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Improved Quantum Theory of Many-Electron Systems. I. Construction
of Eigenfunctions of 8' Which Satisfy Pauli's Principle*
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A general method of obtaining many-electron wave functions which are eigenfunctions of h' and which
also satisfy Pauli's principle is developed. This method is based on the properties of the irreducible units of
the group algebra of the symmetric group. Using this method, expansions of the exact wave function are
found which will in succeeding articles form the basis of a powerful method of obtaining accurate and qgite
zzsefzzl many eiectron-wave functions for atoms, molecules, and solids.

rN TRODUCTrON

HIS series will be primarily concerned with con-
structing accurate and useful many-electron wave

functions for atoms, molecules, and solids. We take our
Hamiltonian B as including only the kinetic-energy
terms for the electrons and the electrostatic interactions
among all the electrons and nuclei (i.e., we neglect
relativistic effects, nuclear motions, and all spin inter-
actions). Independently of the nuclear configuration this
Hamiltonian has two general symmetries: H is invariant
under all permutations of the electrons, and H com-
mutes with all spin operators, including 5' and S„ the
total-spin and total-spin-projection operators. This in-
variance of the Hamiltonian results in some important
symmetry conditions on the wave function. We wish to
introduce these symmetries into the wave function in an
exact way, since, although of necessity any wave func-
tion we write down will be an approximation, we wish
for the approximate wave function to behave as nearly
as possible like the exact wave function so that we will

be able to draw valid conclusions from considerations
of the approximate wave functions. The proper permu-
tational symmetry for the many-electron wave function
is stated in the Pauli principle and is that the many-
electron wave function changes sign upon transposition
of the spatial-spin coordinates of any two electrons. A
condition which ensures that the wave function pos-
sesses the proper spin symmetry is that the wave func-
tion be an eigenfunction of 5' and S,. In this paper we
will discuss a general method of constructing many-
electron wave functions that simultaneously are eigen-
functions of S' and S, and satisfy Pauli's principle.
Later papers will utilize this method for developing a
general method of calculating accurate and useful
many-electron wave functions.

It has been rather easy to construct a wave function
which satisfies Pauli s principle, since if i'(1,2, ,Ã)
is any function of the spatial-spin coordinates of X
electrons, then %(1, ,1V)= 0',ib(1, ,$) changes sign
under any transposition )where Ol is the antisym-
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metrizer, P, (—1)'r7. We will use a method of con-
structing eigenfunctions of 5' satisfying Pauli's principle
which is based on the group-theoretical properties of
the symmetric group, and. which has a form especially
well suited, for our purposes. This method is closely
related to the method due to Vamanouchi' and Kotani. ' '

The basic operator is discussed, in Sec. I, and some
useful relations are obtained in Sec. II. In Sec. III we
consider the expansion of the exact wave function in
terms of the operators of the new method. Section IV
includ, es a short discussion of the Lowdin and Yamo-
nouchi-K. otani methods and a comparison of the latter
to the new method, and, in Sec. V we consider some
ways to use the results of Sec. III for the purpose of con-
structing approximate wave funct. ions.

I. THE SYMMETRXC GROUP AND THE
t";~ OPERATOR

As was mentioned in the Introduction, the Hamil-
tonian H for an X-elect.ron system is invariant under
all permutations of the E electrons, i.e., is invariant
under the operations of the syrrtrrtetric group, Stv. In this
section, we will use the orthogonal units

~
0'j~ of the

group algebra of SN to construct an operator 6,& such
that if it is any function of the spatial-spin coordinates
of X electrons, then G;rib satisfies Pauli's principle.
Then we show that t.he 6;& operator also has the prop-
erty that G,Q is an eigenfunction of S'.

The orthogonal units and their properties were de-
rived by Young and are d.escribed in detail in a quite
clear and appealing treatment by Rutherford. ' These
units are Wigner projection operators,

' T. Vamanouchi, Proc. Phys. Math. Soc. Japan 18, 623 (1936);
20, 560 I,'1938); see also M. Kotani and M. Siga, ibid. 19, 471
(1937).

~ M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Table
of Molecllar Integrals (Maruzen Company, Ltd. , Tokyo, 1963),
2nd ed.

