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Theory of Sidebands of the U-Center Vibrations in Alkali Halides:
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The substitutional H=ion impurity in alkali halide crystals gives rise to a sharp vibrational local mode
at high frequency. Sidebands of this vibrational mode, caused by anharmonic interaction, reflect with some
distortion the density of phonon states as perturbed by the presence of the impurity. The recent model of
Timusk and Klein for this perturbation has been extended to account for the distortion of the crystal near
the H ion. The sideband spectrum is calculated for KBr and KI, using a Green's-function method. The
agreement with experiment is greatly improved. In particular, the extended theory predicts resonances at
the top of the acoustic band for both crystals, a resonance at the bottom of the optical band for KBr, and
a resonance in the band gap for KI, all of which accord with experimental observation.

Nguyen" has performed a similar calculation, giving a
careful account of the interaction which produces the
sideband, including the possibilities both of anharmonic
and second-order electric-dipole interaction. He 6nds
the anharmonic interaction to be the dominant mecha-
nism, thereby justifying the use of this interaction by
Timusk and Klein and in the present paper.

The experimental and theoretical results of Timusk
and Klein are given in Figs. 4 and 5 for KBr ' and KI."
The Timusk-Klein model (hereafter called the TK
model) satisfactorily reproduces the general shape of
the experimental results, including especially the shape
and spacing of the peaks in the acoustic band of KBr.
This agreement was achieved without the use of any
parameter fitted to sideband shape, the single relevant
parameter of the model —the nearest-neighbor force
constant —being fitted to the local mode frequency.

However, certain predictions of the TK model are
not in agreement with the experimental curves. In
particular, the model predicts for the sideband spectrum
a large spike, in the band gap between acoustic and
optical bands of the perfect crystal. This spike is not
observed experimentally in the case of KBr, though a
spike at 93.5 cm ' does appear in the data for KI.
Moreover, the TK model fails to predict a shoulder in
the peak at the top of the acoustic band in KBr, which
appears as a second peak in KI. Third, the TK model
predicts a resonance in the optical band for both KBr
and KI, which fails to appear in experimental data.
This resonance is particularly sharp in KI.

It will be shown in the present work that these three
unsatisfactory features of the TK model can be elimi-
nated by extending the model to allow for additional
perturbation of the harmonic lattice modes by the
presence of the impurity. In Sec. II of this paper, the
general formalism is reviewed. In Sec. III, the extended
model of the U center is introduced. In Sec. IV, the
sideband spectrum of the local mode vibration is calcu-
lated for the cases of KBr and KI. In Sec. V, the
results are presented and discussed.

I. INTRODUCTION

A LKALI halide crystals containing U centers (sub-
stitutional H impurities) have for some time

been known to have a high-frequency localized vibra-
tional mode. This mode is optically active in the
infrared region, and was 6rst observed by Schaefer. '
The frequency of the local mode is determined by the
small mass of the H ion, as compared to the host ion, ' 4

and by a reduction in force constant connecting the I
ion to its nearest neighbors, amounting, typically, to
&0'%%uo of the nearest-neighbor force constant in the
perfect host lattice."

Sidebands of the local mode vibrations have also been
observecV 7 8 and have, to some extent, been theoreti-
cally investigated. ' The existence of sidebands is
basically due to the anharmonic coupling of the local
mode vibration to other vibrational modes of the crystal.
The cubic anharmonic coupling dominates' and the
sideband spectrum refiects —with distortions of shape
caused by the highly localized nature of the coupling-
the vibration spectrum of the crystal.

Timusk and Klein' have developed a theory which
attempts to explain the shape of the sideband spectrum
in terms of the anharrnonic coupling of the H ion to
its nearest neighbors. The sideband spectrum is calcu-
lated, to lowest order in the anharmonic coupling
constant, taking into account the effect of the U center
on the harmonic vibrational spectrum of the crystal.
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Q. CALCULATION OF THE LINE SHAPE

In the present paper, a matrix notation will be used. "
Thus, the eigenfrequencies and eigenmodes of the alkali
halide crystal, including a U center, are given by the
solutions of the matrig equation

(A —to'1)u =0, (1)

where co is the frequency of vibration. The dynamical
matrix A, can conveniently be d,elned in the repre-
sentation whose rows and columns are labeled by
position of the ion L, direction of displacement n, and
type of ion tz (tt=+ and tt= —,indicating alkali and
halid. e ions, respectively). The elements of A are defined
as derivatives of the potential energy V of the crystal by

A» " " ——$8'V/z)uLa "ctuL "j.=p

+ho'bz„plL, z, 3, 5„, 5„,„. (2)

The variables uL " are elements (in the Ltrn representa-
tion) of the vector u. The element uz, "is given by the
Lttnth component of the ionic displacernent multiplied
by gM„, where M„ is the mass of the ion of type tt in
the perfect lattice. The light mass of the H—ion is
accounted. for by the )oP term, where X is given by

X = (M —MH)/M,

with MH the mass of the H ion.
The Green's-function matrix G(top) of the lattice

including U center is de6ned by the matrix equation.

