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then we proceed as in (ii) except that we know that
0;,4'=0 for any C' with the same orbital more than
twice.

This is all quite easy to visualize in Hilbert space;
since R must leave all scalar products invariant, the
vectors must all move together under 8, but since G,C»
is transformed essentially into itself, we can at most

allow rotations within the space spanned by these
vectors. Thus, the set of GI orbitals in C form a basis
for a reducible representation of b. The reason that we

cannot completely reduce this representation is that
the GI orbitals are not all eigenfunctions of the same
one-electron Hamiltonian (as in the Hartree-Fock
method).
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For the first time a spin-polarized extended Hartree-Fock calculation on a three-electron system, Li,
is reported. The calculations are discussed with primary emphasis on the hyperfine splitting spectrum which
is determined by the spin density at the nucleus, Q(0) =(p~ p;s, (i)s(r;) ~p)/S. We calculate Q(0) for the
ground state to be 0.2403, as compared with the experimental value of 0.2313.

INTRODUCTION

'HERE has been a great deal of interest in con-
structing electronic wave functions for atoms

accurate enough to predict the eRective magnetic field
at the nucleus due to the electrons. ' 4 The difficulty
has been in obtaining accurate values for the part of
the field due to the Fermi contact term' '

where

is called the spin-density at the nucleus. For example,
for the ground states of N and Mn++ the Hartree-Fock
wave function leads to H, =o in Qagrant disagreement
with experiment. ' ' Similarly, the large negative mag-
netic fields at the nuclei of some transition-metal atoms,
as observed by Mossbauer experiments on metals, are
inconsistent with the predictons using Hartree-Fock
wave functions. ' '

Probably the most widely used method to improve
upon the Hartree-Fock method for this property has
been the unrestricted. Hartree-Fock (UHF) method. 4 '—'

'A. J. Freeman and R. E. Watson, in Magnetism, edited by
G. T. Rado and H. Suhl (Academic Press Inc. , New York, 1965),
Vol. IIA, p. 167.' V. Heine, Phys. Rev. 107, 1002 (1957); D. A. Goodings and
V. Heine, Phys. Rev. Letters 5, 370 (1960); A. J. Freeman and
R. E.Watson, ibid. 5, 498 (1960);R. E. Watson and A. J.Freeman,
J. Appl. Phys. Suppl. 32, 118S (1961); Phys. Rev. 123, 2017
(1961).' S. M. Blinder, Advan. Quant. Chem. 2, 47 (1965).

z D. A. Goodings, Phys. Rev. 123, 1706 (1961).
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116, 87 (1959).' J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954);
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This method has had some success' but does not seem
to account for the Hc in 8",N", o'", F",P", or in the
transition element atoms in metals. ' In the UHF method
the wave function is approximated by a single Slater
determinant, as in the Hartree-Fock method, but we
now allow different orbitals for the different spins.
Since the inner-shell or core states are not exactly spin
paired, they can contribute to the spin density at the
nucleus, Q(0). A glaring flaw in this approach'r "—"
is that the UHF wave function is not an eigenfuliction
of S'. One could, of course, project out from the UHF
wave function the components of incorrect multiplicity,
but although the UHF orbitals are optimum for the
Slater determinant, they will not be optimum for the
projected wave function. '

It has long been known that the proper solution is to
optimize the orbitals after the projection rather than
before. ' ' """Unfortunately, this procedure, the spin-
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128, 213 (1962).
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R. K. Nesbet, and R. E. Watson, Phys. Rev. 135, A588 (1964).
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polarized extended Hartree-Fock method, '' " '~ has
been too difficult to actually carry out in the past—
even for the case of Li ' 3 '0 " '5'8 This difficulty has
been overcome by the GF method, ""which yields
wave functions equivalent to those which would be ob-
tained by the spin-polarized extended Hartree-Fock
method. The essence of this method is sketched below.

Since most of the past calculations comparing the
efficacy of the various methods for predicting I, have
been for the lithium atom, we will present the results
from some GF calculations for this atom and compare
them with some of the past results. We find that the GF
wave function for Li does indeed yield a good value
for Q(0).