We wish to thank Dr. R.M. Pitzer for pointing out that Kotani
describes a method which is related to the method described
herein.

z P.-O. Lowdin, Phys. Rev. 97, 1509 (1955).
D. E. Rutherford, Szzbstitzztiona/ Analysis (Edinburgh Uni-

versity Press, London, 1948).
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defined in terms of a specific representation U~ of the
irreducible representations of the symmetric group.
This representation is de6ned in Appendix A in terms
of Young's shapes S& [e.g., as in Fig. 1(a)j and Young's
tableau S;& [e.g., as in Fig. 1(b)]. The resulting U, &

are real orthogonal matrices; hence

Fzo. 1. (a) A sample s~ ' . =t2, 1't

shape; (b) a sample
standard tableau.

(a)

Thus,

s2' = x sit2. i]
2

(b)

(10)

t' 1
O„~=I P U„„~r,

r=P U„,~O„~, (3)

Using (10) in (9) we obtain

(h, h+ 1)G,~= —P |„,.O,p~;;s= —G,~,

IllTS

where O~~= 1V!/f~ and f~ is the degree of the p irreducible
representation of S~. The O„,~ combine as follows:

O„,~O„,~ = b~&b, „O,„~,

and the resolution of the identity becomes

The Young's shape containing one column is denoted by
[1~$ and leads to one tableau

1
Ogg~'"& =

E!
where 8, is the parity of v-.

A shape which is obtained from a second shape by
interchanging rows and columns is called the associate

of the second shape, and the same is true for tableaux;
the associate is denoted by a bar. Using the definition of
axial distance from Appendig A, we see that d(~~, k)'
= —d(~+~, l,)' and

We wish to consider linear combinations of permuta-
tions acting on two different spaces. We will let O«act
only on the first space and co~,i' act only on the second

space; of course, 0„, and cu„,& commute. Define the

quantity G, t as follows:

G.p= P f. P,,u~„;.s

where a„; is the permutation taking tableau 5,~ into
tableau S,&. Let the transposition 7 act on G,~; it then
acts on both 0~ and ~~. Using (3), we obtain

G p —P P Q f U PU 0 PQ„,u~ (g„;P--.
pat apq r

U, y U„„,PO„v.=,'P, -.

which is independent of k. But any permutation v- may
be expressed in terms of elementary transpositions and
T will involve an even or odd number of elementary
transpositions depending on whether v is an even or odd
permutation; hence,

rG, ~=f,G,~.

Thus, the result of G;~ operating on any function of T
electrons is a function which satisfies the Pauli principle.

Now we must consider the spin symmetry. If x is some
product of the spin functions for S electrons and ~,„
is a Wigner projection operator for S~, such as in (2),
then co,„Xis an eigenfunction of 52,

S'ar, „x=S(Sj1)(o,„X.
This is due to the well-known direct relationship'
between the irreducible representations of Eth rank
tensors [in this case based on the transformation group
SU(2)j and the symmetric group on E objects, g&.
Since the transformation space for SU(2) is two-dimen-
sional, then co,„X/0 only for o. having two rows or less
(see Appendix D). If these rows have lengths n and m
with n) m, then n+m =Ã and S= (n —m)/2. Thus, if
G,~p&t0, then S'G,~p=S(S+1)G,~ti and G,»is an opera
tor which upon operating on a function of the spatial spin-
coordinates of iV electrons yields a function which is an
eigenfunction of total spin and which satisfies I'auli's
principle. Before considering some important expansions
using this operator, we will consider some of its
properties.

II. SOME PROPERTIES OF THE
G,l' OPERATORS

Expectation Values

Since the U, ~ are orthogonal, the adjoint of O,,~ is
O, ;~. That is, for any E-electron spatial functions
C'y and C2,

(C, IO, ,'C,)= P U... (C, IrC,)

where wehaveusedo„= ~ ~o;, io,f.=l ., andf~=f~-'.
If v is an elementary transposition, then from Ap-

pendix 8,
go~ $ Fr ptr ~

=(0;PgICs). (13)

M. Hamermesh, Grolp Theory I'Addison-Wesley Pu&lishing
Company, Inc., Reading, Massachusetts, 1962).
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Hence if B commutes with all permutations, then

(c, l
H

l o,,m, )= (O,,m, lH l
c,)

and
(O,,'CilHlOgtsCs)=5 sb, g(CilHlO, tsCs)

using (4). Thus, if Xi and X& are arbitrary iU-electron

spin functions,

«,~ix. lH l
G.t'C.x.)

