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An extension to three dimensions of the WKB approximation method for the quasiclassical wave function
is discussed. The extended method is applicable to problems which possess an axis of symmetry, but for
which the potential need not be a separable function of the coordinates. The essential difference from the
one-dimensional WKB approximation lies in the effect of the curvature of the wave fronts, which plays a
central role in the three-dimensional case, and which has a direct physical interpretation. Formulas are
derived for the wave function on the axis in both the allowed and the forbidden zones, as well as for the
three-dimensional connection formulas. Application of the new method is made to the case of a pure Cou-
lomb wave function and to the case of a particular nonseparable potential which is of interest in the theory

of nuclear reaction rates at high density.

I. INTRODUCTION

F the characteristic dimensions of a quantum-
mechanical system are large compared with typical
de Broglie wavelengths, the wave function of the system
can be obtained through a semiclassical approximation
scheme. For one-dimensional problems such a scheme
is the well-known WKB method, which provides simple
approximations for the wave function in both the
classically forbidden and allowed regions, as well as
connection formulas relating the behavior of the
approximate wave functions on opposite sides of the
turning point. Some general considerations have also
been given in the multidimensional case,!? but these are
not always directly applicable to practical problems.

In this paper we discuss an explicit semiclassical
approximation for the wave function of a single particle
moving in a nonseparable potential in three dimensions.
We assume that the potential field possesses an axis of
symmetry, and we shall consider the wave function only
on or near this axis. The relation of our approximation
to the work of Van Vleck and of Schiller in the multi-
dimensional case is discussed in Appendix A.

In Sec. II we derive our approximation scheme for the
general three-dimensional case. The lowest-order equa-
tion of the resulting hierarchy is simply the eikonal
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equation of geometrical optics. The behavior of the
wave function can therefore be interpreted in terms of
wave fronts and ray paths (or particle trajectories), and
for this reason we freely borrow the nomenclature of
geometrical optics throughout. In Sec. ITI we derive the
equation for the curvature coefficient of the wave
fronts, and we show that an explicit solution requiring
at most the evaluation of one-dimensional integrals is
then possible. The three-dimensional connection formu-
las which permit the continuation of the wave function
across the turning surface are derived in Sec. IV, and in
Sec. V we discuss the case of scattering in a pure
Coulomb potential as an illustration of the method.

A practical problem requiring the application of our
approximation scheme occurs in the evaluation of
“pycnonuclear” reaction rates®* Under conditions
which may prevail in the degenerate cores of highly
condensed stars, the electrostatic interaction potential
is no longer a separable function of the coordinates, and
the wave function therefore cannot be calculated by
conventional methods. Accordingly in Sec. VI we
reduce the problem (approximately) to one involving
only the three-dimensional relative coordinate of a pair
of neighboring nuclei and then apply the work of Secs.
IT through IV to calculate the “tail”’ of the ground-state
wave function, where the nuclei come very close
together.

3 A. G. W. Cameron, Astrophys. J. 130, 916 (1959).
4R. A. Wolf, Phys. Rev. 137, B1634 (1965).
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II. DERIVATION OF THE THREE-DIMENSIONAL
WKB APPROXIMATION

The Schrodinger equation for the wave function ¢ of
a particle with energy E moving in a potential ¥ (r) may
be written as ,
VA (1) + R () (1)=0, 1
where

K (1)= (2u/W)LE—V (1) ], 2

and g is the reduced mass. In terms of the logarithm .S
of the wave function,

y(r)=exp[iS(r)], 3)
we have
VS — VS VS+£k2=0. 4)

In the quasiclassical limit the change in the wavelength
is small over an interval of a single wavelength, and the
first term in Eq. (4) is therefore negligible in comparison
with the second. The function S can then be determined
by an iteration scheme:

S=So+S1+---,
where So is the solution of the “eikonal” equation,
VS VSo=Fk*(x), (5)
S11is the solution of
2VS1 VSo=1V2S, (6)

and so on. These equations contain the essential

features of the quasiclassical approximation. As is

usual in the one-dimensional case, we shall carry only

the first two terms of the perturbation series (So+Sy).
It is convenient to rewrite Eq. (5) in the form