Basis function

1s(4.5)
2s(3.95)
1s(2.65)
2s(2.05)
1s(0.7)
2s(0.664)

0.02741—0.07473
1.02249
0.03650—0.00314
0.00169

/lb

—0.00219—0.10517
1.07104
0.04883—0.00525
0.00023

)2a

—0.038890—0.017857—0.089226—0.115170
0.074766
0.994502

a The orbital exponents for the basis functions are in parentheses.

many simplifications. These equations are solved in
the same way as are the Hartree-Fock equations, '
i.e, , by expanding each unknown orbital in terms of a
set of basis functions (X„),

TABLE I. Expansion coe%cients for the lithium atom GF orbitals. '

THE METHOD AND CALCULATIONS ON Li

The Hartree-Fock and UHF wave functions can be
written as SC'X, where 4 is a product of orbitals (one-
electron spatial functions), X is a product of one-
electron spin functions, 6, is the antisymmetrizer,
P, i,r, and t, is the parity of the permutation r The.
GF wave function is written as G~CX, where C and X

are again products of orbitals and spin functions, re-
spectively, and G~ is an operator involving permuta-
tions on spatial and spin coordinat. es (see Refs. 19 and
20 for detailed discussions of this operator). The G~
operator has the property that G~Cx satisfies Pauli's
principle (the 8, ensures this property for the UHF wave
function) and is an eigenfunction of S' (not generally
possible for the UHF wave function). In the UHF
Inethod the orbitals in C are required to be the best
possible ones, i.e., the energy must be stationary with
respect to variations in these orbitals. In the same way
in the GF method we require that the orbitals in 4' be
the best possible ones. In both cases we obtain a set
of pseudo-eigenvalue equations for the best orbitals and
thus an independent-particle scheme.

In the case of Li,

O'= Pq, (1)gs,(2)Q~b(3) and X =cr(1)cr(2)P(3), (2)

where p~ and @s, are orthogonal. The GF function
can be expanded in terms of Slater determinants as

GPX=(2/3)L2 84rA2Arb~~P

+ +4'1 Qlb42 rrr4+ +41b42A'1 rrcrg

but we must emphasize that we do not use this ex-
panded form to derive the equations for the best P;.
The success of the GF method in obtaining equations
which can be derived explicitly and solved depends
crucially on the form of the GJ operator which allows

"Unfortunately the same name, extended Hartree-Fock, is
also used for a much different procedure; e.g. , see P.-O. I.owdin,
Phys. Rev. 97, 1474 (1955);and G. Das and A. C. Wahl, J.Chem.
Phys. 44, 87 (1966)."P.-O. Lowdin, Rev. Mod. Phys. 35, 640 (1963).' W. A. Goddard, Ph. D. thesis, California Institute of Tech-
nology, Pasadena, California, 1964 (unpublished).

mb W. A. Goddard, preceding paper, Phys. Rev. 157, 81 (1957).

and solving for the C„;.
We report here a calculation on the ground state ('S)

of Li using six Slater-type basis functions for which all
of the orbital exponents have been optimized. The ex-
pansion coeKcients for the various orbitals are shown
in Table I. The amplitudes of the orbitals at the nucleus
for the Hartree-Pock, "UHF ' and GF wave functions
are given in Table II.The 2s orbital has not changed too
much but the splitting in the 1s orbitals for the GF func-
tion is about 3~ times the splitting for the UHF orbitals.
In Table III we show the Q(0) for the various functions.
We see that the GF wave function yields a fairly good
value for Q(0) as does the UHF wave function in this
case. Some other properties of the GF wave functions
are discussed in Appendix A.

COMPARISON WITH OTHER CALCULATIONS

There have been several attempts to And ways of
approximating the GF or spin-polarized extended
Hartree-Pock wave function. This is not so important
now since @re can carry out the calculations exactly, but
is still of interest. Bessis et al."show that to first order
the GF method is equivalent to a configuration inter-
action between the Hartree-Fock wave function and
all singly excited configurations. In addition, if certain
integrals are neglected, they show that the Q(0) from
GF and UHF calculations are the same to first order.
From Table III we see that this is approximately true
although the difference between Q(0)ov and Q(0)unb

TABLE II. The amplitude at the nucleus for the orbitals of Li.

HFa

2.6129
2.6129—0.4082

UHFb

2.6189
2.6073—0.4048

GF

2.6352
2.5932—0.4019

a Roothaan, Sachs, and Weiss, Ref. 22.
~ Sachs, Ref. 8.

"C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
'C. C. J. Roothaan, L. Sachs, and A. W. Weiss, Rev. Mod.

Phys. 32, 186 (1960).
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TABLE III. The spin density at the nucleus, Q(0),
and energy for the lithium ground state.

