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Improved Quantum Theory of Many-Electron Systems.
II. The Basic Method*
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A general method of obtaining accurate and useful many-electron wave functions for atoms and molecules
is developed. The method involves the proper optimization of a many-electron function which is an eigen-
function of total spin and which satisfies Pauli's principle. The procedure is somewhat similar to that in
which one obtains the Hartree-Pock wave function by properly optimizing a Slater determinant. There are
three key features of the new method: (1) The wave function remains accurate as the nuclei configuration
is changed from the equilibrium con6guration to that of the dissociated molecule; (2) the many-electron
wave function can be interpreted in an independent-particle scheme; (3) the independent-particle states
are no longer always required to be symmetry functions for the spatial symmetry group as in the Hartree-
Fock method. In addition, the energy calculated using the new method is always lower than the Hartree-
Fock energy, and the method is applicable to states of any total spin and number of particles. Calculations
using this method are reported for the H2 and LiH molecules.

INTRODUCTION

N Paper I of this series we considered. various ex-
- - pansions of the exact many-electron eigenfunctions
of the Hamiltonian"

N N N

H=Z —sV'+2 V(~)+ Z —,

where V(i) is the electrostatic potential at s, due to all
of the nuclei. Because the eigenfunctions of this Hamil-
tonian are eigenfunctions of total spin and. total spin

projection (8 and 5,) and satisfy Pauli s principle,
expansions were consid, ered, which explicitly exhibit this

type of behavior. The simplest such function for some
systems is a (Slater) determinant of one-electron func-
tions (spin orbitals'). Such a function could be an exact
wave function in the absence of the electron-electron
interactions. In fact, if the spin orbitals in the d,eter-
minant are each factored into a spatial part and a spin
part and, if the orbitals are all properly optimized with
respect to each other, one obtains a rather good, ap-
proximation to the exact many-electron wave function—
this procedure is called. the Hartree-Fock method.

The Hartree-Fock Method

Since the Hartree-Fock (HF) method does yield a
good approximation to the exact wave function and
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'%. A. Goddard, III, preceding paper, Phys. Rev. 157, 73
(1967);hereafter referred to as I.' Atomic units are used, e=k=m, =1;thus, the unit of energy is
1 Hartree =27.211 eV and the unit of length is 1 Bohr =0.52917 A
(see Ref. 3).' E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37,
537 (1965}.' We use the expression spin orbital to indicate a function of the
spatial and spin coordinates of one electron and orbital to indicate
a function of only the spatial coordinates of one electron.

since the d,evelopment of the new method. follows a
similar pattern, it is appropriate here to sketch some of
the advantages and. disadvantages of the Hartree-Fock
method for the ground states of molecules (this analysis
also applies to nonconducting nonmagnetic solids). We
will take 5=0 since most molecular ground states are
singlets and, since in this case some ambiguities and, in-
consistencies which can occur for higher spin do not
arise. We let

H»y, =.,y;, (2)

where i assumes the values 1, 2, , m, and IIHF is a
one-electron operator which itself involves the orbitals
that are solutions of (2). The specific form of HHP is
dictated by the variational condition, and the result is
that HIP (i)= It(i)+ U(i), where h(i) = ,'V,a+ V(i)——
represents the usual one-electron term for an electron
and U(i) represents an average over the two-electron
terms of (1) )specifically, U(s') =2J(i)—Z(i), where the
J(i) and E(i) are the well-known Coulomb and ex-
change terms, respectively). Thus, this one-electron
Hamiltonian IIHF is equivalent to the Hamiltonian of
an electron moving in the nuclear 6eld V(i) and in the
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@Hp(1, ,Ã) =S!Qirl'"lCX,
where

C(1,2, ,$)=(p,,(1)P,,(2). (P;„(rt)P;,(st+1) rtr;„PT),

each $; is an orbital, '

x (1,2, ,Ã) =n (1)n (2) n (N)P (rt+ 1) P (1V),

n and p satisfy s,n=-,'n and s,p= —-,'p, Q»l'"l is the
antisymmetrizer (see I), $=2N, and the orbitals form
an orthonormal set. The criterion for selecting the
orbitals to be used in C is that E=(+ rr~pH~%' rr)p/

(O'Hp~%'Hp) be stationary under changes in any of the
orbitals where the variation is constrained by the
requirement that the set of orbitals remain orthonormal
under the variation. The result is that the orbitals are
the simultaneous solutions of
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average field V(i) due to the other electrons. Since
each of the states g; (i= 1, ,e) is an eigenfunction of
HH, each of these states may beArterpreted as the state

of arr electro' moving r'e the average field due to the other
electrorts (that is, each of the electrons can be considered
independently). This independent-particle property of
the Hartree-Fock orbitals is extremely important be-
cause it allows us to break the many-electron wave
function into physically meaningful units which can be
read. ily interpreted. The usefulness of such an inde-
pendent-particle interpretation is attested, by its
ubiquity; it permeates practically all the areas of physics
and. chemistry d,ealing with atoms, molecules, or solids
and. thus is intertwined, throughout most of our con-

cepts of such many-electron systems. It is especially
important to note that the independent-particle in-
terpretation does robot result merely because the many-
electron wave function can be written as a linear
combination of terms, each of which is a product of
orbitals, nor d.oes it necessarily result even if the wave
function can be written as a Slater d.eterminant. In-
stead, the ind, ependent-particle interpretation results
because the orbitals are eigenfunctions )as in (2)$ of a
one-electron Hamiltonian which includ, es all one-electron
terms and, a best possible average over the many-
electron terms appropriate for the system of particles.
The special virtue of the Hartree-Fock method is that
(at least for singlet states) it yields the best possible
many-electron wave function which can be given an
independent-particle interpretation in which all of the
orbitals are orthogonal.

Some of the important advantages to the Hartree-
Fock method are:

(1) the enormous conceptual simplification due to
the ind, ependent-particle interpretation allowed;

(2) the high accuracy for the total energy, 96% for
Hs, ' 98.5% for He, ' r 99% for LiH, s and even higher
for the larger atoms and molecules (e.g. , 99.5% for Ns ');

(3) the good accuracy for some spin-independent
one-electron properties;

(4) the practicability of ab srtitio solutions for moder-
ately large molecules (e.g. , F& with 18 electrons by
Wahl"); and

(5) the suitability as zero-order states for perturba-
tion schemes. "

'%'. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
(1960).' C. C. J. Roothaan, L. M. Sachs, and A. W. gneiss, Rev. Mod.
Phys. 32, 186 (1960).

7 Atomic Emerge Levels, edited by C, E. Moore, Natl. Bur.
Std. (U. S.) Circ. No. 467 (U. S. Government Printing and Pub-
lishing Oflice, Washington 25, D, C., 1949).

'S. L. Kahalas and R. K, Nesbet, J. Chem. Phys. 39, S&9
{1963).' P. E. Cade, K. D. Sales, and A. C. Wahl, J. Chem. Phys. 44,
1N'3 (1966).

"A. C. %ahl, J. Chem. Phys. 41, 2600 (1964).
» R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, J. Chem.

Phys. 38, 550 {1963);R. M. Stevens and W. N. Lipscomb, ibirt

However, there are also some serious de6ciencies in
the Hartree-Fock method, viz. .'

(1) Despite the high accuracy for the total energy,
the error in energy is of the ord, er of even the largest
energies of interest, e.g., the binding energy which is
1.1% of the total energy for LiH and 0.2% for N&.

(2) The spin distribution near the nuclei for non-
singlet systems is poorly described.