(3—to'1)G(to') = 1. (4)

In the representation in which A is diagonal, which will

be called. the / representation, the diagonal elements of
A are co&', the eigenfrequencies of the crystal. In this
representation, G is also diagonal. From Eq. (4), its
elements are

Gtp(to') =btt /(toP —to').

The dynamical matrix 2 can be written in the form

(6)

where A is the dynamical matrix of the perfect alkali
halide crystal and I' is the change resulting from intro-
duction of the H ion. It is useful to define the Green's-
function matrix for the perfect crystal, G(oP), by the
matrix equation

(A —to'1)G (zo') = 1. (7)

Using Eq. (7) with Eq. (4) and Eq. (6), G(to') can be
written

G(~') = $1+ G(to') I'j-zG (to') . (g)

The anharmonic coupling between the local mode and
other vibrations of the crystal arises primarily from the
anharmonic connection of the H ion to its nearest

~ See, for example, the article by A. A. Maradudin, in Astfo-
physzos and the Many-Body Prob(era edited by K. W. Ford (W. A,
Benjamin Inc. , New York, 1963).

neighbors. ' The formula for the upper sideband line

shape for radiation polarized in the x direction is

l+(co) = (tzB'/4zrMH'to'0')X Im{G(tos+z0+) )X, (9)

where j+(to) is the power absorbed as a function of
frequency co, measured. with respect to the local mode
frequency Q. 8 is the relevant anharmonic coupling
constant, and the imaginary part of the Green's-function
matrix is to be taken for the variable oP just above the
real to axis. The vector X (and its adjoint X) has, in
the Lttzr representation, only two nonzero elements:

X, "= (2M~)
—'"(bz„.;—bz„.;)3.,+3..., (10)

where u is the nearest-neighbor d,istance and S is the
unit vector in the x direction. The restriction of X to
two elements results essentially from the use of nearest-
neighbor anharmonic forces. Only the even combination
of nearest-neighbor displacements has been taken, since
odd motions exert no net (cubic) anharmonic force on
the H ion.

Using Eq. (8), the formula for the line shape can be
written

j+(to) = (M'/4zrM I'to'0')X
X~m{L1+G(~'+z0+)1'j 'G(~'+z0"))X (11)

The vector X and the matrices G and I' can be treated
in any representation. In particular, the representation
which diagonalizes I' will be found to simplify the
calculations. The nature of the matrix I' is the subject
of the next section.

III. THE EXTENDED MODEL OF THE U CENTER

The TK mod, el accounts for harmonic perturbation
of the crystal by the H ion by changing the force
constants between the H ion and its nearest neighbors,
in addition to the mass change. These are the only
sects which prove to be important in determining the
vibration frequency of the local mode. However, the
perturbation of the crystal by the H—ion is certainly
more extensive than this. Measurements of volume
change of a KBr crystal with increasing concentration
of U centers" show that a volume shrinkage of order
10% can be expected in the vicinity of the H ion. The
occurrence of this shrinkage implies that the H—ion
has a smaller ionic radius than the halid, e ion it replaces,
that is, the neighbors of the H—ion move in until they
feel an exchange repulsion which balances what they
feel from other neighbors. Because the forces between
ions are not perfectly harmonic, this change of position
results in a change of force constants. The change will

be largest (apart from the change between the H ion
and its nearest neighbors) for the interionic distances
which are most stretched. ; namely, between the nearest
neighbors of the H ion and their nearest neighbors in

rs R. Hiisch and R. W. Pohl, Trans. Faraday Soc.34, 883 (1938).



746 GETH I NS, TI M USK, AN 0 WOLL 157

In this representation, the matrix I" can conveniently
be written in the block form'4

A 0 0
0 A„O 0

r= 0 0 A.. (14)

0

where A is the matrix

b4 b2 0 0 0
b3 bs

A = 0 b5 b1 b5 0
0 0 b5 b3 b2

0 0 0 b2 b4.