VSo=k(r)e, e-e=1, O

where % is the positive square root of Eq. (2). In general
So and e may be complex, and Eq. (7) does not neces-
sarily make e a vector of unit absolute magnitude. By
analogy with geometrical optics we refer to the (com-
plex) surfaces So=constant as ‘“‘wave fronts,” the unit
normals e to these surfaces as “ray vectors” or ‘“propa-
gation vectors,” and a curve whose tangents are the
vectors e as a “‘ray path” of the system. These curves
and surfaces are defined in a complex, six-dimensional
space, but we shall of course derive expressions for .S in
real space.
From Eq. (7) one can derive the relation

(e-W)e=k[Vk—(e-VEk)e]. ®)

We shall only consider cases in which some field line of
the potential is a straight line, and one ray path (with
e real) coincides with this line, which is one solution of
Eq. (8). We shall see that the wave function in the
vicinity of this line is given simply in terms of properties
along the line, including curvature coefficients. We shall
use this line as the z axis of a polar-coordinate system.
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Equation (6) can be rewritten as
VSi-e=L1ikle- Vk+div e],

and this expression as well as Eq. (5) can be easily
integrated. There are two solutions, depending upon the
sign of e along the axis, which we shall call the “in-
coming” and the ‘“outgoing” wave. Correct to first

order in our expansion, we have

i[.S*(22) — S*(21) ]

22 k<22) 22
=:ti/ kdz—31 In :F/ H*dz, (9)
z k(Z1) 21

1

where H(r)=% div e, and the upper sign denotes the
incoming wave.

If Sy is real, the function X is the coefficient of mean
curvature of the wave front,® and we shall call it the
“curvature coefficient” even when it is complex. In
Sec. III we shall derive an expression for H (z) (in terms
of a boundary value) and shall see that H~ is not
necessarily —H*: Although e~= —e*, the ingoing and
outgoing rays off the axis traverse different regions, and
the curvatures are different.

Equation (9) constitutes our desired generalization
of the WKB approximation. It provides a unique value
for the quasiclassical wave function at any point along
the ray path in terms of the boundary conditions on .S
and V.S (or equivalently, .S and H) at the initial point
z1. The difference between Eq. (9) and the one-dimen-
sional case is essentially contained in the last term
involving H. In fact, if the surfaces of constant .So
happen to coincide with the planes z=constant, then H
vanishes, and Eq. (9) reduces exactly to the one-
dimensional approximation. The significance of this
term is also clear in the three-dimensional case. If H is
real in the allowed region, then Hdz is the fractional
increase in the width of the wave front, which must be
accompanied by an equal fractional decrease in the
amplitude.

III. THE CURVATURE COEFFICIENT

From the eikonal equation and the definition of the
ray vector e as given in Eq. (7), together with the fact
that on the axis both V% and V.S¢ have only a 2 com-
ponent, it is not difficult to show that the quasiclassical
wave function near the axis must possess cylindrical
symmetry.® For this reason we shall find it convenient
to work in a system of cylindrical polar coordinates
(p,9,2) with the z axis parallel to the line of symmetry.
Because of the local symmetry, the curvature coefficient
at the axis assumes the simple form

3 (e%,) S+

dp dp?

§ M. Kline, Commun. Pure Appl. Math. 14, 473 (1961).

6 It must be emphasized, however, that the wave function is only
locally axially symmetric, and that this has nothing whatever to
do with the long-range symmetry at points far from the axis.