(3) The dissociation of molecules as the nuclei are
moved apart to inanity is usually pred. icted, incorrectly.
For example, for H~ at R= ~ the Hartree-Fock wave
function predicts that the probability for both electrons
being near one nucleus is the same as the probability for
them being near di6erent nuclei; the error in energy at

is 7.74 eV" (the binding energy of H& is 4.75
eV ").Another example is LiH, for which the Hartree-
Fock wave function dissociates to Li+ and, H . This
improper behavior of the Hartree-Fock wave function
for large internuclear distances considerably compli-
cates attempts to study such things as chemical re-
actions and, molecular scattering.

(4) For totally symmetric, nondegenerate, singlet
states (the common case for molecular ground states),
the Hartree-Fock orbitals must be basis functions for
the irreducible representations of the spatial symmetry
group'4 (we abbreviate this by calling them symmetry
functions). This is also a disadvantage as will soon be
brought out.

We have already mentioned. that most of our con-
cepts of atoms, molecules, and, solids implicitly or ex-
plicitly assume that the electronic wave function can
be interpreted in terms of ind. epend. ent-particle states.
In addition, except for conduction electrons in metals,
conduction states in semiconductors, and, x-electron
states in conjugated. molecules, it is essentially always
assumed, that these ind. ependent-particle states are
localized mainly near one or two centers (i.e., into
nonbonding, inner-shell, or bonding states). The con-
cepts based. on this idea of localized. independ. ent-
particle states have been consistent with the properties
of these systems, and thus we would, like our theoreti-
cally derived ind, ependent-particle scheme to be at
least capable of allowing localized independent-particle
states. The point is that for far too many systems of
interest (e.g. , all crystalline solids) the requirement that
the Hartree-Fock orbitals be symmetry functions pre-
vents them from being localized (e.g. , in crystalline
solid, s the translational symmetry implies that the
symmetry functions are Hloch-type functions and thus
are spread throughout the entire solid. , even for the
innermost inner-shell electrons), There have been some
attempts to alleviate this serious defect in the Hartree-

40, 2238 (1964); 41, 184 (],964); 0. Sinanoglu, Proc. Roy. Soc.
(London) 4260, 379 (1961);J. Chem. Phys. 36, 'T06, 3198 (1962).

n P.-O. Lowdrn, Advan. Chem. Phys. 2, 207 (1959).
13 G. Herzberg and A, Mon6ls, J.Mol. Spectry, 5, 482 (1960)."C. C. J. Roothaan, Rev. Mod. Phys. 23. 69 (1951).
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Fock method by transforming the orbitals into localized
states. "Specifically, the Slater d.eterminant for a state
containing only doubly occupied orbitals is left invariant
under any unitary transformation of the HF orbitals
among themselves; thus a unitary transformation might
generally be found which would, yield somewhat local-
ized new orbitals which when placed. in the Slater
determinant would, yield. the same Hartree-Pock many-
electron wave function. The problem —and, it is a
fundamental one is that the new orbitals no longer
satisfy the Hartree-Fock equations (2), and thus the

transformed orbitals cannot be giver art independertt
particle irrterpretatiort. Since the whole purpose behind
performing the transformation in the first place was to
obtain states more amenable to chemical interpretation,
the loss of the basic property which permits the in-

terpretation would, seem to be catastrophic.
With these points in mind, we proceed, to try to

d.erive a method, of obtaining approximate wave func-
tions which eliminates some of the major disadvantages
of the Hartree-Fock method while retaining most of the
important advantages. Before d,eveloping the new

method, we will consid, er an expansion of the exact
wave function.

In I some operators G,& were d.efined. each of which

upon operating on any function of the spatial-spin co-
ordinates of 3l electrons yields an eigenfunction of S'
which satisfies Pauli s principle. It was then shown that
the exact wave function can always be written as

e,„.„'~(1, ,1V) = G,'(Cx, (M)),

where C is some (complicated) function of the spatial
coordinates of X electrons, xr(M) is a specific product
of the spin factors n and P with S.xt=3fxr, and
p= frt, m5, rt+m= N, rt m= 2S. An obvious—scheme is
to ask for the best approximation to the exact many-
electron wave function by G„"(Cxf(3f)), where C is
restricted to be a simple prod. uct of orbitals. The best
such approximation to a ground, -state wave function
will always have a lower energy than the best Hartree-
Fock approximation (see Appendix A) and, in addition,
will be an eigenfunction of spin.

In this paper we develop the general equations which
lead to the orbitals to use in C in order to obtain the
best G;t"Cg approximation to the exact wave function.
In particular, we will find. that the GI method, does

ind, eed yield an independent particle approximation but
the orbitals meed rot necessarily be symmetry functions
for the complete spatial symmetry group. Even more
importantly the wave function does dissociate properly
as the nuclei move apart to infinity. In ad, d,ition, the
spin d,istribution is much more accurate than for the
Hartree-Fock wave function.

"G. H. Wannier, Phys. Rev. 52, 191 (1937);J. Lennard-Jones,
Proc. Roy. Soc. (London) A198, 1, 14 (1949);J. A. Pople, Quart.
Rev. (London) 11, 273 (1957); C. Edmiston and K. Ruedenberg,
Rev. Mod. Phys. 35, 457 (1963).

The basic equations for the new method are d.erived.
in Sec. I. In Sec. II we consid, er some properties of the
GI wave functions, including the restrictions due to
spatial symmetry cond, itions and, the changes in the
wave function which occur as the molecule dissociates.
A generalization of the new method, is presented in Sec.
III, and. in Sec. IV some other method, s of calculating
electronic wave functions are compared. to the new
method. Some of the important applications for the
new method are mentioned, in Sec. V, and a summary
is presented. in Sec. VI.

L THE EQUATIONS FOR THE BEST
t",&e x wAVE FUNCTIGN

In this section, we d.erive the general equations with
which one obtains the best approximation to the exact
wave function by a function of the form G;&C X, where C

is the product of X one-electron spatial functions or
orbitals. ' Our criterion for choosing the best G;&CX is
that it yield, the lowest energy; thus, a necessary condi-
tion is that E=(G, CxiH lG,'cx)/(G, 'CxiG, "Cx) be
stationary und, er variations of the orbital components
of C.

In I, G;l' was defined as

G,~ =Q $,„,0„,~a&;,,-s,

where 0„,& is a specific sum of permutations of the
spatial coordinates of E electrons, co„-,P is a specific sum
of permutations of the spin coordinates of E electrons,
i, is the parity of the permutation o, the ti, r, and i
refer to the Young tableaux (fixing the total spin fixes
p,), the sum over r is from 1 through fI', f I' is an integer,
and i can have any integer value from 1 through fl'
The only properties of the O„f" and co„,p operators
needed in this section are

0;;"Ou~~ =- 6"~6;qO;g"

ancl

and similarly for ~„-;".Hence, if some operator on the
spatial coordinates, F, is invariant under all permuta-
tions, then

(G ex
l Pl G,"c'x')=f"(c

i Pl 0; c')(x
l
~;;sx').

