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While most reaction theories are formally flux conserving, the kinds of models and approximations used
to specify the S matrix for resonance reaction processes are often of doubtful unitarity, particularly in the
overlapping resonance region. To investigate the consequences of unitarity in this domain, several classes
of simple analytically specified unitary S matrices are constructed by means of R-matrix models having
various periodic arrangements of poles and residues. The resulting reaction amplitudes have a variety of
fluctuating resonance spacings and widths as well as nonresonant direct terms and up to three competing
channels. Relationships between resonance parameters, channel transmission coe%cients, average cross
sections, and cross-section fluctuations are discussed. It is found that contrary to common belief
unitarity imposes no restriction on the average ratio of channel width to resonance spacing. In all
models investigated having no'direct coupling between channels, the transmission coef5.cients are given by
T,= 1—exp (—2vI', /D). Localized structure in the resonance parameters is investigated, and the eBects of
a single strong R-matrix pole are compared with those of a "giant-resonance" distribution of R-matrix
pole strength. In this way, the shapes of both Robson's analog resonances and Feshbach's doorway state
resonances are derived in a different dynamical context. Direct scattering and reaction amplitudes are found
to be strongly correlated with resonance amplitudes. Thus, for example, two channels coupled by a direct
reaction have correlated resonance width amplitudes, and the pole terms of the resonance reaction amplitude
coupling them have a nonzero average. Evidence is found that unitarity imposes resonance-resonance
correlations, and these in turn aRect the relation between average resonance parameters and average
cross sections and even more between these and cross-section fluctuations.

I. IN'TRODUCTION'

HE interpretation of nuclear reactions using the
"compound-nucleus" viewpoint has long had to

rely on a number of theoretical relationships whose
validity could be established only in certain limiting
cases or under very special assumptions. Thus, for
example, the identi6cation of the channel transmission
coeKcient T.with the average channel width to spacing
ratio 2s.l', /D has always been known to be correct only
in the limit of very small values of T,. While it has been
possible to express T, explicitly in terms of the dynami-
cal parameters of resonance formalisms such as E-
matrix theory, ' the corresponding relationships for reso-
nance widths and spacings have been Inore elusive in
the "overlapping-resonance" region, and therefore, no
generally applicable relationship between observable
resonance parameters and transmission coeKcients has
been found. Similarly, the widely used "Hauser-
Feshbach" formula for average compound nucleus cross
sections has had to be accepted largely on the basis of
model assumptions regarding "independence of forma-
tion and decay on the average". ' 4 More detailed deriva-
tions yielding this formula (albeit with modifications)
have required either that all competing open channels'
have small transmission coe%cients' ' or, more gener-
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ally, that the S-matrix resonance pole amplitudes are
uncorrelated and randomly distributed. 7 This latter
"statistical assumption" also lies at the heart of the
formulas that have recently been widely used for the in-
terpretation of "cross section fluctuations". ' " How-
ever, nothing has been known regarding the appropriate-
ness of this statistical assumption or even regarding its
consistency with the general requirements of reaction
theory. In particular, the requirements of Rux conser-
vation, or unitarity of the S Inatrix, are rather difficult
to enforce, or even to check when one is dealing with
a reaction amplitude in the form of a general resonance
pole expansion. Other general requirements, such as
those imposed by time-reversal invariance (symmetry
of the S matrix) and causality (analyticity in the physi-
cal plane), are fairly easily checked by inspection.

In the present paper we endeavor to answer some of
the above questions, particularly insofar as they are af-
fected by the unitarity requirement, for cases of few
competing channels. Ke do this by means of a class of
simple analytic unitary models of the S matrix having
a suflicient variety of distributions of resonance pole
parameters, so as to suggest strongly the general validity
of the results obtained.

A. Structure of Resonance Theories

To understand the signi6cance of these models it will
be useful to review brieRy the logical structure of
nuclear-reaction theories. As in all quantum mechanical

7 P. A. Moldauer, Phys. Rev. 135, B642 (1964).
8 T. Ericson, Ann. Phys. (N. Y.) 23, 390 (1963).
9 T. Ericson, Phys. Letters 4, 258 (1963)."D.M. Brink and R. O. Stephen, Phys. Letters 5, 77 (1963)."P.A. Moldauer, Phys. Letters 8, 70 (1964).
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problems, the calculation divides naturally into three
stages. In the first stage one puts the Hamiltonian in
such a form that it exhibits most advantageously those
features of the physical system under study on which
one wishes to focus attention. In many cases this con-
sists of writing the Hamiltonian as a sum of a model Ho
and a perturbation H'. In the second stage one solves
the Schrodinger equation to obtain the wave function
f of the system, typically by expanding P in the eigen-
states of Hp. Finally, one uses P to compute the matrix
elements of operators corresponding to various meas-
ured observables of the system.

In the case of "resonance" or "compound-nucleus"
or "statistical" reactions, the first stage consists gen-
erally in selecting one of two types of useful forms of the
Hamiltonian. The first type comprises the formalisms of
Kapur and Peierls, "and of signer and Kisenbud" "
(R-matrix theory) and their generalizations. "' In these
theories arti6cial boundary conditions are imposed at
finite surfaces in configuration space and the wave func-
tion is expanded in the discrete eigenstates of the finite
"interior" region of interaction enclosed by the bound-
ary surfaces. The original purpose of these older formal-
isms was to give a rigorous theoretical foundation for
the "compound-nucleus" resonances described by
Bohr, '~ and also to provide a convenient set of param-
eters for their description, without, however, attempt-
ing to give detailed accounts of the values of these pa-
rameters in terms of nuclear dynamics. At the same
time, by focusing attention on complex closed systems
with discrete spectra, these boundary condition theories
provided the rationale for the introduction of analogies
from equilibrium thermodynamics and statistical me-
chanics in the description of resonance parameters.
Thus, for example, the "Fermi-gas models" of level
densities'" "and the statistical theories of spectra and
eigenfunctions'~" apply properly to the parameters of
the R matrix with constant boundary conditions, and
not in any direct sense to the resonance parameters of
overlapping resonances. ~ "" The R-matrix theory is
also unique in assuring the unitarity of the S-matrix in
a very simple way. Any model or approximation of the
R matrix which preserves its easily verified properties

r' P. L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938)."E.P. Wigner and L Eisenbud, Phys. Rev. 72, 29 (1947).

'4A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).

"H.B.Willard, L. C. Biedenharn, P. Huber, and E. Baumgart-
ner, Fast Neutron P'hysics, edited by J. B. Marion and J. Fowler
(Interscience Publishers, Inc., New York, 1963), Part II, p. 1217."C. Bloch, Nucl. Phys. 4, 503 (1957).
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' T. Ericson, Phil. Mag. Suppl. 9, 425 (1960).
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of symmetry and reality assures Aux-conserving reaction
amplitudes. In all other theories, it is far more difficult
to estimate the effects on unitarity of using model pa-
rameters or approximations. The formalism of Humblet
and Rosenfeld is related to the boundary-condition
theories "

The second type of resonance reaction model for the
Hamiltonian is type fied by the theory of Feshbach,
the formalism of MacDonald, '~ and Bloch and Gillet's
calculations. " Here attention is focused on bound
and continuum states with boundary conditions at in-
finity and the aim is to develop connections between
aspects of resonance parameters and particular features
of nuclear dynamics as embodied in nuclear structure
models.

Each of the above formalisms requires the second
step of determining the wave function, or in this case
its asymptotic behavior as specified by the S matrix or
the reaction amplitude. In some formalisms, such as
those of Kapur and Peierls" and of Humblet and
Rosenfeld'4 this stage is atrophied, being essentially
completed when the spectrum of the "model Hamil-
tonian" has been determined. In the case of R-matrix
theory, " the solution of the Schrodinger equation is

performed by "inverting the R matrix. " The other
theories require the more conventional methods of solv-
ing differential or associated integral equations. In dis-
cussing resonance reactions, the aim is, however, always
to obtain the S matrix in the form of a resonance pole
expansion with its parameters of resonance energies,
widths, and resonance amplitudes.

