~ term is small, one may say that
the stripping amplitude is dominated by the behavior
Q'&/(Q'+E„') at small Q, and this leads to the char-
acteristic stripping pattern at forward angles. )The
characteristic rapid falloff with angle of stripping
angular distributions results from increased absorp-
tion at higher momentum transfer (i.e., in the low-I
partial waves). ]

Aaron and Shanley" have recently reported the re-
sults of a similar investigation, using Amado's stripping
model, "with no p-core interaction. Their stripping and
elastic-deuteron angular distributions look qualita-
tively similar to mine which undoubtedly indicates
only that any physically reasonable model must give
sensible angular distributions. Neglecting the final
p-core interaction seems to be a reasonable approxima-
tion: in this investigation, it was found that the eRect

' R. Aaron and P. K. Shanley, Phys. Rev. 142' 608 (1966).''-R. D. Amado, Phys. Rev. 132, 485 (1963).
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of the distortion of the proton final wave function is
negligible at these energies; that is, in the Born term for
stripping, V„~+X~(W), the calculated contribution of
the X~ term is negligible ((1/50) compared to that of
the V „term. This remark to some extent explains the
qualitative success of Amado's stripping theory, as mell
as that of the Butler theory. "

Finally, it may be noted that all the total cross sec-
tions in the weakly bound case were somewhat larger
than those for the strongly bound case, all else being the
same. This may undoubtedly be attributed to the fact
that the rms radius of the m-core state is 3 fm for a
neutron-binding energy of 2 MeV (with P=4.0 fm '),
and is 1.4 fm when the neutron is bound by 8 MeV,
leading to a smaller geometrical cross section in the
tight-binding case.

VI. CONCLUSIONS, EXTENSIONS,
AND PHILOSOPHY

It is appropriate to conclude by briefly evaluating the
progress which has been made, by suggesting extensions
of the theory to more realistic cases, and by stating the
philosophy of this approach to direct reaction theory,
not necessarily in this order. First, the limitations of the
theory should be kept in mind. They are just such
limitations of the model as the use of single-particle
wave functions and treatment of each of the three par-
ticles as elementary (thereby neglecting antisymmetriza-
tion of the wave functions). These model-dependent
approximations are common to all treatments. The chief
advantage of three-body theories over, say, the DWBA
is that the former have mathematically well-dined
solutions, and so one may know a priori the accuracy of
their numerical approximations. It is thus possible to
clearly distinguish the behavior of the model from
artifacts of the approximation.

The theory presented in Sec. III is more fundamental
than the DWBA in that it contains no undetermined
parameters and it predicts more from less data. The
input consists of detailed information on the a=core
and p-core interactions, summarized in the n-core and
p-core scattering matrices. From this one calculates the
complete behavior of the n+ p+c system, including the
deuteron-optical potential. Because the three-body
theory is far more detailed than the DWBA, calcula-
tions are considerably harder. Even the simple model
of Sec. V took much more time than that required for a
corresponding DWBA fit. The multiparticle scattering
approach has been criticized by some proponents of the
DWBA on the grounds that it takes too much computer
time, and that the models which have so far been
examined (using separable potentials) are "unrealistic"
because they neglect the higher partial waves in the
n core and p-co-re interactions. What is being criticized

"S. T. Butler, Proc. Roy. Soc. (London) 208, 559 (1951).P. B.
Daitch and J. B.French, Phys. Rev. 87, 990 (1952).N. C. Francis
and K. M. Watson, ibid 93, 313 (1954). .

is the "realism" of separable potentials as compared to
local ones. To me this is a matter of personal prejudice
and convenience; the paucity of empirical knowledge of,
say, e-core interactions in the higher partial waves
makes it hard to determine whether they are better
represented by local potentials than by separable po-
tentials. (These prejudices derive from the fact that
local potentials are useful for solving the Schrodinger
equation, whereas separable ones are more convenient
for solving the Lippmann-Schwinger equation. )

The above remarks notwithstanding, there is some
motivation for using local potentials in three-body cal-
culations of direct reactions. A direct comparison be-
tween the DWBA and multiparticle reaction theories is
desirable because one is responsible for explaining the
success of the DWBA, which persists despite its mani-
fold faults. (The resolution of the current ambiguities
in DWBA fits should be considered a useful bonus. )
Several approaches to practical calculations with local
potentials (using the model of Sec. IV) suggest them-
selves. The first is to employ the approximation of
Scadron and Weinberg, '4 which gives the explicit
formula