Letting F be the Hamiltonian, we obtain

z=(c idio;,'c)/(c lo;; c).
In varying E, we require that the orbitals remain

normalized. Hence if
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we require that

s&e I ao, ; I
e ) (4 I ao, , I e)v= " — "

s&e I o;,4)
(el 0"e& (c I

o 4&'

4 i*(a—E)00.,4(dxi, ') = ei, gyes . (7)

N-2 "&8 l~)=o

We note that (410;;4))0 if G;&expo and we let

Hence, the condition for the best G;&4X is that the E
equations in (7) must be satisfied. These equations are
actually coupled since the C» and 4 contain the solu-
tions of the other equations. However, if we let

hence we obtain

/8"&4'I 0 '4') '
Hp4'Qg= 4'y—*(a E)O~ "0—,,~4 (dxI, ) )

s(el (a—E)o 0,'"le&—p s&»ly )=o,

where the 0'i' is incorporated for later convenience.
Thus, letting

we require

&s,e I (a—E)oo,, I 4)+(c I (a—E)oo;;
I
a,e)-".&~~. l~.&

—".Q. I~~.&=0.

Although the &6$&1 and 18/1,) are not linearly inde-
pendent, we can treat them as such since the above
equation is satisfied by any infinitesimal 18&&& including
il8& &i(see Messiah" ). Thus the above equation and
the similar one for i

I Spy& can be combined (multiply the
latter equation by i and take the sum and difference)
to obtain

then Eqs. (7) have the appearance of eigenvalue
problems,

Hl "'4i = &j a4 i .

This operator a~I'i contains the one-electron operator
for an electron plus another term which is due to the
interactions of the electrons. Hence, we can interpret
III,&i as the Hamiltonian for one electron moving in the
average Geld due to the S—1 other electrons, and thus,
we can interpret the Qi as the state of an electron
moving in the average Geld of the other electrons. That
is, the best 6;&CX wave function is susceptible to an
independent-particle interpretation.

We will now obtain the specific form of (7). Let Di,'
be the coeKcient of P;*(j)@i(j)in f4'*(1, ~,N) 0'0„.
Xe (1, ~ ~,1V) (dx/), let D„,&' be the coeKcient of p;*(j)
X&i '(k)4 (j)$,(k) in f4*(1, ,1V)Oo;'4 (1, ,1V)

X (dx;i"), and similarly for D, „'"",etc. Then

~ \

sly

&"4 I (a—E)Oo" le&= »&'~~I@~&; (6) E= (p&~, I kI ~,.&D;+p&~,&, 1 g I ~,@i&D»' )(&41OO, 4»
&e I

(H—E)00;,
I
s,e» =.„&y, I gy„&. i j7cl

Taking the complex conjugate of the second equation
and subtracting from the first, we see that e» must be I= O(e'l(Z k(/)+2 g(2~l) E)0~~14'& 2 ~ir(4'ill'i&

real and the two equations are equivalent. "Thus, since
(6) must be true for all Spy, the coefficient of SPY~ is and the terms containing 6&i~ in 8I are

(Z(&4.1k I e,&D,"+2 (&e.4, 1g I e.e &D. "' EZ (&4.14-&—D-"+ 2 Q. lk 14 &&~e~ I e-&D .'"
s,t uHk

jgk u, sgk

+k Z' 9 4 Igl&'&&(&0. 14-&D'-'" ~»(~0~14.&) =o (9)
~ ~

s,t,u &k

In order that 6I=0 for all 8&i,*,we may require that the coefficient of 8P&~ be zero. Since every term in (9) contains
P&, we may write the coefficient of btI4* as H(k)gz eiiPi„henc—e we ob'tain

H(k)A= ~»A,
where kg[1,2, ,1V] and

H(k)y~= D.'L).+ Z (~1k&D'""~+ Z (~lklk&D~-"0 + Z

(10)

j,vQk s, uQk u, v, s, teak

( I „, (+ Z I &g« ID~~"'0~+I &~g&. Di~"ei + & &'gei (~1k&D ~~""e+ 2 (~&l gl&j&D» ""p
j ( g a, i, e~~ j,s, t, uQk

+-' &' &~&I g I ~j &&~ I k&D' '""P EE (i'Ik&D i""g. . (1—1)
i, j,s, t, u, vQk

"A. Messiah, Qgantgm 3fechaeics (John Wiley R Sons, Inc., New York, 1962), Vol. II, p. 764." (dx,') =dx&dxg Ch; &dx;+i —dxx, (Ch, ~")= 1I Ch;, etc.
'Wj, I

u, v&k
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Equations (10), which yield the orbitals t.o use in constructing the best GpCX wave function, are called the GI
equations in general; if a specific i (s= 1, 2, ,f), say 1, 3, or f, is to be referred to, then the Eqs. (10) are called
the Gi equations, the G3 equations, or the GF equations, respectively.

The GI equations are a coupled set of nonlinear integropartial differential equations and thus are dificult to
solve in general. A conceivable method of solving these equations would be to select some complete set of functions
(X„}and expand each orbital in terms of these,

(12)y, =Q C„,X„.

Since the X„are known, all of the integrals can be taken at once, with the result being an in6nite set of algebraic
equations for the C„;. Although we cannot solve these in general, an obvious method of obtaining approximate
solutions to (10) is to use a finite, and thus incomplete, set of basis functions (X„:ii= 1,2, ,M}.The resulting
~nite set of nonlinear algebraic equations for the C„;can be readily solved iteratively, and the resulting solutions
can probably be made to approach the exact solutions of (10) by choosing larger and larger basis sets. This general
approach has been shown by Roothaan, co-workers, and others '""'s '9 to be a powerful method of solving for
approximate solutions of the Hartree-Fock equations t which have the same symbolic form as (10)];we will use
such a Roothaan expansion to solve the GI equations. We thus substitute the expansion (12) in (6) and take 5s
to be a variation of the C„i, coeflicients; the result is the same as (9), where 8@i,——P„(6C„s)X„.Setting the coefficient
of 6C„~* equal to zero, we obtain

where kg(1,2, ,1V},S„„=(X„~X„&, and

&".(&)=(D~'( Ihl ~&+ 2 &~II li&&sl ~&D'"'
v,jgk

Hpp(k)CvIc SgvCpllekIc I (13)

+ E &I l~&«lhl~»-"+ 2 &ulN&&~l~&&~l&li&D. ~'"'+ E L&~jlgl~i&Ds"'+&iilali~&D~"'j
u, teak a, t, u, vgk

+ & &~ilal~i&&el~&D ""'+ Z (~IN&&~&Isla&D- ""+l 2 &~l~&&el~&&~ilalV&D-~'"""
j,e, t,vgk j,s, t, ups 2) J, g& t, u, v+I%l

EP&ii,
~
e&&i

~

v&—D s""}. (14)
u, v

Equations (13) will be referred to as the GIR equations
(for Roothaan expansion) or else just as the GI equa-
tions. The solutions to (13), the vectors Ci, will be
referred to as the GI orbitals just as are the solutions
to (10). In general, Eqs. (13) can be rewritten such
that there are fewer than E different operators H(k),
e.g., there are just two such operators for the GF
equations. "This will be discussed in Sec. III.

We have now derived the equations —the GI equa-
tions —which must be solved in order to determine the
product of orbitals to use in 6;&CX to obtain the best
such approximation to the exact wave function. These
equations are similar to, although more complex than,
the Hartree-Fock equations and can be solved in a
similar way. In order to solve the GI equations, we
must (i) diagonalize two or more Hamiltonians, whereas
there is just one to diagonalize in the Hartree-Fock
method; (ii) calculate averages over the other occupied

» (a) J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571
(1954); (b) A. T. Amos and G. G. Hall, Proc. Roy. Soc. I ondon
A263, 483 (1961); (c) R. K. Nesbet, kev. Mod. Phys. 33, 28
(1961); (d) R. E. Watson and A. J. Freeman, Phys. Rev. 120,
1125 (1960); (e) D. A. Goodings, ibid 123, 1706 (196.1).