(15)

FIG. 1. The "molecule" of force-constant changes introduced
by insertion of the H ion. The ion at the center is the H . Its
erst-neighbor (alkali) atoms are shown, as well as its fourth-
neighbor (halide) atoms. The spring constant r4f is determined
by the local mode frequency, ' the spring constant hg is an ad-
justable parameter of the present theory.

the direction away from the H—ion. (These are fourth
neighbors to the H—ion; see Fig. 1.)

The change in force constants coupling the H ion
to its second and third neighbors can be expected to be
small, because these force constants are themselves
small.

The change in potential energy is then taken to be
simply

4V= Q L(hf/2)(M "'u -a+—M:"'u a )'
cg =143
s=&1

+ (d g/2) (M:"'u2 a M "u --a+)—'g (12)

where 44 fhas been taken as the change of force constant
between the H ion and its nearest neighbors, while ~g
has been taken as the change of force constant between
the nearest neighbors and the fourth neighbors, and o.
is the unit vector in the direction n. The pairs of ions
affected by the sum in Eq. (12), and the corresponding
force constant changes, are shown in Fig. 1.

The matrix I' can be constructed, in the L1442 repre-
sentation, by taking appropriate derivatives of the
potential energy. LSee Eq. (2).j The only nonzero
elements of F are

b = {b4—bs —f(b4 —bs)2+4bssjr~2)/2bs. (17)

In terms of these eigenvectors of A, the eigenvectors
of I' can be written

Q""(1)=3 '"(~-,*+~-,.+~-.*)qL "(er)

QL "(2)=3 '"(&...+ba, „+ba,.)qL "(e2),

Q.-(3)=6-'~'(2b. ,—b. „—b. ,)q.-(e,),
QL "(4)=6-4~2(28.„—8.,„—b. , ,)qL "(e2),

Q aa(5) —2—r/2(b b )q aa(e )

QL "(6)=2 '"(~ —~ )qL "(es)

whose rows and columns are labeled by the o.th com-
ponent of the displacements of the ions at —2am, —uo. ,
0, an, and 2ao, .

It is useful to think of the nonzero part of I' as the
force constant matrix for a "molecule. "The appropriate
molecule is pictured in Fig. 1.The eigenvectors and eigen-
values which diagonalize F are just the normal modes
and frequencies of this molecule. The form of I' written
in Eq. (14) indicates that the molecule is highly de-
generate. Only the even modes of the molecule will be
required for subsequent calculations (i.e., the modes in
which the H ion does not move).

Each submatrix A has the same two even eigen-
modes, labeled by e& and e2, whose normalized eigen-
vectors have the elements

qr. "(er)= 2 'I'(1+b') —"(b&L,2aab. , +8L,aalu. ,+-
hL, ;o„,+ b—bL, 2, 8„, )—, (16)-

q
a"(e2) =2 ' '(1+b')—U'( —8L 2 -I +bbL

bbL, aa'4, +bL,—saa—ba,—) q—

where b is given by

I'o, o"— = 2h f/M +@os=b,
I'gaagsaa ——,

—Dg/(M4M )"= b2

I'~ —,~,- + += (hf+d, g)/M =b,
I +2aa.+2aa ' ~g/M —= b4 y

I'g, —,s~ ~= d f/(M+M )"'=—bs

(13)

The eigenvalue corresponding to modes 1, 3, and 5
is the eigenvalue of the e~ mode,

er ——-,'(b4+ bs —L (b4 —bs)'+4bs']'12) (19)

'4 The first fifteen rows and columns of the representation have
been taken to refer to the H ion and to the appropriate compo-
nents of displacement of its nearest and fourth-nearest neighbors.
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while that of modes 2, 4, and 6 is

e2=-'(b4+b3+L(b4 —ba)'+4b '7'"). (20)

Modes 1 and 2 have A &, symmetry descriptively called
"breathing" symmetry, while modes 3 and 4 and modes
5 and 6 have E, and E,' symmetry, respectively, called
"tetragonal" symmetry. (See Ref. 9.)

In the evaluation of line shape it will be convenient
to use the following representation, labeled by y. The
eigenvectors of I' are used as a basis for the 15&15
subspace in which I' has nonzero elements; the Leer

representation is used elsewhere. In the y representation,
the vector X has only four elements, corresponding to
the even eigenmodes of 1 whose eigenvectors are given
in Eq. (18).