(53)
where

(54)
and

6;,-'(s) = 8;;—J,,(s), (55)

and similarly for t~. In this (nonunitary) approxima-
tion, the higher partial waves are approximated by
their Born terms, and the lower partial waves are given
by separable forms which have the correct poles and
residues. The integrals in (40) involving the purely
separable terms are no harder than those of Sec. V,
and the use of local forms for V„and V„ facilitates the
calculation of the other terms. This approach is now
being investigated in more detail.

Secondly, one could use the methods of Blankenbecler
and Sugar" to obtain upper and lower bounds for the
matrix elements of A (W). Since their technique requires
taking matrix elements of An(W) with judiciously
selected trial functions, the problem then reduces to
evaluation of a number of many-dimensional (singular)
integrals. Conceivably this could be eGected in a
practical way by Monte-Carlo methods (even with t
and t~ derived from local potentials).

Finally, one could think of writing

t„=t„-n+[t„t„-n$=t„-n+a—t. , (56)

where t„"& is a separable approximation to t„, and
similarly for t„.One could then solve the parts involving
the separable approximations t "p and t„"I' exactly, as
described above, and treat the corrections, dt„and
At„as perturbations. Presumably all the singularities
(and near-singularities) of t„would be included in t„ee&,

~4 M. Scadron and S. Weinberg, Phys. Rev. 133, B1589 (1964).
2' R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).
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so that ht„and At„are well behaved, and in some sense
"small, " corrections. The correction terms would in-
volve multiple quadratures, which again might be per-
formed by Monte-Carlo methods, so that this last
approach is sort of hybrid of the 6rst two. A complete
theoretical treatment of such an approach would neces-
sarily include some understanding of how to optimally
approximate a general two-body off-shell scattering
matrix (assuming it were known) by separable terms.
(It is clear that this is a somewhat different problem
from that of approximating a potential by separable
terms. )

In all the computational schemes sketched above, it
is perfectly straightforward to use local optical po-
tentials to represent the e-core and p-core interactions.
One merely has to be somewhat careful in defining the
convolution (14), in order to avoid introducing un-
physical singularities.

Despite the enormous practical difficulties which re-
main to be overcome, it appears likely that it will be
possible to do (a few) calculations using local potentials
for V„and V„,at least in the inert, recoilless core model.
As was previously mentioned, it may not be a bad
approximation to treat the nucleus as inert, when there
are many available stripping channels to provide ab-
sorption. The reason is, heuristically, that once the
nucleus is "suf6ciently black, "increasing the absorption
will not appreciably change the ratio of elastic to in-
elastic cross sections. Thus the "optical potential"
I Eq. (50)] would not be appreciably different from
that calculated from Eq. (40).
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APPENDIX A: DERIVATION OF THE KERNEL OF THE DEUTERON ELASTIC SCATTERING
EQUATION, IN THE MODEL OF SECTION V

%e had

(W H„H~) '=— —dx $(x—H„)(W—x—H~) '. (36)

We now expand the formal relation (37) using the (known) eigenfunctions of H„:
h'k')

~(*—H-) =& I &~,.'» *— I(~t. ,'I d'k+2
I O'»(~+B') &u; I,

01 2m
(A1)

where the
I f,&

and —B,are the bound-state wave functions and energies of H„which appear in (40).We now note that

/h'k' q-' )h'k'
IIt„.+(n)&= lk, o(e)&+I +irt K„

I
t„l — +iq llko) (A2)

&2m
and

(W x H, ) '= (—W —x K-„) '+(—W —x K-,) 't„(W——x)(W-x K—„)-'. —— (A3)

Using (A1) in (36) and also expanding as in (A2) and (A3), we have matrix elements

8(k„'—k„)(k,'I t, (W—h'k„'/2m)
I
k,)

(k k
I Gp(W)l X (W)+X (W)]Gp(W) I

k k )=
I W—(h'/2m)(k "+k ")]IW—(h'/2m)(k '+k„')]