= ~"'{.;sf"(C'ilH
l
O's "C's)(Xt

l ~'aXs) '

hence
E= (G,~C x

l
H

l
G,&x)/(G, ~C x

l
G,&x)

= (c IH l
o,,~)/(c IO, ,~&.

Consider the operator

manner such that we can combine terms to obtain~

4 exact= P C~&...aQli""'$, (1)P;(2) fs(N), (19)i(j(."(I

where E!Qti" ' ——pr Cg~ f',r is an. antisymmetrizer and
the set of spin-orbitals is presumed to have been ordered.
But if no further restrictions are placed on the coeffi-
cients, (19) is in general not an eigenfunction of spin; in
fact, from (17) we can expand Qii" '=P„Ta, where
each p, corresponds to a diferent eigenfunction of S'
which satisfies Pauli's principle. Thus to ensure that
4, „t is an eigenfunction of S' and satisfies Pauli's
principle, instead of operating on (18) with Qii' "'exact
we should operate with Tl',

T"—= (1/f")2 G'". +exact S

jI&j2« jZ
C.Ta sit, . (2o)

Then using (4) and. (8) we find that TaT&= o»T~. Thus
the T~ form an orthogonal set of idempotent operators.

Consider the operator Q„Ta. We obtain

2 T"= (I/8")2 f. E(1/f")O""

where 0,;~ operates on spatial coordinates only and 7

operates on spatial-spin coordinates, and we have used

where j denotes the set of indices jijs j~ and It;
denotes f,,f;, P;„. We will generally suppress the
subscript S on p.

We are interested in a Hamiltonian which does not
involve spin, so it is convenient to factor each spin
orbital into a spatial part g; and a spin part s, . We
let {g,}be a complete set of spatial functions and {s,}
= {tt,P} be a complete set of spin functions. Thus (20)
becomes

2 {'.„O-"td.-'s= (I/8")2 {'.rO-" +exact= P Ct, jT 4tXj ~ (21)

fsr=Qll
St 7-gg"

(17)

from Appendix C. But 0~~=/!/fa and Pp, , O,,=s,
thus, '

where
C'=~„(I)~'.(2) ~'.(&)

Xi = s;, (1)s,, (2) s,„(1V).

That is, Q„Ta projects out the totally antisymmetric
component of any function of X particles. Since
Qiii'"iQiii' i ——Qiii'"i then (P T~)(P T~) = (Q Ta).

III. EXPANSIONS OF THE EXACT MANY-
ELECTRON WAVE FUNCTION

Next we shall consider some possible expansions of
the exact many-electron wave function.

If {f;}is a complete set of spin orbitals, then the
exact many-electron wave function can be expanded in
a sum over tensor products of these spin-orbitals, '

4'exact(1, 2, ' ' ',E)

In order to define (21) properly, we must define an
order for the double sum over spatial and spin tensor
components, so that only linearly independent terms
appear, just as was done for (19) and (20). It will be
convenient to do this by ordering the spin components
first and then the spatial components. Hence if Px ——C;X;
and k is ordered (ki(ks( &k~), then j is ordered
(jt&~ j&&~js&~~&jz), and if jp= j„then ip&i, . By
this convention we have X; =u(1)n(2) .a(p)P(p+I) .
P(Ã). If the exact wave function is an eigenfunction of
S„ there is only one choice of j for a given M; also if
p=-', iU+M, then the sum over i in (21) becomes such
that i~&i2& &i„and i„+~&i„+2& &i~, such a pair
of ordered sums is denoted by Pp, q'. Thus (21) becomes

i„j, , k
C,,...,i!,(1)1I,(2). "AP). (18) %exact ' = p Cp, qTp(C'p, qXsr)

p a

If this wave function is to describe a system of electrons,
then the coefficients in the expansion are not all inde-
pendent. For example, in order that +,„„tsatisfy the
Pauli principle, the coeKcients must be related in a

' Ke use the convention that 0;,&, 0,,&, and cv;,.I' are operators on
the spatial-spin, spatial, and spin coordinates, respectively.

a P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).