Eq. (18), X can'be written in the form

X=Xg+&2X~,
X&=L3M+(1+b')7-'I't Q(1)+bQ(2)7,
X = L3~ (1+b')7-"LQ(3)+bQ(4)7.

(22)

The components of the vectors Q(y) are given in Eq.
(18). Viewed in the y representation, therefore, the
vector X has only four nonzero elements, all referring
to modes of even symmetry, two of which refer to modes
of breathing symmetry A&, and two to modes of
tetragonal symmetry E,. Moreover, the matrix G can
have no elements G» unless y and y' refer to modes
of the same syxrunetry, since G is the Green's function
for a lattice of full octahedral symmetry.

Therefore, the scalar quantity XGX can be written
in the form

IV. CALCULATION OF THE
SIDEBAND SPECTRUM

XGX=X~GXg+ 2XgGX~, (23)

The formula for line shape in Eq. (11)requires evalua-
tion of the scalar quantity

XGX=X(1+Gl') 'GX
=XGX—XGIGXyXGrGrGX —", (21)

where a power-series expansion has been indicated. In
the L~cr representation, neither X nor I' has elements
apart from the 15)&15 subspace in which I' has nonzero
elements. From Eq. (21), it is apparent that only the
corresponding 15)&15 elements of the matrix G will
enter the evaluation of the quantity XG'X. Use of the
y representation further simplifies evaluation of Eq.
(21). First, note that, by comparison of Eq. (10) and

G„=g T,, kk(cokk' —co') 'Tk)„, ,
k, X

(24)

where the sum runs over the eigenvectors k and polari-
za, tion branches A of the perfect lattice, and the co~), are
the eigenfrequencies of the lattice. The required ele-
ments of the transformation matrix T~ I,q are

a,nd the evaluation of either quantity requires only the
inversion of a two-by-two matrix.

It is therefore necessary to know, of the matrix G,
only the elements of two 2)&2 submatrices. The shell
model VI of Cowley et al."was used to calculate the
eigenfrequencies and polarization vectors for the perfect
lattice. The matrix elements G». can be written

Ti,kk= (i/gN) P $e +(k,X) sink a+bc (k,&) sin2k, a7,
n=1,3

T2, kk ——(i/gN) P Lbe +(k,X) sink a—c (k,X) sin2k a7,
0.=1,3

Te, kk= (r'/QN) p Le +(k,X) sink a+be (k,X) sin2k a7(3b, ,—1),
0,=1,3

T4, kk (i/gN) g Lbe.+(k, li) sink a—e, (k,X) sin2k a7(3&,,—1.),
n=l, 3

(25)

where e " (k,X) are the polarization vectors of the perfect lattice and N is the number of ions in the crystal. . The
sums on it and X necessary in Eq. (24) are performed numerically. The matrix elements Gv are most easily com-
puted in terms of the function I». (~'), defined by

Ipr (&') =&m(Gpp (oi'+i0+)) =7r Z k, k Tp, kkb(o~kk' —~') Tkk, ,

1 "I„,(s'+i 0+)
d (s') .

S co —ZO+
R~~ (&a') =Re{G~, (co2+ i0+) )=-

27r

The real part of G». can be found, using the Cauchy relations, " tg be

(26)

(27)

The integral. is evaluated using a numerical procedure suggested by Maradudin. '
"R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B.Woods, Phys. Rev. 131, 1030 (1963); A. D. B.Woods, W. Cochran,

and B.N. Brockhonse, ibid. 119,980 i1960)."E.G. Phillips, Factions of a Complex Variable (Oliver and Boyd, London, 1961),p. 93.
"A.J. Sievers, A. A. Maradudin, and S. S. Jaswal, Phys. Rev. 138, A272 (1965).
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The line shape can now be written in the form

f+ (a)) = fhB'/1 2m M+Mrr'~'0'(1+ b')j(Ng/Dg+ 2Ne/De),

where the numerators and denominators Ã~, X~, D~, and D~ are given by

N~=DII~(I~I+2bIII+b'III+ (eI+b'e&) (RIIIII+R2IIII—2RIII&u)1

DIA/Rll+2bR12+b R22+ (e2+b el) (R11R22 f11122 R12 +112 )j,
DA DRA +DIA p

DRA =1+elR11+eIRII+ eleI (R11R22 I11I22 Rlg +III )
Dr~ =eilll+e2122+ele2(R11122+R22~11 2R12112)

Nrr =DrIs(III+2bII4+b'l44+ (eI+b'er) (RIII44+R4+II —2RIIII4)]
DIE/RIs+2bRI4+b'R4I+ (ep+b'er) (RIIRI4 IIII44 RI4 +I34 )j,

DE=Drr z'+Dry',

DrIrr 1+eIRII—+—eIR4I+ereI (ReIR44 I33I44 —RI4'+II4'),

Drrr eIIII+——eII44+ereI(RIIIII+R44II3 2R34I34) .