(k 'I t.((h'k. '/2m)+ig)
I
k.)(k„'I t„(W—(h'k. '/2m))

I
k„)

(h'/2m) (k~'+ig k~")(W —(h'/2m) (k—~'+k „")]I W—(h'/2m) (k„'+k„')]
(k.'I t ((h'k "/2m) —irt) Ik.)(k~'I t„(W—h'k "/2m) Ik„)

(h'/2m) (k„" ig k„')$—W —(h'/2m) (—k ~"+ & „")](W (h'/2m) (—k~"+0 „')7
&k-'l0')&k. 'I t.(w+B') Ik.)&4'Ik-&+2

a PW+B, (h'k, "/2m)]l W+K —(h—'k„'/2m)]
(k„'It (h'k '/2m+i') Ik ) (k 'It (h'k "/2m —iv) Ik &

+g(1 „'—k,)
(h'/2m)(k '+ig —k~")I W —(h'/2m)(k~'+k„')7 (h'/2m) (k "—ig —k ')I W—(h'/2m)(kp '+k~')]

&k.'I t.(h'k"p/2m+iv)
I

k"&&k"
I
t.((h'k"'/2m) —in) Ik.& &k-'I

~I '&8"Ik-&
dk" +Z

(h'/2m)(k"'+ig —k~")I W—(h'/2m)(k"'+k ')7(h'/2 )(mk"' ig k„') —~ —W+B; (h'/2m)k„'—
(k„'

I
t„((h'k"'/2m) +irt) I

k")(k„'
I t~(W (h'k"'/2m))

I
k~—

&
(k"

I
tp((h'k"'/2m) —ig) I

k~)
+ dk"

I (h'/2m) (k"'+ig —k„")]l W—(h'/2m) (k"'+k„")]l W—(h'/2m) (k"'+k ~') ]l (h'/2m) (k'"—irt —k„')]
(A4)
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The portion of expression (A4) which contains 8(k~'—k„) may be shown to be just Go(W)t„(W)GO(W) by three
arguments: 6rst, me note that since the contents of the brackets are independent of V„, if we let V„—+ 0, this is the
only term left, and is obviously Go(W)t„(W)Go(W). We may also realize that since the Go(X„+X„)Gogiven by
(A4) must be identical with that obtained from Eqs. (15), in which there is only one term containing b(k~ —k„),
i.e., Got„GO, the contents of the ( ) must be what we have said. Finally, we may show directly, using the Low equa-
tion for t„(W), i.e.,

(k-'I~;&O'Ik-&
(k-'I ~-(z) I

k-&= (k-'I V-I k-)+& 8
(k~'! i„((h'k"'/2m)+iq)! k")(k"!)!~((h'k"'/2m) —i)))!k~&

dk" (A5)
z —(h'/2m) k"'

that the expression in brackets is identically

(k„'I ~-(W—(h'k. '/2m))
I
I -&

LW—(h'/2m) (k."+k,') jPW —(h'/2m) (k.'+k„')j
As the details of this latter direct proof consists only of algebra, we omit it. Substituting expressions (40), (45),
and (46) into (26), and integrating over the delta functions which appear, and summing over the spin indices we
have

(K'S') '!A~(W)! KS) &= bs. sb„.„
4g

$u'+ (-,'K' —X)'j 'r(Q'+iYj —X')Ln'+(-,'K—X) 'j—'

4 h' ) 4sr [p'+ (K'—x) 'jt Q'+i)) ——,'E"—2 (-,'K' —x)'Q! Q'+i)) —-,'E' —2(-', K—x) 'jLp'+ (K—x) 'j

! ZV). ) 2! ' 2m) '
+ ! ! dk„' dk. L(K'+(-'K' —k~")'] '(P'+k ') '[P'+(K' —k ')'j-'

(4~)2 I h2i

.-(k. +ig).-(Q +ig —k. )

LQK+z'r/ k (K' —k ')'—)(k —+it)—k ' )LQ'yirj —k„—(K—k ) j
7.(k " 1g)r(Q +it]—k'„')—

PQ'jig k~" —(K'—k—~')'](k~'+ig —k ")PQ'+iri k~" —(K k—)'7—

7.(Q '+ ((2+iYI)t 2m)

( h2 j (k„'2+.EK) LQ2+ig+E2 —(K'+k„')Kj! QK+ig+E2 —(K—k„)~)(k„2+)(K)

[XLp!2(2m) dk"! (k"'+ig)! ' (Q'+ig —k"')
!