= (1/f")2' C, q' 2 G'"(C', Xjr) (22)

In particular, if M=S then G,~CX 8s,rGI~CX (ssee

Appendix D); hence

4e ct. =Q'Cp, q Gr (Cp, qxs).
Pti
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c's s='pi i~'42~ 4+o~Qlh'ps2h' ' '4's (2S)

where a and b refer to the different sets of functions.
Equations (23) and (24) might seem to give a special

place to the G~& operator; actually this is not completely
the case. ' Write oi,t»s ——Wi, ,~co,;Xr (S), where

Xr(S)=n(1)P(2)n(3)P(4) u(2m —1)P(2m)
&&rr(2m+1) a(X) and Xs=oxi(S) .

We can do this since oi, i~xsWO and or;, &Xr(S)WO and
since there is only one linearly independent function
ce,;&x(S) for all j and X such that S,X=SX.Then

Gr(C"Xs) =Q f r(O. ,„xC') ((oryXs)

If we define O'=Ps, ,' C~,,"Cs,s, then

+:-"=Gr (C"Xs). (24)

Applying S to (23) and (24), we find that they hold for
any M component (note that we are dealing with non-
normalized wave functions). We have been considering
the set of spatial functions to belong to some complete
set of orthonormal functions; however, from (23) the
sum over y and the sum over q are independent, thus we
could actually consider two different complete, ortho-
normal sets of functions (over the same space) with no
fixed relation between the sets and write (23) with

somewhat less convenient than (23). Thus Gf~ does
have some special convenience as an operator.

For systems with Hamiltonians that are independent
of spin, the spin dependence integrates out of the
matrix elements for operators which do not involve spin.
Thus since the spin functions or„,xf in (26) are linearly
dependent, we can use the spatial function 0„;%' in
place of the exact function (26) for all considerations
which do not involve spin. For example, we immediately
obtain (15) for the expectation value of a spin-inde-
pendent operator.

IV. COMPARISON WITH OTHER METHODS

Now that we have shown that G,Q is an eigenfunction
of S' and satisfies Pauli's principle, this method of ob-
taining wave functions with these two properties will
be compared with the Yamanouchi-Kotani' 2 and
Lowdin4 methods.

Kotani' has described a method essentially due to
Yamanouchi. ' By a different approach, Kotani obtains
the function Cq, ~& & which is an eigenfunction of S'
and satis6es Pauli s principle. The C g, ~& ) is de6ned as

@s,hr = (1/f )"'Z 4's, h '0s, sr;h,

where

where
G,Le "x,(S)j,
C"=t'.,fWf;.0;g4'.

Thus Eq. (24) becomes

=G,'[C "X,(S)].

=W;;. Q t-.„,(0„0,@')L~„-;x,(S)j

(26)

m takes on the values 1, 2, , fs, lPs is a function of the
spatial coordinates of X electrons, p goes through all
permutations of Siv, O~s, sr, h is one of fs orthonormal
spin functions which is an eigenfunction of S and S,
with eigenvalues S(S+1)and 3/I, respectively, and the
0 are obtained by vector coupling the S spins in the
fs different ways given by the branching diagram. The
0' transform as

However, the transformed (23) involves C""=0;yc's, s
which is got a simple product of orbitals. We could

exp@,nd C"'= (1/O)g U,r,rC s,„
so that

p0s, M;h 2 I hh(p)es, sr;h

U-(p) =f,&-(p-')

simplify this slightly using the special properties of U,f„
and rewrite (23) in terms of G,~; however, the result is

s Even the set of operators (G,";s=1, ~ ~ fi') is arbitrary in a
sense, since they depend on the 0;;& and or;;& which depend on the
specifIc basis chosen for the p irreducible representation of S~. We
could take any unitary transformation on these basis functions of
the p, irreducible representation and obtain an equivalent set of
basis functions. However, the new basis functions would lead to a
different set of Gp which are linear combinations of the previous
ones. Actually, though, the set of basis functions we have used
correspond to a quite natural way of building up the case for N in
an inductive way from the case of iV-1 Lwhich in the case of tensors
transforming as SU(2) corresponds to the natural inductive way
of obtaining the spin states for N particles from the spin states N-1
particlesg. Hence, both mathematically and physically there is
something special about the basis we have chosen. In addition,
such results as (23) occur only for the particular fth basis function
we have used; we shall in the future articles see other situations in
which the basis we have used possesses a particular prominence.

in order that Cz, ~ satisfy Pauli s principle. We must
compare the Cg, ~~'& to

G,WX=P |„,(O„W)(~„-sX).