(28)

(29)

The quantities D» —iDI& and D&z —iDIz are just
the determinants of the 2)&2 submatrices of 1+GI';
these arise in the matrix inversion required to evaluate
Eq. (21).

The appearance of in-band resonances or out-of band
poles in the side band spectrum is governed by the
behavior of Dg~ and Dg~, a resonance or pole occurs
where one of these is zero. The quantities D~~ and Dl~
determine whether a zero of D~~ or Dg~ will produce a
resonance or a pole. Since these quantities are zero for
~' outside the acoustic or optical bands of the perfect
crystal, but 6nite inside these bands, an in-band zero
will produce a resonance of 6nite height in the sideband
spectrum, while an out-of-band zero will produce a
pole."The quantities Dg~ and Di~, with Dgg and D~E,
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FIG. 2. The quantities Dzz, Dip, Dzz, and DIE, occurring in
the resonance denominators of Eq. (28) are plotted for KBr as
functions of wave number. "Breathing" and "tetragonal" reso-
nances in the sideband spectrum occur where Dgg and DgE,
respectively, pass through zero with negative slope. The height
of a resonance is determined by the value of Dip or Diz at the
zero. A "tetragonal" resonance is predicted at 78.5 cm 1 and
"breathing" resonances at 108 cm ' and 118.5 cm 1.

"Note that resonances occur only for those zeros of Dzz or
Dgg for which the slope is negative.
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FIG. 3. The quantities Dzz, Dlz, Dzg, and DII. are plotted
for KI. (See caption, Fig. 2.) A "tetragonal" resonance is pre-
dicted at 67 cm ' and a "breathing" resonance at 89.5 cm ', in
the gap.

are plotted in Figs. 2 and 3 for the cases of KBr and
KI, respectively. It can be seen that in-band resonances
are to be expected at 109 cm ' (for the breathing mode)
and. at 78.5 cm ' and, less sharply, at 118.5 cm ' (for
the tetragonal mode) in KBr. For KI, a pole is expected
in the gap at 89.6 cm ', and an in-band resonance at
66.9 cm '.

The resulting sideband spectra are plotted in Figs. 4
and 5 for KBr and KI, respectively.

The force constants used are noted on the 6gures.
They were determined as follows: Df has the value
given by Timusk and Klein. ' "As discussed by TK, the
frequency of the local mode is determined, to a very
good approximation, by the diagonal element of the
matrix F corresponding to displacement of the H ion.
This element is not affected by the change of I" made in
the present Inodel. The values used for Dg were chosen
to give a reasonable qualitative fit to the line shape
data. As discussed in the next section, it is unrealistic
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at the present time to try to perform fine adjustments
on the setting of hg.

The functions I» (a&') were calculated using the
shell-model parameters of Cowley et al."for KBr and
Bowling et al." for KI. The mesh size used, following
TK, effectively includes 64000 points in the first
Brillouin zone. The calculated eigenfrequencies and
polarization vectors were sorted into 120 frequency
"bins" each of size 0.05)&10' cps. For each point, the
value of the product of the transformation matrix ele-
ments T~,~q was computed, and the total contribution

EXP ERIMENT (8.5'K)

PRESENT MODEL cd=-9I50 dyne/cm

zg~-5I50 dyne/cm

PR

5-

f -"-9250 dyne /ce

g = - 4500 dyne /c m

C)
I-
CL
IK
O
CO
lQ

TK MODEL zf =-9150 dyne/cm

EXPERIME NT
E

(I2oK)

z 5-0
I-
LL
IL
O
Cl

T K IlhODEL d f a- 9250 dyne/cd

to I» (aP) was calculated bin-by-bin. The result is six
histograms which approximate the functions I» (uP).
The functions R» (a&') were computed from these using
the Cauchy integral of Kq. (27).