H(z)=

) (10)

p=0 p=0
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where ¢, is the component of e in the p direction. Since
H is explicitly the (nonvanishing) derivative of a func-
tion which goes to zero at the axis, this equation shows
that H* can be quite different from H— even though the
vectors e+ on the symmetry line are identical except for
sign. Equation (10) also demonstrates the dependence
of the quasiclassical wave function along the symmetry
axis upon the potential at neighboring points of space:
For points slightly off the axis the wave function is
given by

1
S(zp)=S (z,O)-l-;ka?- (11)

The function H satisfies a first-order differential
equation which can be derived from the definition (7)
of the ray vector. Since the curl of a gradient is iden-
tically zero, the curl of Eq. (7) provides an equation
involving only the propagation vector e and the
magnitude % of the reciprocal wavelength. If we now
take the curl of the resulting equation and make use of
the local symmetry and of the relation (10) between the
curvature coefficient and the transverse derivative of
the ray vector, we obtain

dH* dlInk 0% lnkl
b [ (HER= ,
dz  dz 3p? |,

(12)

which is the desired result. Equation (12) is a Ricatti
equation, which is a well-studied type of nonlinear
differential equation that can even be solved analy-
tically” for sufficiently simple functional forms for &(z).
The solution of the equation involves one arbitrary
constant of integration, which is determined by the
boundary conditions.

In the field-free case, where & is everywhere a con-
stant, all ray paths are straight lines. Then H is purely
real, and the general solution of Eq. (12) is simply

Hx(z3)==+x(3—2%), (13)

where we have taken the vector et to lie in the direction
of increasing z. The parameter Z* represents a focal
point of the ray system, as is evident from the form of
the wave function on and near the axis:

exp (Likrt
¥*(z,p) = const. X—p--«) ,
rt
(14)
Pt =25,

where we have used Egs. (9), (11), and (13). In Eq.
(14), 7% is the radial distance from the focal point (wave
diverging from Z~ or converging onto Z1).

If we consider a spherically symmetric potential, the
radius of a surface of constant k is simply 7, the radial
distance from the force center. In this case, if the

"H. T. Davis, Introduction to Nonlinear Differential and
In[e§r7al7é5quations (Dover Publications, Inc., New York, 1962),
Pp. —=iQ.
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boundary condition on S is such that H=r" at one
point, then the solution of Eq. (12) is H=r"" for all r.
The last term in Eq. (9) then gives —In(rs/71), which
means that the function 7y satisfies a one-dimensional
Schrédinger equation.

IV. THE CONNECTION FORMULAS

As is well known, the WKB approximation breaks
down near the “turning points,” where k?=0, and one
must make recourse to special “connection formulas”
in order to relate the approximate wave functions in the
classically allowed and the classically forbidden regions.
In three dimensions the allowed and forbidden regions
are separated by a “turning surface,” defined by the
equation k%*(r)=0. If a ray in the allowed region
approaches this surface at some angle other than
normal, that component of the real part of the ray
vector which is directed perpendicular to the equi-
potential surfaces will vanish, and the ray will be turned
back before reaching the turning surface. Thus the only
ray paths which traverse the turning surface do so at
normal incidence (in the strict, classical limit), and we
shall discuss the connection formulas only for such a
ray and its immediate neighborhood.

In the vicinity of the turning surface the potential
can be expanded in a Taylor series:

VO)=E+VV-(@—10)+---, (15)

where 19 is some point on the surface, and VV is eval-
uated at ro. If we restrict ourselves to a “linear con-
nection,” i.e., if we assume VV30 and neglect higher
terms, then the approximate potential given by the
first two terms of Eq. (15) has axial symmetry, and it
is convenient to work in a system of cylindrical co-
ordinates with the z axis as the axis of symmetry and
with origin at the turning point. We shall assume
dV/dz>0, so that the region with z>0 is the forbidden
region. The incoming wave in a typical scattering
problem thus propagates in the direction of increasing z.

Let us first consider the WKB approximation near
the turning point. From Eq. (15) we have

b= (=), (16)
where & and z are expressed in units of ¥ and vy,
respectively, and y=[(dV/02)2u/A*]'3. With this
simple form for k, Eq. (12) can be solved analytically
by standard methods? to give

1CE(5) 102

14 C:(z) 2
where C* is a constant of integration. The integrals
required by Eq. (9) can now be done analytically also,
and the resulting wave functions are, in the allowed
region (2<0),
15%(z) = Fi2 (—2)*2—% In(—2) —In[[14+CoE (L2)12],
(18a)

H*

%))
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and in the forbidden region (3>0),

1SE(2) =F 22—} Inz—In[ 14+ Crt(=2)12], (18b)
where C, and Cy are the values of the constant in Eq.
(17) appropriate to the allowed and forbidden regions,
respectively.