Here

poiplsx= Z Uh. rs&h. s&rex= Z UhFr~oihl"X.
Pke k

We may identify o~;;sx with Os sr, „ in which case

Uses ——Vh, (p). Also

pcs. '*'=Z Uh. (p)4s, h"'

and

P(f.„,0,,4)=Q Uh,f,„,Oh,4=+ f.,„Uh„„(t.„Oh,4);.
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cases other than spin; for example, it can be used for
the group SO(3) to project out a state of total orbital
angular momentum (for an atom) and for Abelian
spatial syrrunetry groups (e.g., the translation group,
for crystals) to project out a state belonging to a
specific irreducible representation.

Matsen" has suggested a different approach of con-
structing antisymmetrized eigenfunctions of S' through
the use of Young's operators. This method has been
used for some calculations'3 but is not so appropriate
for our purposes. Another approach has been described
by Pratt, "and McIntosh" has given a group-theoretical
discussion of antisymrnetrized spin-projector operators.

thus

But from Appendix A

t ~„,&err = l r ~I rr,
hence,

Usr(P) =t p+17rp=t @+rgb ' ~

Thus, we see that the Yamanouchi-Kotani function
and the G;~4 X are equiva1ent. An advantage of the G;~
form is the close relationship to the Young tableaux,
permitting a pictorial visualization of the relationship
between and the properties of the G,~; however, the
O~s, sr, s can be visualized using the branching diagrams
and, indeed, there is a direct relation between the
branching diagrams and the standard Young tableaux.
The original work on this approach by Yamanouchi'
actually dealt only with spinless functions and is
equivalent to the alternative approach at the end of
Sec. III. Some configuration-interactio~ calculations
making use of the Yamanouchi-I&otani method have
been reported by Kotani eI, al.'

Another method of obtaining S-electron wave func-
tions which are eigenfunctions of S' and simultaneously
satisfy Pauli's principle is due to Lowdin. ' I.owdin
starts with a Slater determinant and then operates with
a projection operator to select the component having a
specified total spin. The projection operator is

V. SUMMARY AND DISCUSSION

An operator G,~ has been defined which upon
operating on any function of the coordinates of E
electrons yields a function which is an eigenfunction of
total spin and satisfies Pauli's principle. Some general
expansions of exact many-electron wave functions
utilizing the G;& operators were considered. In particu-
lar, it was found that the exact wave function, +,„„t~~,
always can be written as

where p, corresponds to spin S, i can have any integer
value from 1 through f&, X(3E) is any product of N one-
electron spin functions (rr or p) such that S,X=MX and
such that a&„-,-sXWO (there always is at least one such
function if ~M~ &~S), and. @' is a (very complicated)
function of the spatial coordinates which depends (in a
known way) on the specific choice of i and X(M). We
may now try to 6nd approximate many-electron wave
functions by ending approximate functions C. In par-
ticular, in Paper II"we will restrict 4 to be a general
product of one-electron functions and then require that
the best possible one-electron functions be used (i.e.,
require that the energy be stationary under variations
of any of the one-electron functions). We shall find that
the resulting wave functions are quite useful and
accurate (e.g., they always yield a lower energy than
does the Hartree-Fock wave function). Of course, one
can take other restrictions on the C. For example, we
might take 4 to be a sum of several terms each of which
is a product of one-electron functions; with a properly
dehned sequence of such functions we should. be able
to obtain arbitrarily accurate wave functions. One might
take 4 to be 8,4', where 4' is a product of one-electron
functions and 8, projects out a function with the proper

S'—k(k+1)
2 i+If) —Q

s~t l (t+ 1)—k (k+ 1)

where the product is over all k from 0 or —,
' to X/2

(except l) and"

The problem is that the result of operating with "+'6
on a Slater determinant includes, in general, a sum over
very many Slater determinants and the spin integrations
are not trivial even in the case where the operators are
independent of spin. Thus, the use of this scheme can
become quite tedious. Despite this, Lowdin and others
have succeeded in deriving many useful expressions and
in performing some interesting applications. "Of course,
Lowdin's projection operator method can be used for

ts G. H. Brigman and F. A. Matsen, J. Chem. Phys. 27, 829
(1957);E. A. Burke and J.F.Mulligan, ibid. 28 995 (]958); G H
Brigman, R. P. Hurst J D. Gray, and F.A. Matsen, ibid. 29 251
(1958); F. A. Matsen, Calcll des Fonctions D'Onde Molecllaire
(Centre National de la Recherche Scientiaque, Paris, 1958), p. 7;F. A. Matsen Advan. Quant. Chem. 1, 59 (1964};F. A. Matsen,
J. Phys. Chem. 68, 3282 (1964).