V. RESULTS AND DISCUSSION

Results for the cases of KBr and KI have been
plotted in Figs. 4 and 5, with the corresponding experi-
mental and theoretical curves of Timusk and Klein. ' "

» G. A. Dolling, R. A. Cowley, C. Schittenhelm, and I. M.
Thorson, Phys. Rev. 147, 577 (1966).
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FzG. 4. The results of the present calculation for KBr are
compared with experimental and theoretical results of Timusk and
Klein (Ref. 9}.The bar under the wave-number axis indicates the
band gap. The height of the theoretical curve has been ixed by
matching to the experimental curve at the top of the broad peak
in the acoustic band. The force constant 6fwas fixed by the local
mode frequency; ng was used as an adjustable parameter. (See
Fig. 1.) The "tetragonal" resonance predicted in the gap by TK
(dashed vertical line) has moved into the acoustic band to 78.5
cm '; and the "breathing" resonance which they predicted at
125 cm ~ has moved to 108 cm ', improving qualitative agreement
with experiment. (Background has not been subtracted from the
experimental results. )

0 I00
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FIG. 5. The results of the present calculation for KI are com-
pared with experimental and theoretical results of Timusk and
Klein (Ref. 10). See caption of Fig. 4. TK have observed a reso-
nance in the gap at 93.5 cm ', and their model predicts (dashed
vertical line on bottom curve) that it is due to a "tetragonal"
resonance of the H ion with its nearest neighbors. In the ex-
tended model, this resonance has moved into the acoustic band to
67 cm, improving agreement in this region, and the gap mode is
now shown (dashed vertical line on top curve) to be due to a
"breathing" resonance (which occurred in the optical band in the
TK model).

The present calculation shown in the same figure shows
qualitatively improved agreement with experiment.

The spike predicted in the gap by TK has moved
down to provide a sharp in-band resonance at the top
of the acoustic band. This corresponds to the peak
actually observed at this energy in both crystals.

The breathing mode resonance predicted by TK in
the optical band has also moved down —to the lower
edge of the band for KBr, and into the gap for KI. This
feature accords with the bump experimentally observed
at the lower edge of the optical branch in KBr, as well
as with the spike observed in the gap in KI. Note that
the introduction of the new force constant change has
not affected the broad peak in the acoustic branch.

It therefore seems that no major qualitative dis-
crepancies remain between the experimental curves and
the theoretical prediction. All the significant peaks in
the experimental curves have now been accounted for.
Moreover, understanding of the features of these curves
is measurably improved. For example, the spike which
occurs in the gap for KI is now predicted to arise from



coupling of the H -ion vibration to a breathing motion
of its neighbors. This prediction is accessible to experi-
mental verification by studying the splitting of the
sharp peaks under stress.

It must be emphasized, however, that the improved
agreement has been achieved at the expense of intro-
ducing an extra parameter. Even with this parameter
the exact positions of the peaks are not perfectly pre-
dicted, and, with the exception of the broad peak in the
acoustic band, all predicted peaks appear to be stronger
and sharper than the experimental peaks. The most
probable explanation of these two discrepancies is that
anharmonic shifting and broadening of the lattice modes
has not been taken into account. If anharmonic shifting
is taken into account, the shell-model frequencies of
the perfect lattice must be corrected to the temperature
of the present experiments. If anharmonic broadening
is taken into account, the Green's-function matrix ele-
ments will have (in the diagonal representation)
imaginary parts which are Lorentzians of 6nite width. '
The sharpest peak possible in the sideband spectrum
will be such a Lorentzian peak. The broadening of the
peak actually observed in the gap in KI, therefore,
provides an estimate of the order of magnitude of the
anharmonic broadening. An anharmonic e6ect of this
order will cause noticeable broadening of the sharp
peaks predicted in the acoustic band as well. The de-
tailed nature of anharmonic effects on the sideband
spectrum is currently under investigation.

~ A. A. Maradndin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

The sharpness of the tetragonal resonance in the
acoustic band may be initially surprising, since the
density of states for the perfect crystal is not small at
this frequency. However, the sharpness of this reso-
nance is (in the harmonic approximation) determined
solely by the quantity D+J, which is just the density of
states for modes having tetragonal syzmnetry about the
position of the H—ion. This quantity is small for modes
near the top of the acoustic band.

The improvement in agreexnent with experiment of
the present Inodel has come about because of the
"softening" of the environment of the H ion, which
has lowered the frequencies of all resonances. It may be
that an overestimate of the quantity ~g has resulted
from neglect of other force-constant changes. Within
the harmonic approximation, however, the agreement
of the present model with experiment seems adequate.

In summary, the present calculation has significantly
improved qualitative understanding of the existing
infrared absorption data in KBr and KI. When an-
harmonic effects are taken into account, a quantitatively
satisfactory theory of the sideband shape can be
expected.
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