HFa
UHFb
Proj. UHFb'
GF
CI, no r;, d

CI', r';
"

Exper

Q(o)

0.1666
0.2248
0.1866
0.2403
0.2065
0.2249
0.2313'

absolute
percent error

47rQ(0) of Q(0)

2.094
2.825
2.345
3.020
2.595
2.826
2.906

28.0
2.8

19.3
3.9

10.7
2.8
0.0

Energy
(a.u. )

—7.432727—7.432751—7.432768—7.432813—7.47710—7.4779—7.4780g

a Roothaan, Sachs, and Weiss, Ref. 22.
b Sachs, Ref. 9.
& proj. UHF is spin-projected UHF.
'I Weiss, Ref. 23.
e Burke, Ref. 24.
f P. Kusch and H. Taub, Phys. 'l5, 1477 (1949); a conversion factor of

3474.4 was used to convert Mc/sec to atomic units.
I Moore, Ref. 28.

"A. W. Weiss, Phys. Rev. 122, 1826 (1961).
E. A. Burke, Phys. Rev. 130, 1871 (1963); 135, A621 (1964).

~' K. F. Berggren and R. F. Wood, Phys. Rev. 130, 198 (1963).' R. K. Nesbet, Phys. Rev. 118, 681 (1960);Quarterly Progress
Report, Solid State and Molecular Theory Group, Massachusetts
Institute of Technology, 1956, pp. 3, 47 (unpublished).

is about one-fourth the difference between Q(0), ~ and

Q (0)HF. Marshallz' considered first-order perturbations
on the Li '5 state and obtained Q(0)UzzF=0. 224 and
Q(0)oF——0.216. The UHF result is close but the first-
order perturbation yields a rather poor approximation
to the Q(0)oF', this is another indication' that straight-
forward perturbation schemes may not be useful for
Q(o).

Bessis et a/. "have noted that for a projected deter-
minant the contribution to Q(0) from the orbitals which
are spin-paired in the Hartree-Fock wave function is
approximately given by 5/(S+1) times the contribu-
tion these orbitals would make to Q(0) for a single
determinant. Since the GF wave function can be written
as a spin-projected Slater determinant, we can use this
relation and the amplitudes at the nucleus in Table II
to approximate Q(0)os. The result is Q(0)op=0.2347
which is in fair agreement Kith the exact result.

So far we have considered only independent-particle
wave functions, HF, UHF, and GF. There have also
been several coniguration interaction (CI) calcula-
tions carried out on Li. gneiss" has considered con-
6guration interaction wave functions with up to 45 con-
figurations and no r;; coordinates. The best wave func-
tion yielded a very good energy but a Q(0) of 0.2065.
Burke'4 has used wave functions with interelectronic
coordinates r~2, ri3, and r23 and obtained an even better
energy and a Q(0) of 0.2249 while Berggren and Wood"
using the same type of wave function obtained a slightly
worse energy, —7.47630, but a better Q(0), 0.2285. A
small basis set with nonoptimized orbitals was used by
Nesbet" for a CI calculation yielding a very good. Q(0).
This same basis set yields a Q(0)Hs which is 0.014
higher than the exact Q(0)HF, and Marshall'4 has sug-
gested that the same error in Q(0) may occur for the

TAnzz IV. Q(0) and 8 for Nesbet's basis set.

HF~
CI~
GF

Q(0)

0,1805
0.2284
0.2587

E (a.u.)
—7.431765—7.431849—7.431881

+ Nesbet, Ref. 26.

SUMMARY AND CONCLUSION

The spin-polarized extended Hartree-Fock wave
function for Li has been determined by the GF method.
As expected this leads to a good value of spin density
at the nucleus, Q(0); however, the Q(0) differs from the
UHF value by more than has been previously suggested.
It appears that this method may be useful for studying
the magnetic Geld at the nucleus in large atoms.

APPENDIX

Here we discuss some properties of the GF wave func-
tions for Li as given in Table I. The ratio of potential
energy to twice the total energy is 1.000001 which is
quite close to the value, 1.0, demanded by the virial
theorem. The orbital energies are —2.49872, —2.46385,
and —0.196490; thus, we would predict a first ionization

27 Note that the GF energy is actually /over than the CI energy.
This is probably because the CI calculation was by second-order
perturbation methods.

other wave functions using this basis set. In fact,
Nesbet's value for Q(0)oz is 0.022 higher than that
obtained by Keiss23 with a much more optimized basis
set, and the GF calculations with Nesbet's basis set
yield a Q(0)os which is 0.018 higher" (see Table IV)
than that for the accurate GF wave function which
supports Marshall's suggestion that the good value of
Q(0)oz is due to the particular nonoptimized basis set
which was used.