4sr E h' d'. (P'+k'")'(k"'jig —k~")LQ'+ig —k"'—(K' k„)'5[Q—'+ig k"' (—K k„—) '5(k—"' ig k—')—

X$~'+(-,'K—I )'1-'(P'+k ')-'!P'+(K—I )2j-L !, (A6)

where Q'+ist=2mW/O'. The conservation of S and its s projection implied by (A6) means that I and its z pro-
3ection are also conserved. Therefore, for this simple case, we partial wave expand in L rather than J.

(EI IISY)AB(W)
~

ELIAS ) dE'f dE Y~ "(E')=(K'S' '
~
AB(W)

~

KS )YJ«(E)

=by zbEL d)Ebs sb. .Addz s(E',E; W). (A7)
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We now consider (A6) term by term. The function

X) '(x,K,Q',x E)=
[n'P (-'K—x)'][Q2+i)I—K'—2x'+2x K][P'+(K—x) ')

has the following expansion in Legendre polynomials:

(AS)

where

S '(x K Q',x E)= Q(2K+1)Pi,(x E)u),(x,K; Q'),
X=o

1

u, (x,E'; Q') =- dt P&(t) n-'(x, K,Q', t).
—1

(A9)

(A10)

Clearly, then, using the addition theorem for spherical harmonics, we obtain

dx X) '(x K',Q';x K')X) '(x K Q'; x E)=4)r Q (2K+1)Pg(E' E)ui, (x,K'Q')ui, (x K Q').
X=0

(A11)

Inserting the result (A11) into the first term of (A6) and evaluating the angular integrals of (A/), we obtain for the
contribution to (A7) of this first term

/2m~ '
g, i.a(K K. g/'), dx x'r(Q'+i)I —x')uq(x K' Q')ui, (x K Q')

Now noting that

we have

ui(x, K; Q') =—(xK) 'fi(x)K; Q')

2 —1
Pi(t)(s —t)-'dt =Qi(s),

(P+x2+ iK2)
=(xE)-i Q, i(P'+-'K' —2&'—x') i(-'K' —Q'—2 ') '

xK )
t)'P'+ x'+K'~

+Qil ~(x2 xK2 P2+2~2)-1(x2 P2 Q2)-1
2*K

/'2x'+K' Q' i)I—)I——
Qil I(2~'+Q' 'K') '(*'—P-' Q')-' — —(A»)

2*E j

J&'~J']&i/2]'t 2m '
gz~ s(K' K ' IY)2=

I
dK'Yr, i)r*(g')) dK Yri)r(E)

& I2(4m) '

The singularities in the denominators of (A13) are only apparent, as may be seen directly from the definitjoil
(A9). However, the argument of the last Qi can become less than unity, and so this term has a logarithmic singu-
larity for certain values of the parameters x and K. This singularity, being square-integrable, does not cause (A12)
to diverge.

We consider the next two terms of (A6):

[z2+pK' —k')2) i(p2+p'2) —i[p2+(K) k))&)—i

)-2($2+j)I)r(Q2+ j)I p2)
X

[Q'+'~ —~'-(K'-k')')(~'+i& —~ 2) [Q2+i,—V—(K—k) 2)

~(k"—zg) r(Q'+ zg —/, ")

[Q +z)I—P' —(K'—k') )(/', 2+1)I—P' )[Q'+ i)I—P' —(K—k) 2)

X [~)"+(-'K—k)')-'(P'+k')-'[P'+(K —k)']-' (A14)
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1
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' —k', ,-(k+,,).-(Q+"-'

dk'&"
4., ape Z 1r)*='-*~~"~ "'

1~) a 1"+&' '

(k I~;Q; I)

I

k„) dt ~—'(k', & Q;(k'2 in) r—(Q'+ t A15)d„~- (k, ~, Q'+k' —'

A8). Now2. ti has the same meawhere &(k)&~Q'j '

1

(A16)g&. Q2+k —k j t) .
E'