'9 E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127, 1618 (1962);W. M. Huo, J.Chem. Phys. 43, 624 (1965).

W. A. Goddard, III, Ph.D. thesis, California Institute of
Technology, 1964 (unpublished).

orbitals which are more complicated than in the Hartree-
Fock method; and (iii) calculate matrices of the type
D;&, DI, ~~&', etc. , whereas in the Hartree-Fock method
the orthogonality of the orbitals make the corresponding
matrices trivial. In both methods we must evaluate all
the integrals for the basis functions; because the
calculation of these integrals consumes the bulk. of the
computer time in the Hartree-Fock calculations on
rnolecules (especially for polyatomic molecules), the
difficulties in (i), (ii), and (iii), which are mainly just
algebraic, do not lead to corresponding increases in

computation time for the GI methods. For the actual
calculations it is desirable to have explicit general ex-

pressions for the D, DI, ~'&, etc. matrices; such explicit
expressions will be developed for the most important
cases in the succeeding articles. We will now proceed to
discuss some of the general aspects of the GI wave
functions.

II. PROPERTIES OF THE GI
WAVE FUNCTIONS

Considerations of Spatial Symmetry

In addition to the invariance of the Hamiltonian (1)
under spin transformations and permutations of the
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electrons, there are in general other groups of trans-
formations which leave the Hamiltonian invariant. For
atoms, molecules, and solids, the most important re-
maining group is the spatial symmetry group, that is,
the group of rotations, inversions, and translations on
the (fixed) nuclei which leave V(i) in (1) invariant.
The exact wave function must be a basis function for
an irreducible representation of the spatial symmetry
group, say g. Since we want our approximate wave
function to behave as nearly as possible like the exact
wave function, we should require that the approximate
wave function also be a symmetry function of g. In
this section, we will consider the restrictions on the
many-electron wave function G;&I X resulting from these
spatial symmetry conditions.

If the 4 in 6;&C» is still restricted to be a product of
orbitals (see Sec. III for considerations of the more
general case), then in general the orbitals must have
some symmetry in order that G;I"CX be a symmetry
function for g (for the case of two electrons see Ref.
20). Recall that in the Hartree-Fock method for a
totally symmetric, nondegenerate, singlet state with all
Hartree-Fock orbitals doubly occupied, the condition
on the orbitals is that they too must be symmetry
functions of the total g.i4 In general, the spatial sym-

metry conditions on the GI orbitals are less restrictive
and the GI orbitals are synimetry functions of some
subgroup of g.

In order that the Hartree-Fock or GI wave function
be transformed into itself under all symmetry trans-
formations, it is necessary that the space spanned by
the orbitals remain invariant under each of the sym-
metry transformations (see Ref. 14 for the Hartree-Fock
case and Appendix C for the GI case). Since the Hartree-
Fock orbitals are all eigenfunctions of the same operator,
HHF, and since these orbitals all transform among
themselves under the transformations of g, then these
transformations commute with B and the Hartree-
Fock orbitals are symmetry functions for g. The GI
orbitals are never all eigenfunctions of the same operator
(there are always at least two different H o' for systems
containing two or more electrons), and hence, the GI
orbitals need not always be symmetry functions of g.

In general, the spatial symmetry results in some
conditions on the GI orbitals, and usually there are
several diBerent sets of conditions on the orbitals which
can lead to the proper spatial symmetry. Of course, the
variational principle automatically selects the appro-
priate conditions.

Molecular Dissociation

Now we wish to show that the GI method is capable
of an accurate description of the electronic wave func-
tion for practically any configuration of nuclei.

Probably the most severe test of all configurations of
interest is that in which one or more nuclei are arbi-
trarily far from the remainder of the system. This case

of dissociation must be properly described in order to
have any hope of considering such phenomena as chemi-
cal reactions and also in order to be able to develop a
conceptual description of binding Lby separating out
the phenomena responsible for molecular formation
through comparison with the separated (atomic) sys-
tem j.That the Hartree-Fock method does not generally
describe dissociation properly is a major defect in the
method.

Basically the reason for improper dissociation of the
Hartree-Fock wave function is that the orbitals are all
doubly occupied (for a typical molecule) and hence
rnolecules containing odd-atomic-number atoms (e.g. ,
H, I.i, H, N, and F) must dissociate to isolated atoms in
ionized states, and nuclei of even atomic number (such
as C and 0) often dissociate to excited electronic states
(by Hund's rule the lowest state for many even-atomic-
number atoms has singly occupied orbitals). The basic
reason for the proper dissociation of the GI wave
functions is that each orbital can be diBerent and for
homonuclear diatomic molecules" each orbital is al-
lowed to be localized (i.e., is not forced by symmetry
to be delocalized).

In order to demonstrate some of the aspects of the
spatial symmetry and molecular dissociation of GI
wave functions, we will discuss some actual calculations
on H2 and LiH.

The H~ Molecule

The 61 wave function for H2 contains two orbitals,
and Pt„and can be expanded as"

Table I contains the optimum orbitals" for a nuclear
configuration near equilibrium (2=1.4ao) and for the
nearly dissociated configuration (8=6.0ao). These orbi-
tals are plotted in Fig. 1 where only the g, orbital is
shown since gt, is symrrietrically related to P, . In this
figure the GF orbital for R=6ao is indistinguishable
from the hydrogen atom orbital (R= ~). Actually the
former is larger for —0.2&a(9 and the diGerence is
largest at Z=6a, . The P, and Pq are invariant under

"Only the case of homonuclear molecules is important since
only in this case is the symmetry necessarily present for the dis-
sociated molecule.

"In each case, the many-electron wave function has the form
G+C~X as discussed in Sec. I and defined in I; however, for the
convenience of those unfamiliar with these operators, we have
expanded the G;&X in terms of Slater determinants (using non-
orthogonal orbitals) for each of the wave functions below. Bear
in mind, however, that we never use these expansions in terms of
Slater determinants. Rather we consider the G,I" operator directly
in terms of the 0 p and co„;& operators since in this case we im-
mediately obtain the simple and useful expressions for the opti-
mum orbitals as shown in Sec. I. The matrix elements VII, and
Uff are given in Appendix E of I.

"These calculations use Slater orbitals as basis functions; and
in all cases the orbital experiments have been optimized. However,
the orbital exponents are not in all cases optimized to the number
of signifIcant 6gures given.
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TABLE I. The G1 orbitals of H~. The different nuclei are de-
noted by A and B.Each 2po- function is positive toward the other
nucleus. The orbital exponents are in parentheses.

0.7

0.6
l, 4

A is (1.3129)
A2$ (1.1566}
A 2po- (1.9549)
B1s (1.3129)
B2$ (1.1566)
B2po (1.9549)

E.= 1.4ap

0.775023
0.111130
0.003120
0.121577
0.042025
0.037667

0.121577
0.042025
0.037667
0.775023
0.111130
0.003120

0.5

0 4
o

0.3
CL

E

0.2

F R = I.402

A 1s (1.0045)
A 2s (0.850)
A 2po. (0.820)
A 1s (1.0045)
A 2s (0.850)
A 2po- (0.820)

R =6.0ap

0.993720
0.007571
0.001209
0.002525
0.002730—0.000870

0.002525
0.002730—0,000870
0 .993720
0.00757 1
0.001209

O.I

0.0 4 0
H

Coordinate Along Internuclear Axis(ao)

2.0-2.0 6.0

FlG. 1. The orbitals for H2. The origin is taken at the left proton.
R is the internuclear distance.

TABLE II. Energy for H2 at various internuclear distances.
Six basis functions were used in the Hartree-Fock and G1
calculations .