Of course, to the extent that they are rigorously cor-
rect, all of the above-mentioned theories (Wigner-
Eisenbud, Kapur-Peierls, Feshbach, MacDonald, etc.)
yield the same S matrix, or wave function. They di6er
only in the prescriptions they give for computing the
S-matrix parameters from the Hamiltonian.

The final step of determining the observable cross sec-
tions reduces to the problem of forming the appropriate
bilinear combinations of the S-matrix elements. If one
further wishes to give a statistical description of cross
sections, such as their energy averages, mean square
Ructuations, correlation functions, etc., then the com-
plicated analytic structure of the S-matrix pole expan-
sion can make this final step moderately complex. The
statistical theories of Quctuating cross sections deal with
the execution of this last step, ~ in general, by making
the simplest "statistical" assumptions of randomness
and lack of correlations of the S-matrix resonance pa-
rameters. "One object of this study is to examine the
validity of such assumptions.

24 J. Humblet and L. Rosenfeld, Nucl. Phys. 26, 529 (1961).
"H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958).
~' H. Feshbach, Ann. Phys (N Y ) 19p 287 (1962).
"W. M. MacDonald, Nucl. Phys. 54, 393 (1963).
28 C. Bloch and V. Gillet, Phys. Letters 16, 62 (1965). See also

H. A. Weidenmuller, Nucl. Phys. 75, 189 (1966); H. A. Weiden-
miilier and K. Dietrich, ibid 83, 332 (1966). .



UNITARY MODEI. S OF NUCI. EAR RESONANCE REACTIONS 909

B. Predictions of Resonance Theories

Before turning to the models to be studied, we briefly
review the origins of the familiar relations between reso-
nance parameters and their limitations. In the limit of
isolated or well-separated resonances (widths I'«mean
resonance spacings D) and in the absence of nonresonant
reactions all of the above mentioned resonance forrnal-
isms yield an S matrix of the form

(F F,)1/s-
s,.=e'&e+e"& b„.i-

& E 8„+—,'iF„-
F„=Z.F„., F/D«1

where the indices c, c', etc. , stand for a particular partial
wave and polarization in a particular channel, and all
channel or resonance parameters @„F„„h„,F„arereal
and weakly energy-dependent. The square roots I'„,'~'

have given signs associated with them. It has been
shown by Bethe' and by Thomas' that this form of the
S matrix remains valid provided only that the ratios
F„,/D of mean partial widths to mean resonance spac-
ings are small compared to unity. The transmission co-
efficient in channel c is dered by

T.=1—
I
S,.l

s, (2)

where 8„is the energy average of 5„.Cross sections
for transitions from channel c to channel c' are given in
units of 7t.x,2 by

occ' I
3cc' sec'

I

and the fluctuation cross section or "average compound-
nucleus" cross section is given by" "„.=(1(s„.l )—l8.. I ). (4)

Energy averages of continuous functions of the energy,
such as S„,will be indicated either by a bar or by
brackets ( ).

Ignoring the weak energy dependence of the reso-
nance parameters, one obtains the following results from
Eq. (1) by using the customary definitions and methods
of averaging~"

2~r„, 2r„,2
T ——

D2

validity of Eq. (1).It has therefore been customary to
ignore these higher-order terms and to assume the
relationships

2&I'pc

D
(6a)

TcTc~2m I'„,I'„,.
,f1~

D F„P,"T;.
(F„,F„„/F„)FX,—«1. (6b)
F„,F„,./F„' D

Equation (6b) is the Hauser-Feshbach relation with
width fluctuation correction. "By improperly extending
the range of validity of Eq. (6a), one obtains the restric-
tion 2s.F„,/D(1, since flux conservation restricts the
value of T, to lie between the limits 0 and 1.If one were
to assume the general validity of Eq. (5), one would ob-
tain the restriction 27rF„,/D&, 4 which has been stated
by Feshbach. " All such restrictions on the possible
values of I'„,/D have been very bothersome, because it
has not been possible to 6nd any independent dynami-
cal rationale for them. We shall find that no such restric-
tions do in fact apply.

When Bethe's restrictions (I',/D«1) are removed,
then the S matrix may be represented in a 6nite energy
interval by the statistical S matrix~

S...=e'&~+e"& W„,s—i p
~ E—S„+-,iF„

F„=PF„„F„,=lg„,l /X„, X„&1

(7)

+ P W„'——(g„,g„.)„,(Sa)
c'gc D

where now the channel resonance amplitudes g„,may
be complex and t/t/'„' is a complex matrix. Under ap-
propriate conditions the energy dependences of the pa-
rameters in (7) are weak compared to the explicit en-

ergy variation of the formula. The evaluation of (2) and

(4) from (7) with appropriate definitions of the averages
has been shown to give expressions of the form~

T,=(O„,)—P, M'„.

2~ F„,F„„~s((F„,F„„.,)r~s)s I—((i
D I'„ O' D

(5b) fl
JlC AC

0'CC' —3I„,
c'i ~ pcrr

(Sb)

Here the bars and brackets ( ) indicate averages with
respect to the index p of discrete resonance parameters,
such as I'„,.

The second terms on the right-hand sides of Eqs. (5)
are of second order in the small parameters I'„,/D and
are therefore meaningless within the stated domain of

"H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954).

'OH. Feshbach, Nuclear Spectroscopy, Part 8, edited by F.
Ajzenberg-Selove (Academic Press Inc. , New York, 1960),p. 1033.

where

o"=2~&.I g" I
'/D

2~2M„= , l(g"g").I'
D2

(9a)

gpcgpc'gvc gvc
(9b)

(8„—h„)+-',i(F„+F„)
"P.A. Moldauer, Phys. Rev. 123, 968 (1961).
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The similarity between Eqs. (8) and (9) and the approxi-
mations (5) is rather striking, and indicates that in a
sense Eqs. (5) are better approximations to the general
case than the Eqs. (6).

The symmetry of the S matrix (7) is easily veriimd
and causality is assured if all I'„arepositive and all
other parameters have no poles in the upper half of the
energy plane. However, the relationships required of the
parameters in (7) to assure the unitarity of S are ex-
tremely diKcult to determine. In principle, unitarity
can be assured by expressing the parameters in (7) in
terms of R-matrix parameters, but these relationships
are in general very complex and diKcult to state ex-
plicitly. ' "The same is true for all other formalisms
that yield a formally unitary S matrix. We therefore
turn to some simple models of the R matrix which per-
mit the explicit determination of unitary Smatrices and
their resonance parameters.

In this connection, the use of an R matrix need not
imply the full dynamical machinery of R-matrix theory.
For example, we shall never make explicit reference to
a channel radius. Rather, we may view the R-matrix
relations here as a convenient formalism for generating
a variety of unitary S-matrix models. These models,
moreover, are to be interpreted as models of the statis-
tical S-matrix which has been defined in Ref. 7 as a
representation of the physical S-matrix within a finite
energy interval by means of an expression of the form
of Eq. (7) containing a sum over a certain infinite
sequence of resonance pole terms. This point will be
discussed in greater detail in Sec. II C below.

~7' ~E
cot

D
(1O)

Adopting the natural boundary conditions L'=iP (de-
tails on the R-matrix relations may be found in Refs.
14, 15), we obtain for the S function

1+iPR
S=e"&

the expression
1—it cots

S= e"&
7

1+it cots

where we have introduced the notation

II. SINGLE-CHANNEL MODELS

A. The Picket Fence Model

The models to be employed are generalizations of the
picket-fence model of Teichmann, "which considers a
single-channel E. function of equally spaced poles with
equal residues.