The calculations using interelectronic coordinates
vield good results for Li but such calculations may be
extremely diKcult for larger atoms. On the other hand,
conventional con6guration interaction, although yield-
ing good energies, leads to rather poor values of Q(0)
for Li. Thus on the basis of calculations on Li, the
UHF and GF methods would appear to be the likely
candidates for predicting Q(0) for larger atoms. As
mentioned above, the UHF method has had some
successes and many failures in this regard but does not
yield eigenfunctions of S'. GF calculations have been
carried out on several systems including the Li 'I'
state and the N 45 state, and in every case the GF
orbitals are split much more than are the UHF orbitals.
Thus the values of Q(0) from GF calculations may differ
considerably from the UHF values, and there is hope
that the GF method can improve upon the fair to poor
values of Q(0) obtained by the UHF method for transi-
tion metal ions in metals, and for P, 8, N, 0, and F.
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energy of 0.1965 which is 0.8%%u~ from the correct value
of 0.1981'8 The cusps" for the orbitals are —3.0136,
—3.0156, and —3.0131 as compared to a value of —3.0
for the exact orbitals.

Now consider a one-electron operator, F=P; f(i),
which does not depend on spin coordinates. For a GF
wave function the expectation value of F is given by

D"'-=1+-.'1&2 I») I',
Dsg' ———-', (2al 1b)(1b I 1a),
D„"=-',(1t I la),
D,.s.=1+-',

I (1al 1b) I

s

Dts"=-', (Ib
I 2a),

D jb—1 0

D=1y-:I &Ial») I'+-:I &2al ») I',

(A2)

where (i
I j) is the overlap between orbital i and orbital

j.For the orbitals in Table I the quantities in (A2) are
1.0000068, —0.0018452597, 0.49994523, 1.4998905,

&F)=(1/D) 2 &O'IfI4;)D,
i,j=l

where the D form a Hermitian matrix called the spatial
density matrix and D is a normalization constant.

For I,i these quantities are given by

TAaI.K V. Expectation values of g; r;" for I.i.'

—2

+1
+2
+4

30.21526
5.715620
5.015984

18,58901
562.4982

a The GF orbitals in Table I were used.

0.0018454618, 1.0, and 1.4998973, respectively. With
these numbers we can evaluate the expectation value
for any P if the values for (il fl j) are available. Table
V contains the expectation values of P; r;" for I= —2,—1, 1, 2, and 4. These values are within 0.1%%uo of the
values given by Hartree-Fock wave functions. " For
the electron density at the nucleus, P, b(r;), the GF
wave function yields 13.830 as compared to a value of
13.827 for the Hartree-Fock wave function. "Thus, the
GF and Hartree-Fock wave functions agree quite
closely for the expectation values of spatial one-
electron operators.

Consider a one-electron operator involving spin,
M=+;m(i)s, (i), where m depends only on spatial
coordinates.

Then for I.i

(M) = sr(P; m(i)) —(2/3D) I sr(la
I
m

I 1a)(1—(1b I
2u)')+ rs(2al m

I 2a)(1—(1b I 1a)')
+l &2al ~l la) &Ia

I »)(» I
2a)+ &1a i

~
I »)(1b I1a)+(2al ~l »)&» I 2a)+ &» I ~l »)j

= (1/12D) L(la I
m

I
1a)(4+5(1b

I
2a)')+ (2a I

m
I 2a)(4+5(1b

I
la)')

—10(2alml1a)&1al1b)(1bl2a) —2(«l~l lb)(1bl1a) —2(2al~l1b)(1bl2a) —2(1blnzl1b)q, (A3)

where D is given in (4) and the orbitals are taken as real. For the orbitals in Table I, (1bl 1a)=0.99989046 and
(1bl 2a)=0.0036909236. To find Q(0) we let m be the delta function, and using the above overlaps, (A3), and the
values in Table II we find a Q(0) of 0.2403.

"Atomic Energy Levels, edited by C. E. Moore, Nat. Bur. Std. Circ. No. 467 (U. S. Government Printing and Publishing OfEce,
Washington, D. C., 1949),

"The logarithmic derivative of the radial part of the orbital evaluated at the nucleus. For the exact orbital this is Z/(i+1), w—here
Z is the nuclear charge and l is the orbital-angular-momentum quantum number.