R (a.u.) HF Exact

rotations about the axis (i.e., they are 0- functions) and
mb@ =Qb, mob= @, where mb is the reflection inter-
changing the protons. Thus the total wave function has
'Z+ symmetry. For the equilibrium internuclear dis-
tance, R„ the amplitude of p is large near nucleus 2
and smaller but quite signiicant near nucleus 8; as
R increases, the amplitude of g, near A gradually
approaches that in the H atom and the amplitude of

g, near 8 gradually goes to zero. As R increases, P,
becomes more and more like a 1s orbital of H centered
at A and g b becomes more and more like a 1s orbital
of H centered at 8. Because of this proper dissociation
of H~ we are in the position of being able to follow in
detail the changes which occur as two H atoms come
together to form H&, and thus we may expect to gain
some insight into the way that the several competing
factors balance each other and change in importance
as the molecule is being formed. The energies for the
G1 wave function and a comparable H artree-Fock wave
function (HF) are in Table II.

to /lb. In this case the GF wave function can be ex-
pand ed as

Gf 41a4'2a41b42b~PPP b P2 Rglu@2A'ibg»OGPP

+Ol41aklb42a4'»~~PP+ Oplaf2bflb42a«PP

+ 841b42agla42bO. ~PP+ (f$2b$2aglbkla«PP

+2 (fglbg»41ag2a«PP) ~

Table III contains the GF orbitals" for the equilibrium
nuclear configuration (R= 3.015ab) and for the nearly
dissociated configuration (E= 10.0ab). The bonding
orbitals are plotted in Figs. 2 and 3, and the energies
are listed in Table IV along with those from some
comparable wave functions.

At infinite internuclear distance, the GF orbitals and
the GF energy are just the same as those for the
separated I i and H atoms; for a minimum ha.sis set,
this energy is —7.918482h. Thus the calculated binding
energies for the Hartree-Fock and GF calculations are
0.0515h and 0.0664k, resPectively, or 56.0 jo and 72.3ojo
of the experimental value, resp ectiv ely. At 10.Oa0, the
Qi, and gib are almost exactly like Li 1s states, and g&,
and P» are almost exactly like a Li 2s an.d a H 1s state,
respectively. At 3.015ab, the pi, and gib are very much
like Li 1s states, the g~, is still somewhat like a Li 2s

1.4
6.0

—1.13349~-0.82199~
0 7 154c

—1.151526—1.000552—1.000000

—1.17447 5b
~ ~ ~

—1.000000
TABLE III. The coefBcients for the GF orbitals of LiH. The

orbital exponents are in parentheses.

a S. Fraga and B.J. Ransil, J. Chem. Phys. 35, 1967 (1961).
b W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964) .' Lowdin, p. 244 of Ref . 12.

For totally symmetric homonuclear molecules larger
than H~, the GI orbitals can localize about the different
centers just as in H~ since the GI orbitals need only
have C„„synunetry. Hence we expect such molecules
to dissociate properly.

The LiH Molecule

For LiH there are four GF orbitals, gi„&2„gib, and.

@» where P2, is orthogonal to Pi, and P» is orthogonal

Orb Ll 1s Ll 2$ Ll 2Po

(2 .6906)
1a 0.997703
2a —0.178165
ib 0.997164
2b —0.000011

R = 10.0gp

(0.6396) (0.6396)
0.013573 0.000008
1.013008 0.005049
0.016611 —0.000022
0.00017 1 —0.000416

R=3.01Sap

(2.6903) (0.7034) (0.7815)
1a 0.996382 0.016064 —0.003885
2a —0.176614 0.772042 0.449490
ib 0.995490 0.019080 —0.008055
2b —0.093589 —0.035499 —0.008316

H 1s

(1.0595)
0.004344
0.166374
0.006848
1.023841

(1.0000)—0.000362
0.009812—0.000678
1.000017
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TABLE IV. Energy of LiH at various internucleus distances.
Configuration interaction is denoted by CZ.

0,6

3.015ap 10.0ap

HP' (4BF)
CI.b (4m')
GF {4BF)
HF' {11BP)
HF~ (16BF)
GP (6BF)
GP (16BF)
CI' (26BJ )
Exact

—7.96992—7.98361—7.984993—7.985970—7.987313—7.999744—8.003687—8.0561—8.070

~ ~ ~

—7.918725
~ ~ ~

—7,918482

~ ~ ~

—7.932342

~ ~ ~

—7.978

a B.J. Ransil, Rev. Mod. Phys. 32, 245 (1960).
b S. Fraga and B.J. Ransil, J. Chem. Phys. 30, 1127 (1962).
S. I . Kahalas and R. K. Nesbet, J. Chem. Phys. 39, 529 (1963).This

energy is for 3,02ao.
d P. E. Cade and W. Huo (to be published).
e J. C. Browne and F. A. Matsen, Phys. Rev. 135, A1227 (1964). This

energy is for 3.046ao.

state but with hybridization and a much higher arnpli-
tude in the region near the proton, and the P2q is still
rather much like an H is state but with a higher

amplitude near the H and a subsidiary 2s-like com-
ponent near the Li. Thus as the nuclei are pulled apart,
the individual GF orbitals gradually deform from bond-
ing and inner shell orbitals into atomic orbitals and the
GF energy gradually changes from the molecular energy
to the atomic energy. In contrast, the Hartree-Fock
wave function dissociates into Li+ and H . Thus the
Hartree-Fock method cannot be used to describe the
changes in the molecular wave functional, as the separated
Li and H atoms are brought together to form the LiH
molecule. The same proper behavior of the GI wave
functions can be expected for other totally symmetric
heteronuclear molecules.

In general, one is able to describe the separated
atoms by a G;&CX corresponding to the spatial and spin
symmetry of the molecules, and thus most molecules
will dissociate properly.

0.5

0.4

0.5

o 02

O. I

E+ 0.0

-O. I

-o.a.—

-0.3 —
Q

-0.4
5t 2

I I i

-2.4 - I.6 -0,8 0.0
H

Coordinate Along Internuclear Axis(ao)

OA

FIG. 3. The @» bonding orbital for LiH. The origin is taken
at the proton with the Li nucleus to the left. R is the inter-
nuclear distance.

Other Proyerties

The GI wave functions have many other convenient
properties. The Hellmann-Feynman and Brillouin theo-
rems apply, calculations on many excited states (even
of the same symmetry as lower states) lead to upper
bounds on the energy, the Grst-order perturbation
energy for one-electron operators is given by the ex-
pectation value of the perturbation Hamiltonian, and
for atoms the exact GI orbitals satisfy the cusp condi-
tion. Before comparing the GI method to some other
methods, we will consider an extension of the GI
method.

0.4—

0.3— HF R =3.0I5

0.2

O. I

.= 0.0
E

-O. I

-0.2

-0.3

-OA
0.0
Li

08 I.6 2.4

Coordinate Along Internuclear Axis(ao)

FIG. 2. The qb~, bonding orbital for LiH. The origin is taken
at the Li nucleus with the proton to the right. R is the inter-
nuclear distance.

III. AN EXTENSION OF THE GI METHOD

The GI method consists of finding the best approxima-
tion to the exact wave function by a function of the
form G,A&, where e is restricted. to be a simple product
of one-electron functions. However, there are situations
where one may wish to relax this restriction (e.g., to
account for more correlation energy or to describe, say,
excited states of atoms which do not have the largest
I consistent with the given S for the particular con-
6guration being considered).