) g. 2) ——
k"+P')(k"~"

ration glv

(c2+k"+y'&
k2) —1(k'2+k1) (k + ') ( 2k'y

dkk(~'+k") '(" '" '

g (k,& Q

ow consi er in
'd tegrals of the formk2) we must now2N, k', &', Q'+We note that the t integ

Noting that

(c2+k"+A
k~ dr rj o(k'r)j o(yr)c "~

inte ral. becomeswe see th t our previous in g

"dr
e cr sjnyr ~2 '

k2 —1 +2+k 2)-1(k~2+k 2)
—1dk'k' sink'r P1 '+k") '(k"Wirt —k') '(k

dr e '"(sinyr/r) k2') '(k"mid —k') '.dk'k'e'""( '+k") '(k"+k12) '(k"+ 2

our integration, w ge etk' integral by contour iDoing the in e

—Pr—e e+'I r

( 2+k2)(k 2+k2)(k 2+k2)( '+k') (k,2—P2) (k,'—P')p r

The integral

e
—k2re—Ic1r

'—k')(k+k, )(k, —k, )
'—k ')(k '—k12)(k'+k, ')

"dr—sinyr e ~"

p
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obviously gives tan '(y/y); hence, we obtain for g/+&(x, E; Q') the rather complicated result:

z
g'+'(xE Q')= —tan '~ ~(x'+P') '(2n' —24{1'——,'E') '(2 '+Q' —-'E' —x' —P') '

kn+P)

/ E/2q
+tan 'i i(x'+P') '(2n' —P' —-'E'+x') '(2n'+Q' —-'E') '

Enaixl

tan —r(E/2P) (x2+P2)—l(2n2 2P2 1E2)—1(x2 Q2 P2)
—I

/' E
+tan —

1~ (x2+P2)—1(2ns P2 rE2+x2) 1(x—2 Q2 P2)
—1

&P~ix

E
+tan 'i i(x'+P') '(2 '—P' ——,'E'+Q' —x') '(x' —Q' —P') '

(p+( 2 Q2)1/2)

E
~(x2+P2) 1(2n2—1E2+Q2)—1(xs—P2 —Q2)

—1

k(xs-Q ) /2~ix)

/
E/2—tall '~ ~(2I8'+-'E' —2n') '(X' —Q' —p') '(2n+X —12E —/{I') '

kn+PJ

E/2
+tan '~ — ~(x' —p2 —Q') '(2n'+Q' —2E') '(p2 —2n'+-,'E —Q'+x') ' (A17)

kn+ (x'—Q') 1/2/'

Here we mean

(x2 Q2)1/2 — i() x2 Q2) )1/2 x2(Q2
Q2~ )1/2 2& Q2

[Recall Im(Q') &Oj

We thus get

/2m)'~s"«'E II')2= —21&sl'I&r/2I41 —
I&as) E'E r(Q2+ i&I—x')

xs+P2

X [7(x'+i r/)g +'(x E' Q') fs(x,E; Q2)+2-(xs ir/) fs(x E'—Q )g& &(x E; Q )j. (A18)

The rest of the integrals are just straightforward repetitions of those we have already done, so only the results are
presented:

2m)4 42rs
as' '(E',E; w)2= —(A/. [ ]Ar»2[ [

a, , s
a2) E'E

~

r(x'+i g) I,
'

X T(Q +i&I—xs)gi+&(x E' Q2)g(
—

&(x E ~ Q2) ( A19)
(P2+x2) 2

Equation (A19) is the contribution from the last term of (A4) [that is, from the j'dk" term in (A6)]. Fina, lly, the
contribution from the bound-state term in (A6) is

)2m 4 4~2
~s"(E'E +')4= —

(
A' s(2( A'1/2j 41 —81„o '(Q2+&2+in)g'+&(i& E Q2)g'+&(i/4 E Q')' E'E (A20)

APPENDIX B: ON THE NUMERICAL SOLUTION OF EQUATIONS (41) AND (42)

The singular integral Eqs. (41) and (42) may be reduced to nonsingular Fredholm equations using the method of
Noyes. I shall briefly indicate how this is done for the single one-dimensional integral equation arising from the

"H. P. Noyes, Phys. Rev. Letters 15, 538 {1965); K. L. Kowslski, shed 15, 798 {1965}. .
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model of Sec. V