(the notation r having been introduced earlier' for the
quantity 47rP(p')/D). The expression (12) is now easily
rewritten

1+t' 2ii
S= e"& — cot(s+tan 'it)

1—t' 1—t'
(15)

By expanding the contangent, we obtain the single-
channel model version of Eq. (7)

(16a)

with the p, independent parameters

t2

1—t2
(16b)

2mg„' 4t

t2
(16c)

g=p
(16d)

2~1'„/D=4 tcth 9=4 tanh 't, t(1
=—4 coth 9, t)1. (16e)

To obtain the transmission coefficient, we merely aver-
age S over an interval ~ in the variable s and And that

. 1—t
8= e"& (17)

and hence

T=1—(8/ '=
(1+1)'

This latter relationship between the transmission coefFi-

cient and the average R-matrix parameters has previ-
ously been derived for quite general situations involving
many competing channels and arbitrary distributions of
resonance spacings and resonance amplitudes. ' In that
case t stood for the average ratio ~~r=mP(y')/D. One
obvious consequence of Eq. (18) is that the value of T
lies between zero and unity for all positive values of t as
it must, since all positive values of t yield a unitary S
matrix. There is therefore no restriction on the possible
values of the ratio (y')/D and, in our present model, by
virtue of Eq. (16e) there is also no restriction on the
possible values of I'/D. In fact, by eliminating the
R-matrix model parameter t between the two "observ-
ables" T, and I'/D as given by Eq. (18) and (16e), we
obtain the relationship

i= 7(Py'/D = r/4,

s= ~E//D
"T.Teichmann, Phys. Rev. 77, 506 (1950).

(13)

(14)

T= 1—exp( —2n. l'/D) . (19)

Comparing this with the optical-model relationship

T= 1—exp( —4g),
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FIG. T. Dependence of the S-func-
tion parameters 27rg'/D and 2wI'/D
and of the transmission coefBcient
T upon the R-function parameter
t=sPy'/D for the simple single-
channel picket-fence model. The
straight line shows the function
r =4mPp'/D. .

0.5 !.0 2.0 5.0

where g is the imaginary part of the optical-model phase
shift, "' we see that

This behavior, together with the fact that T=1 when
t=1, justi6es the description of the t=1 situation as

(21) pure resonance scattering.

The S-function pole amplitudes g' are always larger
than the widths I', as expected. ~ """Their relation-
ship is shown in Fig. 1.Perhaps less expected is the result
that H/' is not unitary except in the isolated resonance
limit when t ~ 0. This means that in general the repre-
sentation of the resonance amplitude by a statistical
Smatrix~ requires a nonunitary potential scattering am-
plitude. This point is already implicit in Ref. 7.

It is interesting to note the following symmetry of the
S matrix considered as a function of E and t:

e '+S(E,t) = —e "&S(E+,'D, 1/t). -(22)

This probably arises from a symmetry between the
"interior" and "channel" regions in the picket fence
model.

The most striking feature of this model lies in the
singularity of the resonance parameters I' and g at t=1
as shown in Fig. 1.As this value of t is approached the
S-matrix poles disappear at infinity in the lower half of
the energy plane and simultaneously the pole residues
become infinite. There is of course no singularity in the
cross sections. The S matrix becomes

S= z»(4+~E~&)
7 (23)

which has the form of a pure resonance amplitude lead-
ing to a cross section whose values vary in energy be-
tween zero and 4s-X' with a period D (and tarot 1', as might
be thought from fluctuation theory!)

o =47'' sins(P+n. E/D), t=1. (24)

B. Fluctuating Widths and Syacings

The simple picket-fence model (10) is of course un-
realistic; both the spacings and widths of real reso-
nances fluctuate and the distribution of resonances is
not constant in the in6nite energy interval from —~ to
+~. We now proceed to investigate these effects by
means of generalizations of the model (10).

We first examine the effects of fluctuating widths by
considering the model

I.'E= —it cotz —ibt cscz,

where again s=rr/ED and D is the spacings of 8-func-
tion poles. The E.-function residues have alternating
values —y+' and —7 ' given by

Upon calculating the S-matrix and determining its
resonance-pole expansion in a similar manner as before,
we find again an expression of the form (16a) but now
with alternating amplitudes g+' and alternating values
of the width I"+ when the mean-square value of t,
namely t+t, is less than unity. On the other hand, when

t+t is greater than unity, the widths F are all equal and
the level shifts S alternate so that the effect is that of
resonances with alternating spacings and equal widths.
The values of the resonance parameters as functions of
t and St are given in the 6rst column in Table I. It is
seen there that all average resonance parameters are
the same as in the case of the simple picket fence model

(10) and, in particular, we obtain the same relationships



TABLE I. S-matrix resonance parameters for various single-channel models.

i(t—cotz+St cscz)
Bt

L1—(t+@)(t—st) g'~z

1+t2

1—t2

',—it/—cotzz+cot-,'(z+tt) j
cos&8

LP+cos'( ', tt) —-1]'"
1+t2

—(s+it}(cotz —r)

1+(s'+t') (1+r') 2itr—

1+(s' t'—) (1+r') 2sr—+2it(s r+—sr')

2rrg'/D
4t ( 4t f

! 1+—
1 9—( t

2xr/D 4 tcth-'t, (t+gt) (t gt) &—1 4 tcth-'t, P+ cosz( 'zt)t&1-
4 tcth 't+4 tcth 'n, (t+gt){t bt)&—1 4 tcth 't+4 tcth 'n, t +zc so'( , tt)z&-1

4t

1+(s' —t') (1+rz) 2sr+2i—t(s r+srz)—

(1+t sr) '+ (s—+tr) '
ln

(1—t—sr)'+{s—tr)'

0, {t+st)(t—m) &1

a(1/x)cot ~in, {t+St)(t—gt) &1

4t

0, t2+cos2(-,'8) &1

&(1/sr)cot 'i' P+cos(-', S) &1

4t

1 ( 2(s'+P)r 2s-
!

—tan-'!
2x i 1+{sz+P)r2 tz s(2r+—s)—j
L+-,' if 2rs+ (1 r'}(s'—+P) & 1j

4t
= 1—exp( —2z.F/D)

(1+t)' (1+t)'
= 1—exp( —2 F/xD)

(1+t sr)'+ (s—+tr)'
= 1—exp( —2 F/xD)

(19) and (21) between average width to spacing ratios
and the transmission coeS.cient and g

7=1—exp( —2srl'/D), rt=zrf'/2D (27a)

and hence again no restrictions on r'/D. The resonance
amplitudes g„'now have singularities both when the
average t and the mean square t+t are unity and they
are complex under certain circumstances. This feature
has also been discussed previously. ~ Again the cross
section is well behaved in consequence of unitarity for
all positive values of t+ and t . Also the following rela-
tionship is found to hold:

sr(!g! ')/D=sinh(zrl'/D). (27b)

Next we consider the effect of resonance pole spacing
fluctuations by means of the E.-function model

1.'R = —-,'it/cot-,'s+ cot-,'(s+ 0)],
where the spacings of E-function poles have the alter-
nating values,

The mean spacing is still D and s= E/zDr, and the y„z
are all equal to tD/zrP. The parameters of the 5-matrix
pole expansion (16) are given in the second column in
Table I.Again the values of g„'alternate from resonance
to resonance and g„may be complex. The S-matrix
resonance level spacings now alternate in magnitude
when t'+cos'(-,'0) (1.But when that parameter exceeds
unity, the spacings are equal and the widths alternate
in magnitude. Again the mean spacing, mean widths,
and mean amplitudes (g') and the transmission coeflicient
T are the same as in the simple picket fence model Eqs.
(16).Again Kqs. (27) hold and similar comments apply.

R'(E) =Pr
6'(E'))

dE
D(E') E' E—(29)

According to the above interpretation also our models
of the S matrix are to be interpreted as representing the
S matrix only in AK Therefore, T and g correspond to
the local optical-model values of these parameters in AK

Together with the introduction of a constant term
E. in the R matrix, it is useful to generalize the bound-

"E.P. Wigner, Ann. Math. 53, 36 (1951); Proc. Cambridge
Phil. Soc. 47, j90 (195j.).