YVe wish to point out that we could have considered
the best approximation to the exact wave function by a
function of the form (PG;I"CX, where C is still a simple
product of orbitals and (P is a projection operator which
projects out the components of G;&X not having the
proper spatial symmetry. In this case the energy ex-
pression becomes

z=(cia(pi 0;; e)i(e i
6 [o;;e),
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since the 6' is symmetric in the electron coord. inates.
Thus, the new equations for the best orbitals will be
formally the same as the previous ones if 0;,& is replaced.
by 6'0;,".However, the formalism hides a great deal of
complexity. For example, the 0;;"C contains exactly the
same orbitals (in different arrangements) as in C so
that the GI equations can all be expressed in terms of
simple density matrices and. the one- and two-electron
integrals for II, but the O'0, ;"C not only contains the
original orbitals in new arrangements, but also can
contain orbitals which were not present in C (e.g. , if C

contains a product say p,p, and. the total wave function
has S symmetry we can expect O'C to contain the sum

p,p,+p„p„+p,p,). One can, at least formally, interpret
each of the new one-electron Hamiltonians (which each
contain the projection operator (P) as equivalent to the
Hamiltonian for an electron moving in the average 6eld
of the other electrons; thus one can, at least formally,
interpret each of the solutions to these equations (the
best orbitals) as the state of an electron moving in the
average field of the other electrons. We might call the
method described above the extended GI method, in
analogy to Lowdin's use of the term extend, ed to de-
scribe a similar extension of the Hartree-Fock method.

IV. RELATION TO OTHER METHODS

We will now discuss some relationships between the
GI method and several other methods.

As is shown in Appendix A, the Hartree-Pock wave
function for every case in which the single Slater deter-
minant is an eigenfunction of spin is just a special case
of all of the G,&Cx wave functions (i.e., a set of orbitals
can be placed in C so that G,CX is a single determinant).
Hence, every GI wave function can be expected to
yield an energy lower than the Hartree-Fock energy
and all of the GI methods cari be considered as general-
izations of the Hartree-Fock method, in which some
restrictions are removed.

Besides the GI method, apparently only one other
method, has been suggested which wouM improve upon
the Hartree-Fock energy with a wave function of the
proper spin symmetry and. yet retain an ind. ependent-
particle interpretation —this is the extended. Hartree-
Fock method of Lowdin. """"

Lowdin develops a method of projecting out an eigen-
function of total spin from a general E-electron wave
function. ""To do this, he defines an operator,

S'—k(k+1)
8~=II

»t I(/+ I)—k(k+1)

where k goes through slV, (iV/2 I), , 0 or—s except
k=l. He then suggests that the Hartree-Fock wave

"P.-O. Lowdin, Phys. Rev. 97, 1509 (1955).
2' The same term extended Hartree-Fock is also used to denote

a somewhat di6erent method. See Ref. 26.
s6 P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).

function be improved by allowing the spin orbitals with
a spin to have different spatial functions from the spin
orbitals with P spin, but instead of using the resulting
determinant, which is not an eigenfunction of S, he
suggests that the wave function be approximated. by
HAD, where D is the determinant of E spin orbitals.
This method of finding the best such 8~D approximation
by varying the S-spin orbitals in D until ( 8&D

~
H

~
8&D)/

(8gD
~

8~D) is minimized is called the extended
Hartree-Fock method. "'4 Lowdin suggests factoring
each spin orbital into a spatial part and a spin part
which is either n or P (i.e., an eigenfunction of S,) and
varying the Sorbitals to minimize the energy. However,
I.owdin did not restrict himself to using only a spin-
projection operator. Since some important new compli-
cations occur when using spatial or spatial-spin projec-
tion operators, we will refer to the above method of
applying a spin-projection operator to a Slater deter-
minant and then optimizing the orbitals as the spin-
polarized extended Hartree-Fock method t in analogy
with the term spin-polarized as used in reference to the
unrestricted Hartree-Fock (UHF) method" ~j.

Lowdin also suggests that the variational conditions
can be put into the form of an eigenvalue problem, and
although he does not explicitly obtain the form of the
operator, he does point out" that 6~D is characterized
by two spatial densities p+(r&,rs) and p (r&,rs) which
may be varied to minimize the energy. Apparently be-
cause of this lack of a specific form for the equations to
be solved, there have been no calculations using the
spin-polarized extended, Hartree-Fock method" except
for the simple case of X= 2 (see Davidson and Jones'r
for some nontrivial calculations on Hs).

In Append, ix 8 we show that by using the co;,)" opera-
tors we can put the spin-poIarized extend, ed Hartree-
Fock wave function into a form which is equivalent with
the GF wave function. The two methods di6er basically
in that the GF method allows the spin integrations to
be taken in a trivially simple way so that the important
spatial relationships stand out. Of course, the GF
method (and hence the spin-polarized extended Hartree-
Fock method) is just one case of the general GI method
of obtaining accurate many-electron wave functions
which allow an independent-particle interpretation.

There have been some other calculations made using
the diferent-orbitals-for-diGerent-spins idea of Slater
and Lowdin. In the UHF method' the wave function
is approximated. by a single Slater determinant, but we
allow the orbitals for o. spin to differ from those for P
spin. The orbitals are optimized, and the resulting func-
tion leads to an independent-particle interpretation.
However, the UHF wave function d.oes cot have the
proper spin synunetry. One could project out all com-
ponents of spin except one in order to obtain a wave
function of the proper spin symmetry, but the UHF

~7 E. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 1918
(1962); S. M. Blinder, Advan. Quant. Chem. 2, 47 (1965).



90 WI LL IAM A. GOD DARD, I I I

orbitals would not be optimized for the projected. UHF
wave function and hence could, not be given an inde-

pendent-par tie]e interpretation. If we optimize the
function after projection, then we have the GF method.

The Weinbaum" calculation on H~ can be shown to
be equivalent to a G1 calculation using just two basis
functions; hence, his wave function can be transformed
into a form like Grg, gqX (Coulson and Fischer" recog-
nized the transforma, tion) and the Q, and Ps can be
given an independent-pa, rticle interpretation (this does
not seem to have been recognized). However, no

generalization of the Weinbaum approach to include
systems with more electrons which also admits an
independent-particle interpretation has been previously
reported. The GI method forms such a generalization.

Matsen and co-workers3O have utilized the diBerent-
orbitals-for-different-spins idea in calculations on two-,
three-, and four-electron atoms and molecules. Matsen
has used proper eigeiifunctions of S' for his wave func-
tions but has concentrated more on configuration inter-
action in order to obtain very accurate energies;
consequently most of the calculations use many orbitals
and are not candidates for independent-particle
interpretations.

The alternate orbital method (suggested by I-owdin)
which appears of much value for x-electron systems
may be considered as a special case of the GF method
which uses a minimum set of basis functions. This will
be discussed in more detail in Paper III of this series.

The Heitler-I ondon and Wang wave functions for
H2, which are the prototypes for the valence bond
method, are just special cases of the G1 wave functions
where not only is the number of basis functions limited
to two but the coeKcients are fixed. Since the coeffi-
cients are fixed, the Heitler-London and Wang wave
functions cameo/ be given an independent-particle in-
terpretation in the sense described above (although
these wave functions are sometimes discussed as if the
orbitals actually could be interpreted as each containing
an electron). Because of the fair accuracy and appealing
form of the Heitler-London and Wang wave functions,
attempts have been made to generalize to the case of
more electrons. The general method which is called the
valence-bond (VB) method has actually been rather
useful conceptually but ineA'ectual quantitatively.