'~ G. W. Pratt, Jr., Phys. Rev. 92, 278 (1953).
~~ W. A. Goddard, III, 6rst following paper, Phys. Rp. I&7, 8$

(1967); hereafter referred to as II.

' M. Kotani, Y. Mizuno, K. Kayama, and E. Ishiguro, Proc.
Phys. Soc. Japan 12, 707 (1957); E. Ishiguro, K. Kayama,
M. Kotani, and Y. Mizuno, ibid 12, 1355 (1957). .

» The capital 8 refers to E-electron spin operators and the lower
case s refers to one-electron operators.

~ P.-O. Lowdin, Calcgl des Fonctions D'Onde Molecelaire
(Centre National de la Recherche Scienti6que, Paris, 1958) p. 23;
R. Pauncz, J.de Heer, and P.-O. Lowdin, J.Chem. Phys. 3, 2247,
2257 (1962);J.de Heer, ibid 37, 2080 (1962);R. . Pauncz, ibid 37, .
2739 (1962);.J. de Heer and R. Pauncz, ibid 39, 2314 (19.63);
D. Secrest and L. M. Holm, J. Math, Phys. 5, '/38 (1964); V. H.
Smith, Jr., J. Chem. Phys. 41, 277 (1964) &

H. V. McIntosh, J.
Math, Phys. 1, 453 (1960);J.K.Percus and A. Rotenberg, ibid 3, .
928 (1962); F. Sasaki and K. Ohno, ibid. 4, 1140 (1963).
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spatial symmetry. Actually, we shall see in later papers
that the case where C is a single product of orbitals
yields quite good wave functions with extremely in-
teresting properties. For example, in this case, even
with the requirement that the G,~C» have the proper
spatial symmetry, the many-electron wave function
G,sCx for molecules (and, solids) dissociates properly as
the nuclei are removed; the individual one-electron
functions in C can be given an independent-particle
interpretation; and at least for some i, the individual
orbitals are allowed to localize in such a way as to corre-
spond to present concepts of localized inner-shell states,
bonding states, etc.
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APPENDIX A: THE REPRESENTATION
FOR THE ORTHOGONAL UNITS

We wish to construct the elements U;, r of the
matrix representing the permutation r for the various
irreducible representations cx of SN. ' Let each n be
associated with a different shape and let each i and j be
associated with a standard tableau of the shape n as in
Fig. 2. De6ne the axial distance between two elements,
say p and q, of a tableau, i, as the number of rectilinear
jumps form p to g where left and down are positive (e.g.,
d32' ——+1, —1, —2, and +2 for the tableaux above). We
need only determine the matrices for elementary per-
mutations, rk= (k, k+1), since all other matrices can
be constructed from these. The diagonal elements are
defined. as

Uss(k, k+» / 1dk1+, k

and k+1; in this case

U's (k, k~() =
C

1—(1/dk)-k, k')'j'".

The matrices for S=3 are given in Fig. 2.

APPENDIX 3: THEOREM

Theorem U;;,.&=f,f „,U„„s
Proof Con.sider r= (k, k+1), then

Urs(kk+», $ ~rs+ (1 ~rs) jUrs(k, k+1)

from (7). We write this as

U (kr,sk~» t (k,k+»f srsUrs(k, k+» s

since |„,= —1 if res and U„.(k,k+»WO. For any r

Urer= 2 UrsrsUs)rk' UFnsrr s
il ~ m

where r j, r2, , r„are elementary transpositions. But
and t,g„f,„.= l', ; hence, the

theorem follows.

APPENDIX C: TRANSFORMATION OF G;&%K TO
A CONVENIENT FORM

We wish to transform G,~CX to a convenient form.
Expand

G,mx=p l..„,.(0„'c)(~; sx)
r

=Z t-...Z(1/8 )U„, (~)Z(»O )U,—;,-(~».
r T t

Letting t= rt', we 6nd

p(1/0™)U„-;ptx=p(1/0")pU„-;, U;;. ( ~'x)

=p U„-;,(ro);px).