C. Distant Resonances and Boundary Conditions

Another shortcoming of all the models we have dis-
cussed so far is that they use uniform distributions of
E-matrix poles in the whole doubly infinite energy range
from —~ to +~, while any physical model of the R
matrix will have a lowest pole Eo corresponding to the
ground state and a progressively increasing density of
poles E„with increasing energy. The proper interpreta-
tion of our models is then similar to that of signer's
statistical E function' " which is intended to describe
the true R function and therefore also the cross section
only in a restricted. energy interval AK It does this by
using a uniform distribution of pole terms in the infinite
energy interval (—ao, +~) which is characteristic of
the true R-function poles in AE, plus a constant term
Z to take into account the effect within AE of the dif-
ference between the true and uniform pole distributions
outside hE. In a sense E.' plays the role of direct inter-
action in the dynamical framework of the E.-matrix
theory. Assuming that the mean E-function residue
(y'(E)) and the mean R-function pole spacing D(E) are
suKciently slowly varying functions of the energy we
can represent R by the principal-value integral
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ary conditions" "so that

Lo So+iP, (30)

1—Lo*R
S=e"&—

j —L'R
(33)

we obtain by straightforward calculation again a pole
expansion of S of the form (16) with the resonance pa-
rameters all equal and independent of p and given in the
last column of Table I. The transmission coeScient is
again found to have values restricted to the interval
(0,1) for arbitrary values of R and s and for arbitrary
positive 1. The relation between T, g, and F/D is again
given by Eqs. (27).

We note here that as was true before, the non-
resonant part of the S matrix, namely, e"&8', depends
on the R-matrix resonance parameters t and s, and the
S-matrix resonance parameters, g', I', and g, depend on
the nonresonant part of R' of the R function. This mix-
ing up of the "direct" and "resonance" features of dy-
namical models in the S matrix is not restricted to R-
matrix theory and has also been noted recently by
RatcliR and Austern. '4 To expect the opposite would be
eqaivalent to demanding that separation of the Hamil-
tonian into two parts Ho and H' should yield a solution
of the Schrodinger equation which can be separated into
two terms Po+f' each of which is an eigenstate of
one of the parts of H separately. But this is clearly
impossible.

It is possible, in principle, for R to diverge. In that
case we see that g', F, and T all go to zero and we are
left with a smoothly varying nonresonant S function.
This, presumably, is the R-matrix interpretation of
scattering in the high-energy limit.

D. Structure: Strong Resonances and
Giant Resonances

The models we have introduced also permit the dis-
cussion of some aspects of isolated features in the S-
matrix resonance parameters that are due to strongly
energy-dependent properties of the underlying nuclear
structure parameters. In the single-channel R-function
formalism such features may be described in terms of

'4 K. F. Ratcliff and N. Austern, Perspectivesin Modern Physics,
edited by R. E.Marshak (lnterscience Publishers, Inc. , New York,
1966), p. 57.

with S'=S—8 no longer necessarily zero. These two
effects are clearly coupled, since a change in boundary
conditions 8 will cause a change in the distribution of
R-matrix poles and residues and hence a change in R'.
Introducing the notation

orLoy'/D= s+it, RoD/my'= r. —
we have for the picket fence model with nonvanishing
R' and arbitrary boundary conditions

L'R= —(s+i1)(cots—r) . (32)

Using this to evaluate the statistical S matrix, ~

groups of R-function poles E„whose associated values
of p„'are very much larger than those of the surround-
ing resonances. We shall describe two extreme cases
here: First the case of the "strong resonance" where only
one R-function pole has an anomalously large value, and
secondly the case of the "giant resonance" where the
anomalous strength is distributed over a very large num-
ber of R-function poles but still concentrated in a limited
energy region. The "strong-resonance" model has been
used by Robson" in the description of isobaric analog
resonances, while the "giant-resonance" model was 6rst
proposed by Lane, Thomas, and Wigner" for the inter-
pretation of optical model resonances. The more recently
discussed "intermediate-structure" resonances also fall
into this general category. '~" Between the "strong-
resonance" and the "giant-resonance" description there
are also possible intermediate distributions of strength
among a small number of R-function poles. The precise
distribution of such strength will, of course, depend on
the choice of R-matrix boundary conditions, however
again the resulting S-matrix features must be independ-
ent of such boundary conditions.

To describe a "strong resonance" we consider a
picket-fence model of the type given by Eq. (32) with
all poles having equal strength y', but we consider that
the pole at E=O has a very much larger strength yo'
such that yo' —y'))D. Then we can write the complete
R-function model in the form

where
L'R = —(s+it) (cots—r+ 6/s), (34)

(35)

r,ft r 6/s——— (36)

and can discuss the S-matrix poles at the energy
E= sD/m in terms of the last column of Table I using
r,ff for r. At the energy E=s =0 of the strong R-function
pole, r, ff becomes infinite and, as previously discussed
the S-function poles "disappear" there. Both g' and I'
may have maxima at another energy which depends on
the relationship between the values of s, r, t, and h. In
the case of the "natural" boundary conditions, s=0,
g', and I have maxima when r,ff goes to zero, that is
when s=6/r which may be positive or negative, de-
pending on the sign of r. The transmission coefIj.cient
reflects this same behavior and is given by

4t
(37)s=O

(1+7)s+ P(r a/s)s—
"D. Rohson, Phys. Rev. 137, B535 (1965)' A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev.

98, 693 (1955).
'~ A. K. Kerman, L. S. Rodberg and J. E. Young, Phys. Rev.

Letters 11, 422 (1963)."H. Fesbach, Nuclear Structure Study with Neutrons, edited by
M. Neve de Mevergnies, P. Van Assche, and J.Verview (North-
Holland Publishing Company, Amsterdam, 1966), p. 257.

~= (Vo' —V')/V'

and the S-matrix is again given by Eq. (33)
assumptions we may regard Eq. (34) as an R function
with the slowly energy-dependent eGective background
term
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which goes to zero at E=0 and to equally spaced poles E„andpole strengths given by

(1+t)'+Pr2
at s=& ,

(38)

DQQ
|'gP 7 +

2m E„~+~~W'
(39)

Tma, x

(1+~)'
at ra=A.

10—

MAx tI I.O
2.0 ——

T I .I
-----—

In Fig. 2, three representative curves are drawn of the
transmission coeKcients (37) for three different values
of R'. They exhibit the zero at E=0 and the maximum
which vanishes with vanishing R'.

where

L R— 1/ ff(cotz r ff) (40)

which consists of a constant background of pole
strengths y' and an additional combined strength yp'
distributed over a "giant" Lorentzian of half-width
H/'&&D. In accordance with the interpretation given
above Eq. (29) we represent the resonance structure in
the vicinity of any energy E by constructing an R-
function picket-fence model with equal pole strengths
everywhere given by Eq. (39) evaluated at the energy
E„=E, and with a value of R' obtained by substituting
the functional dependence of y„'upon E„=Einto the
integral (29). In this way, we obtain for the case s=0
the following picket fence representation at the energy
E of the giant resonance R-function defined by Eq. (39)

T
T

co 6—
Dtp

jeff ~+
2m E'+~W2

(41a)

tef'fief f
vr 8'+-4W'

(41b)

~ ~ ~~m m m m «gg

0

rz RE
2 2
0

FIG. 2. Energy dependence of the transmission coefficient T in
the vicinity of a single strong R-function pole with residue —y0',
superimposed on a picket fence of poles with residues —y' and. a
constant background term R'; single channel, natural boundary
condition case.