With the VB method the description by one "con-
figuration" is of poor accuracy, and the introduction of
more configurations is quite complex, improves the
accuracy too slowly, and destroys the appealing inter-
pretation attributed. to the valence-bond. wave function.

2 S. %einbaum, J. Chem. Phys. 1, 593 (1933).
29 C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949)."G. F. Brigman and F. A. Matsen, J. Chem. Phys, 27, 829

(1957); R. P. Hurst, J. D. Gray, G. H. Brigman, and F. A.
Matsen, Mol. Phys. 1, 189 (1958); G. H. Brigman, R. P. Hurst,
J. D. Gray, and F. A. Matsen, J. Chem. Phys. 29, 251 (1958).

Probably a main motivation behind, developments of
the valence-bond method is the belief that the one-
electron states of chemical interest should be localized
into (perhaps hybridized) one-center bonding and non-
bonding states. Although the valence-bond wave func-
tion gives the illusion of being so interpreted in terms
of such one-electron states, the basis for such an in-

terpretation is not clear since the orbitals are mof

eigenfunctions of a one-electron Hamiltonian describing
the motion of an electron moving in an average field
of the other electrons. It is interesting to note that just
as the Heitler-London wave function is a special,
restricted case of a Gi wave function, the general
va]ence-bond wave functions (including the extended
valence-bond wave function") are also special, restricted
cases (containing fixed coeKcients, orthogonality as-
sumptions, minimum number of basis functions, etc.)
of certain GI wave functions. Of course, the GI wave
function yields a rigorous independent-particle inter-
pretation, can be described by any number of basis
functions, needs no orthogonality assumptions, can
yield, accurate energies for a single configuration, and is
adapted to automatic calculation. In addition to all of
this, specific chemical assumptions need, not be intro-
duced into the GI method; hence, we have the oppor-
tunity to derive from first principles the valid chemical
concepts and in so doing to refine, develop, and enrich
these concepts.

V. DISCUSSION ON APPLICATIONS

From the discussion on dissociation it is clear that
there are a myriad of exciting new types of calculations
which can now be made.

We can study formation and dissociation of a mole-
cule, atom by atom or group by group.

Similarly, we can study chemical reactions in detail
and actually determine the reaction path and the
activated complex. In addition, since our orbitals can
be given an independent-particle interpretation which

may correspond to bonding states, iriner-shell states,
etc. , we may be able to study the detailed changes
which occur in the bonding states as the activated
complex is formed.

We can consider the various possible equilibrium con-
figurations and investigate the changes in the bonding
orbitals as the molecule is formed and as deforrnations
are made such as rotating the CH~ groups of ethane
with respect to each other.

In addition, we expect to answer such questions as:
Is the carbon-carbon bond of ethylene described better
as a pair of bent bonds or as a 0- and a ~ bond)

Since the GI calculations are valid for states with
nonzero spin, we can treat systems in which radicals

"J. C. Slater, Quarts l lzeo~y of 3IIolecules and Solids
(McGraw-Hill Book Company, Inc. , New York, 1963), Vol. 1.
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are involved, and we can expect good values not only
for the one-electron spatial properties but also for such

properties as the spin distribution. "
Thus we should be able to calculate good electronic

wave functions and properties for practically any con-

6guration of chemical interest, and in addition we can
interpret this wave function directly in an independent,
particle scheme which allows states with chemical

significance.
So far, all discussions have been with ab Azitio calcu-

lations on atoms and molecules implicitly in mind. The
reason is that we feel it is appropriate, if possible, to
perform ab initio calculations on small representative
systems and then to examine the results to see which,
if any, approximations can be made which would allow

calculations on much larger systems. It is not neces-

sarily true, of course, that we can analyze the ab initio
calculation using some method and extract useful

approximations, but the GI method has some char-
acteristics (e.g. , the independent-particle interpretation,
proper dissociation, and occurrence of localized states)
which lead, us to believe that, indeed, we might be able
to extract such useful approximations. For example,
with the G1 method we expect the characteristics of
the bonding states to be clearly related to the atoms
involved.

VI. SUMMARY AND CONCLUSION

The GI method yields accurate many-electron wave
functions for atoms, molecules, and solids; these
many-electron wave functions can correctly describe
dissociation of molecules and can be given an inde-
pendent-particle interpretation which may correspond.
quite directly with chemical concepts. This method can
be considered as a direct generalization and synthesis
of the Hartree-Fock and valence-bond methods which
retains many of the best and eliminates many of the
worst features of both. Although the GI method is
conceptually simple, the actual calculation is more
complicated than Hartree-Fock calculations. Even so,
the results of the calculations are quite simple and lucid.

It is to be emphasized that the GI method. is not a
method. which requires ad hoc insertions of such re-
strictions as bonding states, hybridization, localized.

states, constancy of states for different systems, etc.
Rather, it is a general method appropriate for ab initio
calculations which, because of its properties (i.e.,
independent-particle interpretation, proper dissociation
of molecules, minimum of synunetry conditions on the
orbitals), might predict such chemical concepts as are
really valid. It should also be emphasized that although
accuracy of a many-electron wave function is probably

32 %. A. Goddard, III, following paper, Phys. Rev. 157, 93
(&967).

a necessary condition for extracting reliable and chemi-

cally important concepts concerning the changes in an
electronic system responsible for the binding, it is
certainly not a sufhcient condition. Even if we had a
method of obtaining wave functions which was capable
of yielding wave functions which could, predict many
properties arbitrarily well, we would not necessarily
gain any understanding of the systems; that is, we
might not have any idea of the differences which occur
when we add or subtract an electron, or replace one
atom by another, or consider a series of molecules such
as CH4, C2H6, and C3H8 or C2H2, C2H4, and C~H6. Our
real long-range objective is to build, up enough under-
standing of electronic systems so that we can pinpoint
the salient features of binding and predict the wave
function for a system on which we have not made
detailed calculations and for which no experimental
information is available. In view of this objective we
should concentrate on methods which have the necessary
essential features for the ideal method; we believe that
these necessary features are just the ones discussed in
the Introduction and that the GI method embodies
these in a satisfactory way.
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APPENDIX A: RELATION BETWEEN THE
HARTREE-FOCK WAVE FUNCTION AND

THE GI WAVE FUNCTIONS

Consider some system for which the Hartree-Fock
single-determinant wave function is an eigenfunction
of S'. If N=e+m and 2$=e—m, then this state will

have m doubly occupied orbitals and e—m singly
occupied orbitals. Now consider G,&C», where p= Ln, rn],
and place the Hartree-Fock orbitals in C in such an
order that upon replacing the numerals 1 through E of
the tableaux S;& by the respective orbital labels of C,
each two-element row contains the same label twice and
the one-element rows contain the nonrepeated labels.
Then the G;I'CX for all i are equal to each other" (within
a phase factor). We see that" Q~~" '(rC)y is nonzero
only if the e orbitals corresponding to n spin are dif-
ferent, but there are a total of only e different orbitals;
in addition, Qu~' ~ (rC)X is nonzero only if the m orbitals
corresponding to P spin are different, and once n dif-

~3 See Appendix D of I, also pp. 18—21 of Ref. 20.
'«Recall that E!011~' &=gg,o., where 0- acts on the total

coordinates of the electrons, i.e., Q»~' t antisymmetrizes any
function of E coordinates upon which it acts.
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ferent orbitals have been assigned to n positions there
are just m orbitals left to assign to p spin. Hence, every
nonzero Q»~'"~ (rC)X can be written as Q»""'(r,rbC)X,
where v-, permutes only electrons with e spin and rb
permutes only electrons with P spin. But r,rbX=X and

(r~rbC')(r~rbX) = f' „Q» ' CX; hence [using Eq.
(C2) of Appendix C of I),

G'CX= (&~/8")Q»~' ~[(0;; C)X3=[&!/(o")'j

&&+ U;,, 1,Q3g '"~cx= constQ»~'"&cx.