But f',„,=l,„,t,„., t',„,= t.,„;, and f-,„-;U„-;,s= f,U„„s
Hence,

G,Ax= p p f „S,(1/O~) U„;,~U„,~(rC) (r(o;px).
r, s r

and the oB-diagonal elements are zero unless the two gut
tableaux differ only in the positions of the elements k Ussr Ussr I)SS s

a = t;3]; S~ =I &I2I3l; U~
thus,

G'~x=Z 0 (1/o'") I:C' ""xj,
a Pj ~ 8~

2
13

where r now operates on spatial and spin coordinates.
Therefore,

o
ss~f2, (]; Sk = &2l s Us I ~

i U(i, k)

oI

)0 -XI Gs~X (~ (/(~),)fl»[' ) )C (~-.-.rX)j
=(&)/8)fl ('")C(0,,~)xj.

(C1)

(C2)

g = &3I
2,

U(2, 3)

U(123)

(1, 3)
+2/

l.
)kj-T"2" 2

(1,'3, 2) =-

2

Pyg, 3, The orthogonal irreducible representations for ge.

APPENDIX D' DERIVATION OF SOME
THEOREMS CONCERNDTG TRANS-
FORMATIONS ON TENSOR SPACES

Here we derive some theorems concerning trans-
formations on tensor spaces.
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The d-dimensional space transformed by the group G
(with elements u) is called the transformation space.
The d"-dimensional vector space spanned by the eth-
rank tensors 5 is called the tensor space. A component
of 5 is denoted by F,„,...;„,and the i; are called indices
of the tensor component and are often suppressed.

First it will be necessary to state the definition' of the
0„,&. It will be convenient to discuss the seminormal
units e„,~ rather than the orthogonal units 0„~~. Since
e„,~ is proportional to 0„,~, where the proportionality
constant is not zero, then O„,~Ii=0 if and. only if
e„,~Ii =0. Let K„~ be the group of all perrnutations for
which no element of one column of 5„~ is put into a
different column. Let (P„~ be the group of all permuta-
tions for which no element of one row of 5„~ is put into
a different row. Let

formation space, if p, has more than e rows, then
0„&Ii=0 for all possible Ii.

We want to be able to select a linearly independent
set of Or„Ii;;I,..., the following theorem provides a
method of accomplishing this.

Theorem DZ. If Ii is written with all identical indices
adjacent, then:

(i) If the arrays S„(F)and S~(P) are identical, O,„F
=constant (independent of r))&O„,F; (ii) if the array
S~(F) has identical elements in the same column, then
O„„F=0.

Proof (i) I.f S„(F)=S~(F) and if o.„~ is an elementary
transposition, say, (k, k+1), then

0„„&P=O, &(k, k+1)P

E;=P t,r;
7'+mr"

P„"= Us i(k, kk1& Or@ Ost P 2 Upt(k, k+i& Ort F ~

Pst t

Define E„,~=—P„~o„,&E,~. Denote as S* the tableau ob-
tained from 5 by removing e, and denote as 5~*=52~
the tableau obtained from 5* by removing e—1, etc.
Let e(n—')*=e,

e, ( (n—I)+ 6' (n—2)+ (n—1)+
err Ers ess

(n—2)

pers &rr Ers ess ~

e„, err ~rsess ~

Theorem Dl. If for a given Ii it is not possible to
arrange the first m indices of Ii to obtain Ii' such that
when F' is placed in S„~ to yield' S,~(P'), no two
identical indices among the erst m+1 indices of P
occur in the same column of S„~(P'), then O,„F=O
for all s.

Proof. Let e,„i*operate on F. But, E,„'*=P,i*a,„X„'"
and X„&* antisymmetrizes each column of 5„&*; so, if
E,„&* operates on F' and if two identical indices of the
first e—j indices of Ii' are in the same column of 5„&*,

then X„&'Il'=0. Now, e„„(~+')'F rearranges the first
e—j—1 indices of Ii; so, if there is no way to rearrange
the first (n —j—1) indices of F such that the first e—j
indices of Ii' have all identical indices in different
coluinns of S„'*, then e„i*F=0 (for all s) and, thus,
e,„F=O (for all s).

In particular, if the 6rst M indices of Il are the same
then e,„Ii/0 only for r with the erst M indices in the
first row. Another corollary which follows immediately
is: If S„~ has more rows than Ii has different indices,
then 0,„"Ii=0. In particular, for an m-dimensional trans-

"It is convenient in discussing such theorems to place the
indices of F in the tableau (say S„&) in place of the numbers
1 E; such an array we call a:I array and denote by 5~I"(F).