If boundary conditions with nonzero s are applicable,
the transmission coeKcien. ts belong to the same family
of curves represented by Fig. 2. In fact, Robson's model
for isobaric analog states uses R'=0, but variable shift
factors s, and the "enhancement factors"

~ f ~
calculated

by him, "correspond precisely to the transmission co-
eKcients considered here and have precisely the same
properties. We conclude therefore that the glulitative
features of isobaric analog resonances do not depend on
the validity of a particular dynamical model, such as
Robson's theory of external mixing, 35 but they mill

apply in any case where boundary conditions can be
found that concentrate all of the anomalous resonance
strength in a single R-function pole.

Next we construct a giant-resonance model by con-
sidering an R function with an in6nite sequence of

2' p'8'

E'+ -,' (W+2I'yo') ' (42)

In the language of Feshbach's doorway state theory,
2Pvp' is here the giant-resonance decay width Ft, mhile

where t=7ry'/D, to vryo'/D, a——nd tr is the value of Ro

due to variations in the R-function pole distribution
other than that given by the second term of Eq. (39).
The energy dependences in Eqs. (41) are, of course, to be
considered parametric, rather than functional. We again
use the last column in Table I to discuss the S-matrix
poles corresponding to the model of Eqs. (40), (41).
This discussion is now complicated by the very wide
variety of phenomena that can occur. SuKce it to ob-
serve that there can occur peaks in the S-matrix widths
or in T at values of the energy where t,~g has a maximum
or where r, qg has a minimum; furthermore there may be
dips in T or in the values of I.' when r, ~g has a maximum
or when t,~g has a maximum value which is greater than
unity. As a result the structure of the transmission co-
eKcient at a giant-type resonance may be fairly com-
plex. While the model does not predict the occurrence of
a zero in T as in the strong resonance case, such a zero
may in practice not almays be clearly distinguishable
from a dip due to a giant resonance.

We still write down the transmission coeScient for
the case when all R-matrix poles are due to the giant
resonance only, that is when both t and r vanish in Kqs.
(40), (41).Then T is given by aLorentzian having a half-
midth equal to the sum of t/t/' and 2Pyp'.
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8' is the width F~ for compound-nucleus formation. In
that notation Eq. (42) has also been given by Fesh-
bach. "Again we see that the qualitative features ob-
tained do not depend upon any particular dynamical
model for the giant resonance.

The generalization of strong- and giant-resonance
structure models to the multichannel situations to be
described next is straightforward and leads to no essen-
tially new results.

R=R'+y'
n=—w gD —g

Introducing the notations

(43)

PR'= r, Py'/D= t/x= f—, E/D= s/rr=—x, (44)—
we can write the S matrix as

1—ir+if P [1/(e—x)jS=e"&
1+ir if g L1—/(e —x)j

Let us assume that S has a pole at

x= e—ih.

(45)

Then for this value of x the denominator of S must have
a zero and

Nn e+ih —f—(47)

E. Models with Finite Numbers of Resonances

Before turning to the multichannel case, we interject
here some comxnents on the type of model we are using
and on its relation to alternative approaches. We are
using a xnodel having an in6nite uniformly distributed
sequence of poles and a constant term to account for the
eRect of the actually changing distribution of distant
poles. One might wish, however, to consider another
type of model in which only the 6nite number of poles
lying in the energy interval of interest are written down
explicitly, and the combined eRect of distant poles out-
side the interval of interest is taken into account by a
constant term. This latter approach needs to be used
with care, because of the occurrence of edge eRects
which distort the distribution of resonance parameters
near the edges of the energy interval containing the
poles. As a consequence, only the resonance parameters
in the center of the interval are correct and even then
only if the interval is large compared to D and I'. But
with that restriction, it is often much more convenient
to go to the limit of an in6nite interval as we have done
here, particularly as it facilitates the de6nition of aver-
ages and permits the easy introduction of statistical
methods, such as the ergodic theorem. ~

We demonstrate the existence of edge eRects here by
considering the relationship between widths and S-
matrix pole residues in the single-channel finite picket-
fence model with natural boundary conditions

To find the residue of S at e—ih, we expand S(e—ih+ e)
in powers of e. The coefficient of e ' in this expansion is
the residue —ig' and is found with the help of Eq. (47)
to be

where

—2ih—
Zg =

1 2fh—A

+~ (e—e)'—ih(e —e)
A= P

L(ri —e) 2+h2j2
(49)

Equation (48) means that the pole expansion of S has
a resonance term of the type

2h(1 —2fhA) '

x—e+ih
(50)

If 2fhA were to vanish, then the expression (50) would

just state the familiar result of single level theory that
the resonance. -pole amp]itude g' just equals the pole
width F=2hD. However, in the many-level situation,
2fhA does not vanish inside the interval ( 1VD, XD—).
In cases where h= i2I'/D is larger than unity, the factor
A is easily evaluated by replacing the sum in Eq. (49)
by an integral. Assuming also that the interval ED is
much larger than F, one 6nds that for resonances in the
center of the interval

A-~/2h, (1—2fhA)
—'-1/(1 —i) at e-0. (51)

A--(xa-,'i),
h

1
(1—2fhA) —' at e= +1V.

1—&(-,'ai/x)

(52)

We see therefore that not only the magnitudes but also
the complex phases of the resonance amplitudes are
disturbed near the edges where resonances are cut oR.
While the factor

~
1—2fhA

~

' is greater than unity at
the center of the interval for 3&2, it may be less than
unity for resonances near the edges, eRecting there dis-
torted values of

~ g ~

' less than 2I'. As a result it is essen-
tial when averaging over resonances obtained from poles
in a finite energy interval to stay several widths F away
froxn the edges of the interval.

This correction factor is to be compared to the ratio of

g /I' obtained in our infinite picket-fence model, Eq.
(16) and Table I. It has the same property of becoming
in6nite at 3=1.

Within a region of the order of I' around the edges
—SD and SD of our interval the real part of A peaks to
twice the value (51) and there is also a peak in its
imaginary part near the edges. One easily estimates
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III. MULTICHANNEL MODELS

A. Resonance Parameters

We erst consider the following simple two-channel picket-fence model of the E. matrix:

0 g') 1 ( yP (—1)~yn2)
!+ ER' 0 ) I —pD —Ei(—1)"pry' v2'

( —(7ryr'/D) cot(7rE/D) R' —(7ryiy2/D) csc(7rE/D))
(53)

&E' (s.y—ry2/D) csc(s E/D) —(~y2'/D) cot(s.E/D) )

S=~L2(I—iP't2RP't')-' —Ig~,

where Q and P are the diagonal matrices

(54)

which consists of off-diagonal constant matrix elements
2' (diagonal constant elements add nothing new to what
we have learned in the single-channel case and vast1y
complicate the resulting expressions) and pole terms
with constant pole spacings D and constant residues,
except that the oB-diagonal residues have alternating
signs to simulate R-matrix channel amplitudes yi and

y2 with uncorrelated signs.
To simplify the resulting expressions further we as-

sume "natural" boundary conditions so that I,; =iP;
for both channels j= 1, 2. In that case, the S-matrix can
conveniently be written in the form

These solutions are as follows:

D trt2) t

B„=tJD+ tan ' —r
p)

2~r„
=4 tanh i! !, n)0, P)0,

D E1+t,t,+r')

(61)

h„=2pD+ ,'D-
27rl'„1 ty+t2 ) (t&t2 ) I

=4 tanh '! !+4coth ' 2r!
D (1+tit +r') E p)—

n) 0, p(0, (62)

t'expiPi

0

Using the notation

b„=2'~-,'D0 ) (P, 0)
2 r t+texpiy2) & 0 P2) =4 goth '! !&4 tanh ' 2r!

D &1+t,t,+r') &—P)

s=sE//D, r=( Pg P)2' 'R' t =sPp'/D (5-6)

we write the matrix to be inverted as

(I—ip't'Rp'I')

1+iti cots

4—zr+i(tyt2) 'i'cscs

—ir+ i(tit2) 'i'cscs
(57)

1+it2 cots

The poles s„ofthe S-matrix are now given by the zeros
of the determinant of (57).