In order to relate a given linear combination of
incoming and outgoing waves of the form (18a) in the
allowed region to the appropriate corresponding linear
combination of waves (18b) in the forbidden region we
must consider the connection formulas for our three-
dimensional approximation. These formulas can be
derived most simply by an extension of the method
using analytic continuation developed by Furry® in the
one-dimensional case. This is outlined in Appendix B
and gives the following result:

0 T 0
%]kl_”?[expl:-i-i[ |k|dz+in—iz—/ H—dz]
—lz| —|z|
0 T 0
+exp[—i / [l ds—in+i + / H+dz:”
|zl —lz]|
K] Izl
:|k]—1/2{sinn exp[+/ |k|dz—|—/ H‘dz:l
0 0
2| 12
+5ein exp[—/ {k|dz——/ H+dz:” . (19)
0 0

This is the direct analog of the familiar one-dimensional
formula, and, as there, the lower arrow is to be used
only in the event =0, corresponding to a purely
ingoing (decaying) “wave’” in the forbidden region.
Because of the difference in curvature of the ingoing
and outgoing waves, the left-hand side of this equation
no longer has the form of a simple trigonometric func-
tion, but now involves both waves explicitly.

In the three-dimensional case, Eq. (19) by itself is not
sufficient to determine the connection of the wave
function across the turning point, as one must also have
an additional connection formula for the curvature
coefficient. This is also discussed in Appendix B and
may be stated in the form

31Cz112
H* —

12120 1 4§Cgt/2” 20)

where C has the same value in both the allowed and the
forbidden regions, and is to be determined from the
boundary conditions.

In the allowed region, the wave fronts are real sur-
faces in three-space, and thus the curvature coefficient
and the constant C in Eq. (20) must both be real. In the
forbidden region, however, this condition leads to a
complex curvature coefficient, which simply reflects the

8 W. H. Furry, Phys. Rev. 71, 360 (1947).
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fact that the surfaces So=constant are now defined in
a complex space of six dimensions.? The physical reason
for the complex curvature coefficient can be understood
by considering an arbitrary, oscillatory wave impinging
upon the turning surface. This wave can be resolved
into two components, propagating, respectively, per-
pendicular and parallel to the turning surface. Clearly
the perpendicular component will be strongly damped
as it propagates into the forbidden region, and this is
reflected in the exponential variation of the zero-order
WXKB approximation. On the other hand, the transverse
part of the wave is affected quite differently. Near the
turning surface, this component is essentially un-
changed from the allowed region, so that the variation
of the wave function in the p direction is mainly oscil-
latory, which shows up in the fact that H is almost
purely imaginary near the turning surface. Deep in the
forbidden region, however, H is almost purely real, with
the sign such that the wave function decreases away
from the axis along the p direction. This is associated
with the fact that the surface of constant amplitude
which passes through point (p,$,2) intersects the sym-
metry axis at a distance 6z farther into the forbidden
zone than the surface which intersects the axis at z, and
hence the former surface is one of smaller amplitude.

V. COULOMB SCATTERING

As an illustrative example we consider scattering in
a pure repulsive Coulomb potential.®® We shall express
lengths and inverse wave numbers 27! in units of the
“Bohr radius” 7* defined as

r*=n2/uZ 7€, (21)

where u is the reduced mass, and Z;, Z2 are the atomic
charges of the two particles. The reduced wave vector
for the relative motion is given by

k—lE%=Z1Z2€2/h'l), (22)

where v is the relative velocity. Throughout this section
we shall consider only large values of #, corresponding
to “low”’-energy scattering.