AL s(K';E; W)=ASLS(K'E W)—
00 O'E'"

As ' (K'E"; W)rs~ W —
~A (E"E'W)E" dE". (81)

4m

We specifically require the "half-oB-shell" matrix elements of A(W),

AL, S(K~ E ~ O2E' 2/42ri+2$ pd) =A L, S(EI ~ E )

Let us now make the ansatz proposed by Noyes

AL' (E 'Eo) =aL, S(K i Eo)A ' (Eo' Eo)=a' —(E Eo)A ' (Eo)

and find that Eq. (81) becomes

(82)

SL s(E'Ep)
a, ,s(K'; Ep)

='
AL s(E'o)

00 O'E"'
As '(E''K"; W).s~ W— —aL, S(E",E)E"dK".

4m
(83)

Now noting that aL s(Ep E'p):1, we may solve (83) for AL s(Ep), and resubstitute it in (83):

AL s(Ep)=—
AsL, s(E p)

(84)

1+ As ~ (E'p E";W) r s(W O'K'"/4—2a) aL, s(K";E )E"'dK"

Equation (83) then becomes

aL s(E",Ko)=AS (K'Kp)/As (Kp) dK"K"' AsL s(K'E" W)

As ~ (E'Ep)AS (K" E )
rsi W—

L, S(Ep)

O2E"2q

laL, S(K";Eo) . (85)
4m i

Clearly, aL s(E',Ep), defined by (85), approaches 1 asE'~ Ep.
As Noyes has pointed out, Eq. (85) is not singular,

and the numerical representation of the kernel of (85)
by a finite matrix is then much easier. (The major
practical advantage of this trick over distortion of
contours a la Rubin" is that the intermediate variables
are always real, which simplifies the programming. )

Equations (82), (83), (84), and (85) have obvious
generalizations in the case of coupled channels: instead
of the scalar AL s(E'; Eo), we deal with finite matrices
(K'L'S'~A~(W) ~Eo,L,S), and write

(K'L'S'iA (W) iKo,L,S)

aL's', L"s'I (E j Ep)
L 1 /g/I

X(E,L"S"
~

A~(W)
~

E',LS). (86)

The rest of the generalization is obvious, and follows
exactly the same pattern, with matrix algebra sub-
stituted for scalar algebra.

The Eq. (85) presents a more stable matrix-inversion
problem than does Eq. (81).This is because any poles
or resonances in the physical scattering matrix will
appear as zeros (or near zeros) of the denominator of

(84) rather than by the kernel matrix of (85) becoming
ill-conditioned.

It may be of some interest to describe the numerical
methods employed in solving the model of Sec. V, in
view of the current controversy, over numerical tech-
niques in the 3-body problem. The actual equation
which was numerically solved was that suggested by
Noyes and rederived above. This method proved stable
in practice. A 10-point mesh was used to approximate
the integration in the (nonsingular) Noyes equation.
The mesh was increased to 12 points for one case, and
the resulting amplitudes were stable to within 10%%uq.

(Going from 10 to 12 points more than doubled the
running time. )

The most dificult numerical problem encountered
was that of calculating the partial-wave elastic-
scattering Born term with sufhcient accuracy. This term,
given by expression (47), required the numerical evalua-
tion of a singular integral. The regions near the logarith-
mic singularities were handled by Gaussian quadrature
formulas with logarithmic weight functions, and the
regions between the singularities were handled by a
compound Gauss-Legendre quadrature formula. The
pole was handled by subtraction, in the usual manner.
Between 100 and 200 points per integral were needed to
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obtain a relative accuracy of (1%.This was because,
in the region between two of the logarithmic singulari-
ties, the integrand oscillated rapidly (with an average
value near zero) with an amplitude two orders of magni-
tude greater than the size of the integrand outside this
region (and outside the regions of singularity, of course).
The result was that the answer appeared as small dif-
ferences between rather large numbers, with a conse-
quent severe loss of precision.