1+r'+Atm+i(ti+ t~)cots„—2r(4tm)"' cscs„=0, (58)

where

n(0, P(0 . (63)

In all three ranges the average spacing of resonance
energies 8„is D and the average width is given by the
tcth ' function )see Eq. (16d)J of the argument of the
tanh ' in Eq. (61). The + signs indicate that the ap-
propriate sign alternates from one resonance pole to the
next. In the range given by Eq. (62), two poles of dif-
ferent widths have the same value of 8„.In the case of
Eq. (63) the poles are equally spaced with alternating
widths, while in Eq. (61) all poles have the same width,
but alternating spacings due to the effects of the direct
interaction R .

When the direct interaction vanishes, then

.„=(/D)(S„——r„). n=P= (1—tg')(1 —t22) r=0 (64)

u= (1+r'+tx4)' —(4+4)',
P= (1+r'—tg4)' —(4—4)'. (60)

The 8~ are the S-matrix resonance energies and the I'„
are the associated widths.

The properties of the solutions of Eq. (58) depend on
the ranges of the two parameters

and only conditions (61) and (63) apply. If both ti and
t2 are either greater or less than unity, the poles of the
S matrix occur at the same energies B„asthe R-matrix
poles. If one of tj and t2 is greater than unity and the
other is less than unity, the S-matrix poles are shifted
by one-half mean spacing. Further, when R'=0, all
widths F„arethe same and their value as given by Eqs,
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(61) and. (63) can be written as a sum of partial channel
widths

r= r,+r„
2~r,/D=4 tcth-'& Ro=O.

Returning to the general case of the model (53), we
can write the elements of the S-matrix (54) in the form
of the pole expansion

gw'g~IS,=e'«+~ & W, '—iP, (66)
~ z—h„y-,'ir„

where the B„andI'„aregiven by the above discussion
and the remaining parameters are found by further
computation to be

2
W110=-(1+«' —t22) —1,

(67)
2ir

W12' ——W21'= (1+«'+t1/2),

4t1—4t2(trt2+«) Si«(tr/2)'/ (1+« —t2 )
2~g12/D=

(68)

4&,/2L(/, +&2) —(1+«'+r,&2) (1—«'+&,&2)]
2&g1g2/D = &

2i«(/1+/2)

The expressions for 8'2~ and g~ are obtained by sym-
metry from those given for H/"~~0 and g~'. It is easily
verified that the residues have indeed the form of pro-
ducts of channel amplitudes g;. They have been written
here as products in order to show what parts of the
residues are constant from resonance pole to pole and
what parts alternate in sign.

Again we note the way in which the dynamical reso-
nance parameters t; and the direct interaction parameter
r are inextricably mixed up in both the smooth and
resonant parts of the S matrix. Thus all elements of t/V

depend on the t;. On the other hand, r induces both a
fixed sign "correlated" part of g~g2 as well as alternating
sign "uncorrelated" parts in g~' and g2'. Thus, we note
that even if t~ vanishes, there will be resonance structure
in channel l:

4t1(1+/2)'+4«'(1+&2)

P(1+/1) (1+/2)+«2)2
(7o)

and a corresponding expression for T2. As expected, T~
measures the total absorption of fIux in channel 1, both
the part that goes into "compound" resonances, as well

as the part that is transferred "directly" into channel 2.
If both tq and t2 vanish only the latter process contrib-
utes to absorption and we have

T1—4« /(1+«) t1= f2= 0 ~ (71)

When r =0 we obtain again the by now familiar expres-
sion

ment t/I/"~~, that is exhibit a "direct reaction" between
channels 1 and 2, it is necessary that r should not
vanish. This in turn means that the resonance amplitude
coupling channels 1 and 2 must have pole residues con-
taining terms with "correlated" signs of the type
4i«(t1+t2)/n occurring in Eq. (68). Such terms contrib-
ute to the resonance structure of the reaction cross sec-
tion but also insure that the resonance reaction ampli-
tude has nonzero average. In view of this one must as-
sume that models having a reaction amplitude which
consists of a direct part and a zero average resonance
part of the form (66) are incorr'ect. Such models have
commonly been assumed in d.iscussions of cross-section
fluctuations. ~"

The same mixing of direct and resonance eRects is
also responsible for the fact that the general relation for
the total width given in Eq. (61) does not permit an
unambiguous definition of partial widths when r is non-
vanishing. Parenthentically we note here that a multi-
channel picket-fence mod. el with correlated resonance
amplitudes has been studied by Newton. 39 This can be
obtained by using cotangents instead of the cosecants
in our Eq. (53). In that case one obtains for the total
width the expression 21rr/D= 4 tanh '(/1+t2) for which
there also is no unambiguous definition of partial widths.

Returning once more to our model (53) the transmis-
sion coeS.cients for channels 1 and 2 are easily computed
from the energy averages of the diagonal elements of the
S Inatrix. The latter are particularly easy to obtain
-rigorously in the picket-fence model by the well-known
device of calculating the analytic continuation of the
S-matrix element far in the upper half of the complex
plane. One then finds that

2irt2'I'
(22-/D) '/'g1 —— , t1 ——0,

(1 +«2)2 / 2jl/2

2(~ )1/2

(21«/D) '/'g2=, t1=0.
L(1+«2)2 ] 2/1/2

(69)

T1——4t1/(1+ t1)2, «= 0 (72a)

which, in conjunction with Eq. (65) again yields the
same relation that we found in the single-channel case:

T1 1—exp( —21«r1/D)—,—«/1 ——m'r1/2D. (72b)

The coupled-channel optical-model transition proba-
Qf particular interest is the fact that in order that the

S matrix have a nonvanishing smooth off-diagonal ele- 39 T. D. Newton, Can. J. Phys. 30, 53 (1952).
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bility". for this model is given by

4r'

L(1+ti)(1+t2)+r'j'
(73)

(I—iP't'RP't')
1+iti cotz i(tit2) c+z i(tit2) cscz

1+itr cotz i(tat())' '& z

1+zt3 cotz .
where

c+z—=—,
' (csc-,'z+ sec-,'z) .

(75)

(76)

Each of the functions c+s and c s has a pole at s=mx,
as do cots and cscs, and like the cosecant they have as
many residues of value +1 as —1, but they have alter-
nating pairs of residues of the same sign in such a way
that the R-matrix parameters of the model (75) have
the "uncorrelated sign" properties

(y;) = (y,p), )=0, for all j&k (77)

where the angular bracket indicates an average over
resonances. Equation (75) is the simplest periodic model
for which the property (77) holds. Again the detailed
values of the S-matrix resonance parameters are quali-
tatively consistent with our previous results, and again
Eq. (74) holds for each of the three channels of the model

(75). In fact, this relation (74) between the transmission
coefficient and the average partial width appears to be
quite independent of the distribution of R-matrix pa-
rameters and was found to hold for every model we in-
vestigated whose R-matrix parameters satisfied condi-
tions (77) and where there was no direct coupling be-
tween channels. On the other hand, we have not been
able to construct a general proof of the relationship
(74).

B. Average Cross Sections and

Cross-Section Fluctuations

The purpose of our periodic resonance models is to
investigate general relationships imposed on resonances

"P.A. Moldauer, Rev. Mod. Phys. 36, 1079 (1964).