An exact, normalized wave function for two particles
approaching each other from minus infinity is given by

V2 (z,0)=eS" =T (14in)e " 2% F(—in, 1, ik(r—2)),
(23)

where F is a confluent hypergeometric function, and »
is the radial distance from the force center. This wave
function already includes both the incident and the

9 A similar situation occurs in the theory of inhomogeneous
wave propagation in the optics of metals, as discussed by M. Born
and E. Wolf, Principles of Optics (The Macmillan Company, New
York, 1964), Chap. XIII.

10 See also M. Rosen and D. R. Yennie, J. Math. Phys. 5, 1505
(1964).

u 1. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), p. 184.
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scattered wave, although in the asymptotic limit of
z—> — oo only the incident wave is present. For negative
values of z with |kz| large compared with both unity
and #?, the asymptotic expansion? of the Coulomb
wave function gives

iSt~ilkztn Ink(r—2)], Ht~in?/|z|2, (24)

where H* is expressed in units of (#*)~.. In this region
the wave function contains only the incident Coulomb-
distorted plane wave. As Eq. (24) (or a classical calcu-
lation) shows, the curvature introduced by the long-
range Coulomb force on an incident plane wave is only
of order |kz|~2, and not |z]|7, as z— — .

For negative values of z but with 1< |z|<<#» (i.e., in
the classically forbidden region) one can reduce F to an
expansion®® involving the Bessel function 7, (x) of purely
imaginary argument:

FI[(4(r—2))'" 1+ --. (25)

With the help of Stirling’s formula for InT'(144%) and
the asymptotic expansion for the Bessel function, we
find

iSt=[4(r—2)]?—% In[4(r—2)]—nr
+31 Inn+2(n Inn—n)+itr,

H=~—1|z|. (26)

For a pure Coulomb potential, only the pure ingoing
wave is present in the forbidden region.

We now turn to our WKB approximation. In our
units and with p<<|z| we have

1 2 1 2
B (r) =—— o ————
worowt |z |z

L @)

The turning point on the negative z axis thus occurs at
z=—2n?. Equation (12) for the curvature coefficient
H in this case has the general solution

()
e M

where the constant C* is the constant of integration
appropriate to the incoming or outgoing wave, re-
spectively. In order to represent the incident, Coulomb-
distorted plane wave, we need Ct=—1/n, by com-
parison of Eq. (24) with the asymptotic limit of
Eq. (28).

In the allowed region, the WKB wave functions thus

HE=

12 Reference 11, p. 116.
( 1 F) L. Yost, ] . Wheeler, and G. Breit, Phys. Rev. 49, 174
1936
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become, for p<K |3/,

=i (2 ()
G 4G ]
= “(;lz*n“)‘ l‘l

+§ik (2)H*(2)p*+InN (n), (29)
where N (») is a normalizing constant. We set
N(n) = %n-lﬂei(nlnn—-n) (30)

and with this choice the asymptotic limit of Eq. (29)
for —z>>2n? reduces to Eq. (24).

Near the turning point, the curvature coefficient
(28) assumes the form

31/ (202 AnCE] (2 | 2] )1

O D L e LD L
This expression, together with the connection formula
(20) and the fact that C*= —1/z, leads immediately to
the result C—=+1/n. These constants are the same in
both the allowed and the forbidden regions, for the
reasons discussed in the preceding section. With this
result, the connection formula (19) leads to the predic-
tion of a reflected wave in addition to the incoming wave
in the allowed region. For a pure Coulomb potential we
need only the function which is regular at the origin,
i.e., we take =0 in Eq. (19). With N (x) given by Eq.
(30), the reflected wave in the allowed region has the
asymptotic form (for z<<—2#? and #>>1)

Hi~

1S~ (z,0)~+i[k| 2| —n In2k|z| J+In .
2k| 2|

+2i(n Inn—n)— z—-l—z

2

2n| 3|

which agrees with the asymptotic form of the exact
wave function.?

Finally, in the forbidden region, the WKB exponents
are

1S+ (z,0)

o (20 () ()]
SNERRCI S

ik (2)H=(2)p*+i(n lnn—n)—3 In(dn)—itr,

, (32)

(33)
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For 1K |z|<n, St reduces to the expression in Eq.
(26).