Both the elastic (d,d) and stripping (d,p) on-shell
amplitudes were obtained. As a check on the accuracy,
the elastic amplitude was compared with the three-
particle unitarity relation (48). (It was found that
unitarity was satis6ed within the over-all accuracy of
the numerical methods used. ) Only the first four partial
waves of the full elastic-scattering matrix were cal-
culated, in order to keep the running time of the pro-
gram within reason. My best estimate of the over-all
accuracy of the solutions is about 15—20%. This un-
certainty is compunded of the errors from the use of
only 10 mesh points, and the loss of accuracy due to
rounds error in the matrix-inversion process. As the
Born amplitude for stripping was known explicitly,
I approximated the stripping amplitude in the higher
partial waves with the partial-wave Born-stripping
amplitude. Thus on adding up the partial waves, we

6nd that the approximate stripping amplitude has the
form [see Eq. (34)$

g,„+(k„,K; E)=W „P-(k„',K; E)

zmsx (2)+ 1 )
P (k .K) (~ s--(k ' K".E)

t-0 0

X«(E+ i& k'K"'/4m—)A i+(K",K; E))K"'dK".

(B7)
I

The analogous procedure was not possible for the elas-
tic amplitude, since the elastic Born term was not
available in closed form. [It should be noted that be-
cause the stripping behavior appears through the inter-
ference of the "direct" and "rescattering" contribu-
tions to Eq. (B7), errors in the elastic amplitude and in
the evaluation of the integral in (B7) can be magnified

.considerably; -thus, the. uncertainty in the stripping
amplitude inay be as much as 20-25%.]

APPENDIX C: CALCULATION OF
THE FUNCTIONS s(Z)

For two-body scattering matrices, the o6-shell uni-

tarity condition is

Suppose we write

&«'I &(Z)
I
«&= —2&«'Ii&r'(Z) &il «& (C2)

and

xpk Imr, ((k'k'/2p)+i')
p'(k) =

Ii'
I r;((k2k2/2p)+ jv)

I

' (c4)

f' (k) = dk&ilk&(kl J& (C5)

is a Hermitian matrix. But the independence of the
coefficients in (C3) leads to

det[p, (k) 8;,—f;,(k)]=0, (C6)

i.e., the p;(k) are the (real) eigenvalues of a Hermitian
matrix. The definition (C4), however, together with the
proviso that

lim r;(Z)=li;,
f zl~oo

(C7)

gives the formula

1 " dk k'p (k)
["(E+'~)) '= +-.— . (C8)

o E+iiI (k'k'/2p)—

For the case of one separable term per channel, as in
Eq. (21) and Eq. (44), (C8) reduces to the usual form

[r(E+iV)3 '

=li '+ d'klan(k)l'[E+iiI —(k'k /2p)7 ' (C9)

[As in many other situations, the derivation of (C9)
was expedited by knowing the answer beforehand. )

For the case of the deuteron, p=m/2, and since X

must produce a pole in rq(E+iq) at E= —eq, we have

rg '(—eg)=0=ii '

d'klan(k)

I'[o~+(k'k'/m)$ ' (C10)

Now (C1) leads to the relation

xpk
Z&« I'&

A2 s I

;(Z)[p,(k)h;, —f,,(k)];(Z )(il «& (C3)

where

(«'I ~(z) I «&
—&«'I ~(z')

I «&

pk
dk&«'l~(z) Ik&&kl ~(z*)

I «), (c1),;i(z)= —(z+..)
where Z= (A'k'/2p)+iiI. )& ((k'k'/m)+ gd) i((gok2/m) —Z) i (C11)
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(K'iA(W)
i
K)= A*(q') d»'

X 'Oi Ugg(W) [Kq)fg(q dq. D7

' '
UppPV)~K»)if'(q)d qd q

' 'd'q (D6)

ra idly vrith q, @reg*(q') falls off rapiand since q' ~ q
place (D6) by

(rb„=— dE' d'q'&2(q')
I

This leads to tthe result

fTbu=
' B((h'E'/4222) eg+2g)—)&(Eg(q')E', q'

i
8

where

and

2 2)lj2It o(q) =2(q- (D3) 0&g'& q~x

d2q'Z o(q') A*(q)dq

2= E2/4) —(222/O )eg

t Lcf. Eq. (3) and Eq.
bs e m litude mayshell breakup amp

'

-"+i~ ll

(O'E'
(K'q' J3

(D4)

I.e.)
8~ ma
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