One may now generalize the two-channel model (53)
by introducing periodic Quctuations in the E.-matrix
pole spacings and amplitudes y; as we did in the single-
channel case. Such models hold no surprises. The S-
matrix resonance parameters, though complicated in
form, are consistent with those of our simple two-
channel model (53) and with the various single-channel
models we have discussed. In particular, in the absence
off-diagonal direct reactions the relationships (72) are
satisfied for each channel in the form

T; = 1—exp( —2ir 1;/D), rt, = ir I';/2D. (74)

We have also investigated one three-channel model
of the form where the symmetric matrix (57) has
elements

by the unitarity requirement. It is not particularly in-
teresting to write down detailed cross sections arising
from our models. Actual resonances are not equally
spaced or even periodically spaced with periodic reso-
nance amplitudes. It is, however, worthwhile to con-
sider average properties of our model cross sections, such
as average cross section, mean square Quctuations, etc.
In a sense, we have already done this by considering the
transmission coefficient which in the single-channel case
is proportional to the Quctuation cross section or the
"average compound-nucleus cross section" which in
units of xX' is defined by

To calculate the Quctuation cross sections for the two-
channel model (53) with R'=0, we write the S-matrix
elements in the form

1+ti' 2iti
+ cot(z+ Ly)

1—f12 1 „12
(79)

—~i (rI11+$2) csc(z+iy), (80)

where

y=tcth 'ti+tcth '4,
t, =irI'y /D.

Straightforward integration over an interval of 2x in
s yields the following expressions for the Quctuation
cross sections defined by Eq. (78)

4t12 t1—t, 2

(ted+ f2) (1+44)(I+f1)

4tgt2
(82)

fit-

(

i+�t22)
(1+tit2)

which, as required add up to the total average com-
pound-nucleus absorption cross section in channel 1:

(rll +(r12 2 1
$1 $1

(1+ti)'
(83)

It is now interesting to compare the results (81) and
(82) with the predictions of the statistical theory sum-
marized in Eqs. (8) and (9). We rewrite Eq. (8b) here in
the form

(84)

where the term M;& is defined in Eq. (9b). The second
term of 3f,I, has been evaluated in Ref. 7 under the as-
sumption that the variations in g»g„~g„;*g„l,* are un-
correlated with the magnitude of (b„—8„).This assump-
tion is valid only for the diagonal elements j/I,; in the
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case of our model (for j=k the product of the four g
factors is independent of p and v), and we get from Ref. 7

2+2

I (g. g,~).l

'
D2

pr„+r„q— g. g.~g *g ~*~ol I, f» i =& (85)52Di „.„'
where

8ti2 ~r
or)"—— coth —1

l

(1—ti')' D i
4t 2

(81)
t1—t,)'

(ti+t2) (1+tit2) k1+tii

Putting (92) and (93) into Eqs. (84), (89), and (91) we
find that the method of statistical theory yields exactly
the same result as our direct integration (81) and (82).

~r„+r„q D - Z, (~)c,
l

l= —2i— ~. , (86)
5 2D i ~ „~—z(r„+r„)

8t1t2fl—
(1—ti2) (1—t2')

X'r 4t1t2
csch = —. (82)

D (ti+ tm) (1+tit2)

where the averages are with respect to the resonance
level labels p, , v. The two-level correlation function
E2(e) gives the probability of finding another resonance
level at a distance e from any given level. For the picket-
fence (P.F.) model we have clearly

It is now appropriate to compare Eqs. (81) and (82)
with the predictions of the Hauser-Feshbach' ' (H.F.)
relations which might be thought to apply here in their
simplest form because partial widths do not Quctuate
and so there is no width Quctuation correction. "Ke
have then in units of ~X2

and from this

+2(E) .= p 8(ND t) (87)
H.F.—&11

T12 4t1'
(94)

t'1+t2) '

Ti+T2 (tl+4) (1+tlt2)+4tlt2 E1+ti)

~r D
Cop ~ (r/D) = coth

D err
(88) H. F.—&12

TlT2 4t1t2

Tl+ T2 (tl+ t2) (1+tit2)+ 4tlt2
(95)

Substituting this into Eq. (85) we 6nd that in our model

lgl' 2'
Mii ——— — lgil' coth —1 l.

D r Dm D
(89)

E2(e) —+ Q (—1)"b(nD—6). (90)

The erst term of %12 vanishes and so we And

2~ lgil'lg2l'
I gil 'I g21' csch — (»)

D r D' D

From Eqs. (65) and (68) we have for 20=0

27rr
=4 tcth-'t, +4 tcth-'t„ (92)

2xg-' 4t.

D j.—t,'

In evaluating the second term of Eq. (9b) for the off-
diagonal term M j2, we note that the sign of g„1g„2g,1*g,2*

depends on whether B„andb„areseparated by an even
number of spacings (+sign) or by an odd number of
spacings (—sign). This level-level correlation of the
resonance amplitudes is easily taken into account
by evaluating Mi~ just as in Ref. 7, but with the
substitution

fl'—
12

H. F.

1 p H.F.

It is clear that only in the limit of small values of T1 and
T2 are the Hauser-Feshbach cross sections good ap-
proximations to the fluctuation cross sections (81) and
(82). Particularly striking is the fact that whenever T2
is unity, the average compound-elastic cross section- cr11"
vanishes, while oiP becomes equal to T /(i1+T ). i
Similarly when T1=T2=1 then 012"——vrX', while o.12F
= ~2~X'. On the other hand, our relations (74) between
the widths and the transmission coefficients say that
r))D whenever either T1 or T2 are close to unity. There-
fore we conclude that our model does not satisfy the
Hauser-Feshbach relations- when r)&D.

This conclusion is to be contrasted with the deriva-
tion of the Hauser-Feshbach formula on the basis of
statistical theory in Ref. 7. This derivation claims that
the Hauser-Feshbach relations should hold in the limit
of large values of I'/D. The reason for the apparent con-
tradiction between our model (79), (80) and the deriva-
tion of Ref. 7 is that in the latter it is explicitly assumed
that the S-matrix poles amplitudes g» are not only un-
correlated with respect to channel indices j, as ours are
(i.e., (g„ig„2)=0), but also that the values of g»- are un-
correlated with respect to the ordered resonance index p.
This condition is de6nitely not satisfied in our model,
since the products g„1g„2alternate in sign from resonance
to resonance. Under the assumptions usecl to derive the,
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Hauser-Feshbach formula in Ref. 7, the expression (91)
always vanishes.

We see therefore that. the derivation of the Hauser-
Feshbach formula is not applicable to our model. The
next appropriate question is whether this circumstance
is due to the special nature of our very simple model or
whether it arises from the general requirements of uni-
tarity. For this we have one clue. By adding the Ructua-
tion cross sections computed from an S matrix with
Necorretated resonance amplitudes g», one obtains
transmission coeKcients T, which may be greater than
2lrF, /D Lsee Eqs. (67) and (84) of Ref. 7g and which
impose the limit 2rF,/D(1 on the average channel
width to spacing ratio Lsee Eq. (83) of Ref. 7).However,
on the basis of the present work we are strongly inclined
to reject the notion of an upper limit on F,/D as a re-
quirement for unitarity and we are equally strongly in-
clined to believe that T, is always less than 2 Flr,/D. In
fact we believe that T, is given by Eq. (74) which is the
one and only relation we have found to be common to all
the models we have investigated analytically. For, 8„
and therefore T, is expected to be relatively insensitive
to the details of the distributions and correlations of the
S-matrix resonance parameters, while (~S., ~2) and
therefore o-„.is expected to be sensitive to such correla-
tions as can be seen from the structure of Eq. (9b)
(averages of higher powers of S„which determine
cross section fluctuations are even more sensitive to
correlations).

We are therefore forced to conclude that unitarity
imposes level-level correlations among the S-matrix
resonance-pole amplitudes g» of overlapping resonances.
This supposition is certainly not unreasonable since
unitarity certainly imposes some conditions on the
values of the S-matrix elements (but not on those of
the R matrix) and it is in fact not easy to see how such
conditions can aRect a pole expansion of the S matrix,
except through conditions on the residues.

We also have numerical support for this supposition
in some previous calculations". There R matrices with
random uncorrelated channel amplitudes y„„werein-
verted numerically by means of the level-matrix for-
malism and the resulting g„,of the S-matrix pole expan-
sion were found to exhibit both channel-channel and
level-level correlations.