VI. PYCNONUCLEAR REACTIONS

In very late stages of stellar evolution high densities
can be reached at relatively low temperatures. Under
these circumstances the electrons form a degenerate
Fermi gas at almost uniform density, while the nuclei
form a “Coulomb lattice,” i.e., a body-centered cubic
lattice with the two-body potential being simply the
Coulomb potential. We define

r*=1/M (Ze)*=28.8471Z2F, A=r*/a (34)
where 7* is the “Bohr radius” fcr a pair of nuclei, and
a is the lattice constant. For sufficiently small A and
sufficiently low temperature the amplitude of vibration
about the lattice sites is small. The rate of nuclear
reactions is then small but not zero, since the zero-point
vibrations prevent the nuclei from becoming too
strongly localized about the lattice sites, and there is
still a small probability of two nearest-neighbor nuclei
coming close together. To a fairly good approximation
one can reduce this many-body problem to a three-
dimensional Schrodinger equation for the relative vector
coordinate r between the two nuclei, while keeping the
center of mass of the pair as well as all the other nuclei
fixed at their respective equilibrium positions. We shall
apply our WKB approximation to this three-dimen-
sional problem to calculate the small “tail” of the
ground-state wave function for small 7.

Let R;; be the relative vector coordinate between
nucleus ¢ and 7 at their equilibrium positions. Because
of the contribution of the other nuclei the potential
V (r) is nonseparable but has a symmetry line along the
direction of Ry2 (and a minimum value when r=Ry,).
If we express r in a cylindrical polar system with Ry, as
2z axis and with distaaces in units of ¢ and energies in
units of (Ze)?/a, we have!*

1 1 2
———")—l“s—(Rlz—‘ 7’)2

¥ 12

V()=Vet+ (

1 1
o —]
12 L|Ra+3Ree—1)| Ra

+f*z"2[lRw—%<1Rm—r>| JH G9

Along the z axis the lattice sums were evaluated
numerically and V and its derivatives were fitted by the
following polynomials (with #2=224-p? and §=1—|z|/

4 W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
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Rlz) :
V=Vo+1.1547£(1—§)1—1.1602£+41.0394 £
—0.4001£4-0.0692£44-0.0001,
V.=5.3333(2—£)2—5.1479£4-8.7676 £
—20.6702£84-19.5412£4—9.4842£5+0.01,
V,,=6.1582(2—£)—34-4.18884-0.9398¢
—6.3698£24-9.9108£—8.9930£44-0.15 , (36)

where the subscripts indicate partial derivatives, and
all quantities are evaluated at the axis. For small values
of |Ris—r| this expression reduces to the oscillator
potential

2w
V= Vo-*——;(Rlz*r)Z

1 3[R12' (Ru—r):l2 (ng—l')2
4 R125 RIZ3

(37

We now consider only cases with zero temperature
and with A1 in Eq. (34). Most of the wave function is
then contained in regions where Eq. (37) is a good
approximation. For this potential the ground-state
energy Eo and the normalized oscillator wave function
Yoso are given by

Eo=V+4.3073\2,

Vose=0.553\/8(y*)—3/2

X exp{ —X~12[0.8462 (Ry2—3)*+0.65450"T} .  (38)
With A<1 Egs. (37) and hence (38) are good approxi-
mations well into the forbidden region, where the WKB
approximation should be valid also. Equation (38) may
then be used to provide the initial conditions on the
WKB wave function and the curvature coefficient H at
some “fitting point” 77, and we have for the WKB wave
function for all »<7; on the axis

Iny (") = Inos, (71 )
+ de —LIn[k(r)/k(ry)]— TH“Ldz. (39)
[

Here k=\"12(V—Ey)'?, and we have selected the
purely decreasing exponential solution in the forbidden
region (corresponding to the regular Coulomb function
for small 7, where the potential is dominated by the
Coulomb term). We are mainly interested in ¢ () for
7<<1, where the screening effects are small. The ratio
¥ (r)/¢(0) may then be approximated by using our
WKB expressions (Sec. V) for a pure Coulomb wave
function, and by adding and subtracting this result
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from Eq. (39), we obtain