But U~iik, k+q&
——0 unless 1=p or t=q, since

= (k, k+1) is an elementary transposition. Thus,

O„„F= U»ik, k+i&O„„F+U„«k,k+»0«F.

But U»~k, k+i&W1, since, if it were, then k and k+1
would be in the same row of S~, in which case
S,=(k, k+1)S„would not be a standard tableau.
Thus, 0„+=constant O„,F if o,, is an elementary
transposition.

Now consider Sk ——(e,ir2, ,irk), the group of permu-
tations which leaves F invariant. If S„(F)is some array,
then the arrays in A„=(S„(F),7r+i, (F), p&S„(F))-
are all equal. Since the identical elements of Ii are
adjacent, the generators of 5& are elementary trans-
positions; thus the previous proof allows us to conclude
that O„,F= constant O„F for all S„S,QA„.

(ii) If S~ has a, pair of adjacent letters in the same
column, say k and k+1, and if the kth and (k+1)th
indices of F are identical, then

0 +=0 (k, k+1)P=P U ig, k+i&0 iF.

But, U„haik, k+i&
———8~i. Thus, O„„F= —0„+,and. hence,

O„~F=O. If S„(F) has identical indices in the same
column, but these positions in 5„are not occupied by
adjacent letters, then among the set of identical arrays
there is an S,(F) with adjacent letters in these positions.
Thus, using part (i) and the first part of (ii), we obt, ain
0,+=0.

APPENDIX E: SUMMARY

Denote as v, any permutation of the letters less than
ran+1 and as rk any permutation of the letters greater
than e. Let v„be a product of r disjoint transpositions
where each transposition involves one letter of the a
set and one letter of the b set. Then any permutation,
7, can be written as 7 = Tg7 gv r for some 7 r, v~) and 7 y.
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We will consider Sq'n "' as in Fig. 3(a) and show that

fn
Uyy, =t rdr~U'ff" i—rZr~

Er&
(E2)

Evaluation of U» '. We have U~;.."——bq; and Uqr~"
=81;, where 0 is an elementary transposition, since
the letters are adjacent and in the same row; hence,
Ul;,, =61; since r, can be constructed from the 0-,'
similarly Ul;„=81, We may conside~ just U»,„since
U11r Ulled' tf, r„=U»t„s&nce 7 g7 g 2.7 g Tg = Tg &

then
Ull '„Ull. g „ f,

1= U», „, and we need only Qnd
the m different elements Ull, „corresponding to r=1,

, m. From the orthogonality theorem for unitary
irreducible representations (e.g. , Ref. 6, p. 102),

2 U'~. Unn'=b'b'~byes' If ) = b'b'nbynO (E3)

U»r =U»„=(—1)"
r

In addition we consid, er Sy"" '" ' as in Fig. 3(b) and
show that

(al S ' = 1 2 (n(
[D, m]
1

n+1 n+2 . . . (N~

(b) S
' = l n+l

I2 , 1 ]
2 11+2

N

hence

Now consider

and let x= 1; then

FIG. 3. The tableaux used
in Appendix E.

m m) (I)
r)krJ

t'm t'e)
there are

I I I
different r„ for a given r . Since

4r)
Ull„„ is the same for any r with the same r, then
U», , is the same for all n with m~&r (since we can
consider r„ to just involve elements &~ n+r). Therefore,
take m=1 in (E4):

hence,

o=1+
1

In particular let n=Le, mf and P=LÃj. Since U», ' '

=1, then

0=2 U». = Q Q U». , Hence

U»„——(—1)'
s

Evaluatiom of Uff,~: For any elementary transposition
of the elements less than I+1 (the a set), Uy;, .~= —by, .
Thus Uy...o=t,.by, and Uy...s= f„by, Hence, .if

r= rarbrr y
then Uffr t r i rgUffrr ~

We can now proceed to derive Uyy, „~ for P=
I

2~,1"
just as we did for n= Le,m), except that now we consider
the orthogonality relation

Q U»r""'Uff 0)r

where
U». ' ' t. t.Z.,—f., —

We want to prove that Hence, we obtain

U». =(—1)'
ks

therefore, consider m=s in (E4) and assume (E1) is
true for nz~& s—1: which we now know to have the solution

a=E ()( )na. , +~I Inn. .', ymca
Uff. ,'= i.,(—1)"

r