However, 0»" 'CX is just the Slater determinant; there-
fore, for those cases where the Hartree-Fock wave
function is an eigenfunction of S2, the Hartree-Fock
wave function is a special case of G;!"CXfor everyi. This
means that every GI wave function will, in general,
have a lower energy than the Hartree-Fock energy.

APPENDIX 8:SPIN-POLAMZED HARTREE-FOCK
AND GF WAVE FUNCTIONS

We show that the spin-polarized extended Hartree-
Fock wave function 8~0',%' is equivalent to the GF wave
functions Gf&X. The 4 is a product of E spin orbitals,
and 8& is the projection operator for 5=1. From I we
know that P,cu, P projects out just the S= t component
(if tb corresponds to l) so we take 8b ——p;~,;".We write

where 0-i operates on spin coordinates and v.i operates
on spatial coordinates. We also factor each spin orbital
into a spatial part and a spin part and take the spin
part to be either n or P (i.e., an eigenfunction of s,)
and write% =CX, where C is a product of X orbitals
and X is a product of E spin functions (n or P). Now
O, t=g&(X for any permutation of the spatial-spin co-
ordinates t; hence, we can choose t~ to be a permutation
which orders X so that all the e's appear first and all
the P's last; this form is denoted by X,.

Using &0;,= (1/0)P ~U;,~t from I, we obtain

Let ta;=0;t' and. note that P;U, ;~ is the trace [hence,
tr(U~) = tr(U, U4 U, -') = tr(U4 U, -~U,) =tr(U3 ), i.e., t
and t' are elements of the same class and consequently
have the same character]. Therefore,

8b 0',C q= 0, P C (~;,Xq) .

But if X~ has 3f,=5, then from I coiiX~ ——5;fMffag thus
86Cx= Q(C~Jrx3). But from Appendix C of I, S(C'a&j jxi)
= (O~/1V!)Gr(Cx, ), where 0/E!=1/f is just a constant;
hence, 8ACX3 ——(O~/E!)GfCX. That is, the spin-polar-
ized extended Hartree-Fock wave function is equivalent
to the GF wave function.

APPENDIX C: SPATIAL SYMMETRY
FOR N ELECTRONS

For Ã particles and a nondegenerate G,C», let C

=gg53 g~ and consider the p; to be linearly inde-
pendent. If EG,C&= CgG;CX, then EOi;C =CgOi;C since
the M„-;X for different r are linearly independent. Let
R$, =8,+C,P, ', where 8; is a linear combination of the

g; and each g is orthogonal to all of the P;. We will

show that all C;=0, that is, that the space spanned by
the P; is left invariant under E. .

(i) First consider the P to be linearly independent.
Every permutation of S~ occurs in Oii with nonzero
coefficient, so consider the following term in ROi;C,

P~'. This term appears just once in RO;;C and
is orthogonal to all terms io Oi;C, so one of the coeffi-
cients, say Cz, can be required to be zero. Then consider
the term p p3'@3' p~ 3'0~, since 0~NO, one coeK-
cient, e.g., C~ ~', must be zero. Continuing, we find
that all the Ci=0, and thus the space spanned by the
Q; is invariant under R.,

(ii) Now consider the case where there are X—1

linearly independent p, ' and where the set p3', pz' is
linearly independent. Expand P&' as

4~'=2 dA»'
/=2

and consider the terms of EO;,C yielding p3'g3'p3'f4'
~ .p~'. The coeKcient is CqC3d3[1+U;;&, , 3~]C3C4 ~ ~ .

C~. If we assume CqC3d3[1+U;;&~, 3&j&0, then C3C4
. .C~ ——0; continuing as in (i), we can show that C3

=C4—— ——C~——0 and hence that C&C&d&[1+U;, &$, 3)j
=0. Thus if U~~(~, 2) W —1, then C~C2d2 ——0. But if C~= 0,
the nonzero g, ' are linearly independent and we can use

(i) to prove that all C;=0; therefore, take C3WO. Since
C~&0, at least one d; and the corresponding C; must be
nonzero; we take d2/0 and C2&0. Hence, C, and Cl,
are nonzero only if U;i( ~) ———1. Assume C~, C2, ~ CI
are nonzero and consider the terms in 0~~4, like
e&)3')3' .Pz'. If e» 03, 0& are linearly independent,
this has as coefficient C2C3 . .C~ and we can proceed
as in (i) to show that all C, =O. If 0~, 03, , 03 are
linearly dependent, then since U;;~;,&) = —1, the terms
in EOffc containing 8~, 02, ~, and 8~ are zero and
hence ROffC has no term proportional to Off4. Hence
the C~, C2, .-, C~ are all zero.

(iii) If there are only N r linearly independen—t $,',
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then we proceed as in (ii) except that we know that
0;,4'=0 for any C' with the same orbital more than
twice.

This is all quite easy to visualize in Hilbert space;
since R must leave all scalar products invariant, the
vectors must all move together under 8, but since G,C»
is transformed essentially into itself, we can at most

allow rotations within the space spanned by these
vectors. Thus, the set of GI orbitals in C form a basis
for a reducible representation of b. The reason that we

cannot completely reduce this representation is that
the GI orbitals are not all eigenfunctions of the same
one-electron Hamiltonian (as in the Hartree-Fock
method).
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For the first time a spin-polarized extended Hartree-Fock calculation on a three-electron system, Li,
is reported. The calculations are discussed with primary emphasis on the hyperfine splitting spectrum which
is determined by the spin density at the nucleus, Q(0) =(p~ p;s, (i)s(r;) ~p)/S. We calculate Q(0) for the
ground state to be 0.2403, as compared with the experimental value of 0.2313.

INTRODUCTION

'HERE has been a great deal of interest in con-
structing electronic wave functions for atoms

accurate enough to predict the eRective magnetic field
at the nucleus due to the electrons. ' 4 The difficulty
has been in obtaining accurate values for the part of
the field due to the Fermi contact term' '

where

is called the spin-density at the nucleus. For example,
for the ground states of N and Mn++ the Hartree-Fock
wave function leads to H, =o in Qagrant disagreement
with experiment. ' ' Similarly, the large negative mag-
netic fields at the nuclei of some transition-metal atoms,
as observed by Mossbauer experiments on metals, are
inconsistent with the predictons using Hartree-Fock
wave functions. ' '

Probably the most widely used method to improve
upon the Hartree-Fock method for this property has
been the unrestricted. Hartree-Fock (UHF) method. 4 '—'
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This method has had some success' but does not seem
to account for the Hc in 8",N", o'", F",P", or in the
transition element atoms in metals. ' In the UHF method
the wave function is approximated by a single Slater
determinant, as in the Hartree-Fock method, but we
now allow different orbitals for the different spins.
Since the inner-shell or core states are not exactly spin
paired, they can contribute to the spin density at the
nucleus, Q(0). A glaring flaw in this approach'r "—"
is that the UHF wave function is not an eigenfuliction
of S'. One could, of course, project out from the UHF
wave function the components of incorrect multiplicity,
but although the UHF orbitals are optimum for the
Slater determinant, they will not be optimum for the
projected wave function. '

It has long been known that the proper solution is to
optimize the orbitals after the projection rather than
before. ' ' """Unfortunately, this procedure, the spin-
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