\7/8 y\"1/4 r\12
) o) ]

0
J(\)=—0.8462(Ry— r,)2+/ (V—E,)'2dz
s

¥ (r)=0.553

(40)

——>\"2{/ Hﬁiz—%ln()\r/r*)—%ln[V(rf)~Eo]} .
s

The dependence of Eq. (40) on the fitting point 7y is
spurious, and we chose its numerical value for each
value of X so as to keep the combined errors due to the
oscillator potential and the WKB function small. The
explicit expression used for 7; was

7y=R1— 135N/, (41)

For a number of values of A in the range 5X107¢
<A<5X1073 the Riccati equation for the curvature
coefficient H* was integrated numerically by the
Runge-Kutta technique starting from the fitting point
and using Eq. (36). From this, numerical values for
J(\) were obtained and used to determine the best
coefficients in a series expansion in powers of Al/2
namely

J(\)=—1.31941.8\12-£0.002. (42)

This expression in Eq. (40), together with
[V (ry)—Eo 4= 1.52N1712(1—0.068)\/5) ,

gives the desired wave function.

The use of our wave function for the calculation of
pycnonuclear reaction rates and the extension to
nonzero temperature will be described elsewhere.

ACKNOWLEDGMENTS

We are grateful to Dr. J. N. Bahcall and Dr. R. A.
Wolf, and to M. Dwarkin for many interesting dis-
cussions. This work was supported in part by Air Force
Office of Scientific Research Contract No. 49(638)-1527
and National Science Foundation Grant No. GP 3488
with Cornell University. One of us (HMVH) wishes
to acknowledge the generous support of a National
Aeronautics and Space Administration Traineeship
during the course of this research.

APPENDIX A

We have noted in Sec. II that our Eq. (9) for the
quasiclassical wave function differs from the one-
dimensional WKB approximation only by the inclusion
of the last term involving the curvature coefficient H.
We have also shown that this term has a direct physical
interpretation. In the general multidimensional case,
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IN THREE DIMENSIONS 757

Van Vleck,! and more recently Schiller,® have shown
that the quasiclassical wave function may quite gener-
ally be written in the form

Y=D'2 exp (iS/7).

The function S is the solution of the Hamilton-Jacobi
equation, which for the time-independent case in three
dimensions may be written as

(vS)?=2u(V—E).

(A1)

(A2)

This is identical with our Eq. (5) for the zero-order
term of the WKB expansion.

The quantity D is the so-called Van Vleck determi-
nant, which is defined by

9%S
D= det[ - :| ,
dg*da*

where ¢¢ are generalized coordinates and the of are
constants of the motion. This determinant satisfies a
continuity equation, which for a static, three-dimen-
sional potential that is a function only of the coordinates
has the form

(A3)

ViS+vS-v InD=0. (A4)

This is the same as our Eq. (6), which therefore estab-
lishes the equivalence of our version of the WKB
approximation with the three-dimensional limit of the
general prescription.

APPENDIX B

Furry’s derivation® of the connection formulas is
based upon the analytic continuation of the wave
function (18) into the complex z plane and makes
explicit use of the fact that the WKB approximation is
only asymptotically correct. The argument proceeds as
follows. From Eq. (18) it is evident that the leading
term of the expansion is purely real along the so-called
“Stokes lines,” at which arg(ze~*")=6 has the value
/3, m, or 57/3. These lines are denoted as SI, SII, and
SIIT, respectively, in Fig. 1. Along a Stokes line, only
the coefficient of the increasing exponential term is
meaningful, since this alone determines the asymptotic
limit, and the coefficient of the decreasing term will in
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Fic. 1. The complex z plane near a turning point.