Not only the Hauser-Feshbach formula, but also the
various formulas used to analyze cross-section Quctua-
tions depend for their validity on the absence of corre-
lations. Thus for our model (79), (80) the mean-square
deviation of the cross section (or the autocorrelation) is
given by

(o 12 ) o12 (tl+t2) +(1+tits)= 2 —1, (96)
o 12 (tl+ts) (1+tits)

"P. A. Moldauer, Phys. Rev. 136, 3947 (1964). The calcu-
lations of the transmission coefhcients given in Ref. 41 were based
on the formulas in Sec. IV B of Ref. 7 derived under the assump=
tion of the. absence of correlations in the g„&.Therefore the T,
quoted ip I4'.Cf, Q @rc inappropriate.

TABLE II. Average cross sections and cross-section fluctuations
for three two-channel models: (1) Uncorrelated resonance pole
amplitudes g„.; (2) the cosecant model of Eq. (53); (3) the c+
model, with c+ replacing the cosecants in Eq. (53). All values are
for TI= T2=1, and no direct coupling.

Model: Uncorr elated Cosecant

C&2/2XP

&12 012 012

which diverges, as expected, in the region of isolated
resonances where t~, 32&&1., and reaches the value 3 in the
limit of very large F/D when tl t2 1. This is in con-
trast to the value of unity expected when F/D is large
and there are no correlations.

It should be emphasized that the results (81), (82),
and (96) are valid otsly for the specific models embodied
in Eq's. (79) and (80). In order to explore the effects of
diEerent level-level correlations, the values of o.12" and
the mean-square deviation from the average have also
been. calculated for the two-channel model in which
the cosecants in Eq. (53) are replaced by the function
c+ defined in Eq. (76). The results are summarized to-
gether with those of the uncorrelated model and the
cosecant model in Table H: for the case where T~——T2
=1. The indications are that while the average cross
section does depend on the details of level-level correla-
tions, the mean-square Auctuation of the cross section
depends even more strongly on such details.

Small values of the mean-square cross-section Quctua-
tion that have been observed in low-energy (p,n) reac-
tions on medium weight nuclei, 4'4' and that can other-
wise be explained only by assuming unusually large
direct-reaction cross sections at backward angles couM.
be due to unitarity conditioned correlations in the reso-
nance amplitudes. Also the range of any level-level
amplitude correlations will a6ect the observed cross-
section correlation width, and since amplitude correla-
tions will be expected to differ for different competing
reaction processes, it is not impossible to observe dif-
ferent correlation widths in different reactions involving
the same compound nucleus.

The average cross sections and cross-section Quctua-
tions obtained in our three-channel model, Eq. (75) are
more complicated functions of the resonance param-
eters. For example in the case where Tj——T3 and no go
is present, the three-channel model gives

4tlt, (1+t,')
(97)

(tl+t2+ts+tlt2ts) (1+tlt2+tsts+tstl)

which again diEers in general from the Hauser-Feshbach
expression expected for uncorrelated amplitudes.

42 A. Richter, A. Bamberger, P. vonBrentano, T. Mayer-
Kuckuk, and W. vonWitsch, Z. Xaturforsch. 21a, 1002 (1966).

43 A. A. Katsanos, Ph.D. thesis, University of Chicago (unpub-
lished); Argonne National Laboratory Report No, ANL-7289,
1967 (unpublished).



UNITARY MODELS OF NUCLEAR RESONANCE REACTIONS

The study of the statistical properties of slow-neutron
resonances (see, for example, Garg et at.44) and the
theoretical studies of complex spectra" have yielded
much information on the actual distributions and cor-
relations of 8-matrix parameters, which are of course,

44 J. B. Garg, J. Rainwater, and W. W. Havens, Jr., Phys. Rev.
137, B547 (1965).

much more complicated than those of any of the models
discussed above. Work now in progress employs further
generalizations of these Inodels, as well as numerical
methods to investigate the implications of unitarity and
its e6ect on cross sections and their Quctuations for more
realistic distributions of resonance parameters and for
larger numbers of competing channels.
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Proton-Capture Gamma Rays from Be', C", Mg'4, and Ca" in the
Giant-Resonance Region*

L. FELDMAN't AND B. B. BALIGAt

Columbia University, Rem York, Rem York
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M, Nzssm
The City College of New York cad Colssmbio Ursioersity, New York, New York
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The 90' yield for gamma rays from Be', C", Mg", and Ca4o was determined for (p,y) reactions using
10.4- to 14.5-MeV protons from the Columbia University variable energy cyclotron. For B"(p,p)C" the
yields to both the Grst excited state and the ground state of the residual nucleus are presented. In the case
of &"(p,y)Ca", only the ground-state yield was determined. Because the ground-state yields are very
small, we report only the yield due to transitions to the first excited state for the Li'(p, y)Be reaction and
the combined first excited and ground-state yields for the Na" (p,p)Mg'4 reaction. In the region investi-
gated, the yield curves exhibit a considerable amount of fine structure in all cases except Li'(p, y)Be'. Fine-
structure peaks were observed for the following excitation energies: 21.9, 22.4, 22.7, 23.0, 23.3, 24.1, 24.7,
and 25.4 MeV for Na" (p,ye+a~)Mg"; at 18.8, 19.2, 19.5, 20.0, 21.0, and 21.7 MeV for Ks'(p, vo)Ca"; at
25.5, 26.9, 28.0, and 28.45 MeV for B"(p,y~)C"; and at 25.5, 27.45, 28.0, and 28.9 MeV for B"(p,yo)C".
A comparison with other experimental results shows that some of these peaks have not been previously
observed.

I. INTRODUCTION

~~IANT —RESONANCE phenomena have been ex-~ tensively investigated by photonuclear reactions. '
The source of the incid, ent photons has been brems-
strahlung radiation in most of the photonuclear work,
but more recently some experiments have been per-
formed using monochromatic y rays. Since the advent
of variable energy cyclotrons and tandem accelerators,
however, (p,y) reactions have been used to investigate
the giant-resonance region of nuclear excitation by the
inverse process. The (p,y) reactions have several dis-
tinct advantages, namely, (I) continuously variable,
monochromatic beams are more readily attainable for
protons than ganuna rays; (2) nuclei with unstable
ground states can be studied. by the inverse reaction and
not by the direct photonuclear reaction; (3) transitions
resulting from de-excitation to low-lying excited states

~Work partially supported by the U. S. Atomic Energy
Commission.

t Present address: St. John's University, New York, New York.
t Present address: Saha Institute of Nuclear Physics, Calcutta,

India.
' M. E. Toms, Naval Research Laboratory Report No. 22, 1963

(unpublished).

can be investigated by the inverse reaction provided
the states are suKciently well separated. The (p,y)
reactions provide only the proton widths of the giant
resonance, whereas all the particle widths are required
to obtain the total cross section for photonuclear
reactions.

At the time these experiments were undertaken, the
work that was reported employing these (p,y) reactions
was confined to proton energies below 10 to 11 MeV. ' '
In some instances, this corresponded, to energies below
the peak of the giant resonance. Since the energy of the
Columbia University 36-in. cyclotron had not been
varied previously, the energy variation having been
accomplished in conjunction with these experiments, as
required, it was decided to extend the earlier (p,p)

~ J. K. Bair, H. B. Willard, C. W. Snyder, T. M. Hahn, J. D.
Kington, and F. P. Green, Phys. Rev. SS, 946 (1952).

~ D. S. Gemmel, A. H. Morton, and E. W. Titterton, Nucl.
Phys. 10, 33 (1959).

4 D. S. Gemmel, A. H. Morton, and W. I.B.Smith, Nucl. Phys.
10, 45 (1959).' H. E. Gove, A. E. Litherland, and R. Batchelor, Nucl. Phys.
26, 480 (1961).

6 N. W. Tanner, G. C. Thomas, and E. D. Earle, Nucl. Phys.
52, 29 (1964).