758

general be discontinuous across this line. Equally
spaced between the Stokes lines are three “anti-Stokes
lines” located at =0, 2x/3, 4x/3, and 2w, where the
last line is identical with the first except for a branch
cut along this axis which is necessary to make the func-
tion single-valued. Along these lines the two exponential
terms have purely imaginary arguments, and the co-
efficients of both terms are necessary to give the
asymptotic limit. The anti-Stokes lines are indicated
by I, II, I1T, and I’ in Fig. 1. Finally, at the lines JT and
JII the real part of z changes sign ; these lines mark the
boundary between the allowed and forbidden regions
in the complex plane.

Consider now the analytic continuation of the WKB
wave function into the complex plane. The general
wave function can be written in the form

'p: (ze—iw)—l/‘i{A[l+7:C+(Ze—i1r)1/2:l—1 eXp[—‘i% (ze-—i1r)3/2]
+BL1+C (a1 exp[+i3 (=) . (B)

We suppose that on line I the coefficients 4 and B take
on the given values 4; and By, respectively, which gives
the asymptotic approximation uniquely throughout
region 1. As we cross the Stokes line ST into region 2, the
coefficient of the dominant exponential term (which in
this case is the first term) must remain the same, so that
we must have

A=A, (B2a)

In general, however, the asymptotic approximation for
the wave function in region 2 will be represented by a
different linear combination of the two exponentials, so
that the “subdominant” solution in region 2 may con-
tain an arbitrary mixture of the increasing and de-
creasing exponentials. This second solution may be
represented by a linear superposition of the dominant
and subdominant solutions of region 1, however, and
continuity of the subdominant solution for arbitrary
values of the coefficients 4; and B; therefore demands

[1+Ca—lzlllzei1r/6]—132
— [1+Ca— lz I 1/23i1r/6]—~lBl
+a[1+Ca+|z | 1lzei21r/3]—1A1 , (BZb)

where C, is the value of the constant for the allowed
region, and « is an undetermined multiplier. In a similar
manner, we require the asymptotic approximations to
the two independent solutions to be continuous across
the boundaries of each of the remaining regions, and
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thus arrive at the relations

[1+Cj+|2 I L2gisn/4]-1 4 5= [1+Ca+lz l1/26i37r/4j—1A2’
[14Cs 2| 2eim M1 By=[14+Ca | 2| 2ei7# 1B,
A4=A3,
By=Bg,
[14+Crt|a ] eim 1A s=[14-C st |z| 2714,
+BL1+Cr |3 [ em B,
Bs=Ba,
Ag=As,
Bs=Bs,
[14+C | 3| 2eBm 414, = [14-CH | 2| 2eBm14]14 g,
[14Co|2| 12374 Br=[14-Cy | 5| 237 1By,
A3=A7,
[14-Co |z | 2B /81 By=[14+C\y~ | 2| 2e®B7/6 1B,
+7[1+Ca+ 1/2ei47r/3]—1A7_ (B3)
In this equation Cy is the value of the constant appro-
priate to the forbidden region, and 8 and vy are the
remaining undetermined multipliers.
The analytic continuation expressed by Egs. (B2)

and (B3) finally leads to the following expression for the
wave function on the line I":

Y= _,L'Iz |——1/4{A8[1+Ca+lzll/2ei37r/2]—1 eXpE"|‘1§ lzlalzj
+ B 1+Ca |2 e exp[—i3[2[*7]}. (B4)
Since this result must be identical with Eq. (B1) with

z— |z|e if the wave function is to be single-valued,
we thus obtain

Z

%

Ca—': —"'L.Ca—*- (BS)
and

—iA8=Bl, '_’L'Bg=A1. (Bﬁ)

The requirement that Egs. (B2), (B3), (BS), and (B6)
be satisfied for arbitrary values of 4; and B; then gives
the additional restrictions

—iCf=Cr=Cq, (B7)

and the desired relation between the coefficients on line
I and those on line SII becomes simply

A4=-‘A1, B4=Bl+iA1. (BS)

Equations (B5), (B7), and (B8) comprise the desired
connection formulas for the wave function and the
curvature coefficient, and they lead directly to the
relations (19) and (20) given in the text.



