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would consist of measuring the thermal conductivity
over a sufBciently wide temperature range that regions
both above and below the break are covered. If a
reasonable estimate of the elastic properties of the
colloid, s can be made, and if the total amount of material
incorporated in them is known, the 6t of a calculated
curve to the data is very sensitive to the mean size. In
fact, at temperatures below the break such that
Rayleigh scattering is dominant, the cross section varies
as the radius to the sixth power.

V. SUMMARY

The purpose of this investigation has been to study
the scattering of phonons by an elastic sphere through
its effect on the thermal conductivity. In particular,
the effect of a transition from a Rayleigh to a geo-
metrical scattering law was required. In general, the
following effects have been observed:

(i) Goemetrical scattering is never truly operative.
(ii) Although the resonances in the transition region

can never be observed+through their eGect on the
conductivity, there is a broad. maximum which is
important.

(iii) The fft of the experimental data is extremely
sensitive to the assumed mean particle radius. It is less
sensitive to the assumed properties of the particle. Thus,
if it is possible to make a reasonable estimate of the
elastic properties of inclusion in crystals, it is possible
to use the thermal conductivity as a means of measuring
their mean size.
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The scattering cross section of an elastic sphere as a function of frequency has been obtained for a number
of representative combinations of the properties of the sphere and the matrix. These are obtained from a
partial-wave analysis and are intended to be used primarily in the computation of thermal conductivity.
To simplify the problem, it has been assumed that both the sphere and the matrix are isotropic and that they
obey the Cauchy relations. From the exact results, suitable procedures for obtaining analytic approximations
are discussed.

I. INTRODUCTION
' 'T is the purpose of this paper to investigate the effect
~ ~ of the elastic properties of an elastic sphere on its
scattering cross section for an incident longitudinal
acoustic wave. These results are intended. to be used
primarily in understanding the sects of a macroscopic
scattering center on the thermal conductivity.

Although it is possible to calculate exact numerical
values of scattering cross sections using a partial-wave
analysis, this is a cumbersome procedure, and it is
desirable to find suKciently general analytic approxi-
mations. Our objective will be to search for those
approximations which would be most useful in calcu-
lating the thermal conductivity. In this respect our
task is simplified because an integral over the phonon
spectrum is involved.

An obvious approximation wouM. be to assume a
Rayleigh law, calculated using Born approximation for

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

long wavelengths. For short wavelengths a constant
cross section would be used. The transition from one to
the other would occur when the incident wave vector
equalled the radius of the sphere. The transport cross
section as defined beloved is of interest here, so the high-
frequency limiting cross section will be the geometrical
cross section of the sphere.

Our objective has been to compare the complete
numerical solutions with the above approximation, and.

to investigate the possibility of broadening it to include
those cases where it proves inadequate. It is obvious at
the outset that it will be impossible to adequately
represent the Ructuations in the cross section which
usually occur in the transition region from a Rayleigh
to a constant scattering law. However, the thermal
conductivity involves an average over the phonon
spectrum, and. it is insensitive to this fine structure. In
this case, where these results should, be Inost applicable,
we may neglect the fine structure.

The problem of scattering of a plane longitudinal
wave by an isotropic elastic sphere in an isotropic solid
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has been treated by many authors. ' ' The scattering
of a transverse wave has also been considered. ' For the
longitudinal case some numerical computations are
available4; however, they refer to the total cross section
without the correction factor which yields the transport
cross section. Our results will also be for the scattering
of a longitudinal wave alone. For the computer we have
programmed Pao and Mow's' statement of the problem.
This is derived from, and is essentially identical to,
Ying and Truell's' original formulation. We have
obtained results over a wid. e range of elastic properties
for a Gctitious solid which is both isotropic and obeys
the Cauchy relations.

In the following, the scattered waves in the matrix
are represented by two potential functions in a well-
known expansion,

e= g A „h„(air)P„(cos8),
n 0

turn depends on the stresses and displacements. The
procedure used is outlined by Ving and, Truell. The
integration involved in Eq. (3) may be performed using
the properties of the Legendre polynomials and the
result is that

os ——2~ g
(2n+1)nis

m+1 A A~ +A "A~)x &A.['—
2n+3 2

n (A „A„ i*+A „*A„ i) 2n (n+1)I+
2n —1k 2 ) rr&Pi(2n+1)

n+2 (B„B„~i*jB *B +i)x /B/'—
2n+3& 2 )

4= g B„h„(Pir)P„(cos8),
n~o

n 1(B—„B„i*+B„*B„i)
~ (4)

where ni is a longitudinal-wave vector, pi is a transverse-
wave vector, h„ is the spherical Hankel function of the
first kind, A„and B„are constants, and I'„ is the
Legendre polynomial. Similar expressions apply for the
functions inside the elastic sphere. These, of course,
are required to solve the problem.

The expression for the total cross section obtained.
by Ying and TruelP is then

where do- is the differential cross section, and the
integration over tt is unnecessary because of the
syxrunetry of the problem. We observe, parenthetically,
that this is no longer true for an incident transverse
wave; here the scattered wave will depend on P oven
though the scattering potential is spherically symmetric.
This, of course, is simply a consequence of the vectorial
nature of the displacement Geld.

For our problem we require the transport cross section
defined as

o r ——2s- do (1—cos8) sin8d8, (3)

where da is the differential cross section. The differential
cross section is obtained, from the energy Qux, which in

7r 1
2s do. sin8d8=4s P

0 2n+ 1

1 n(n+1)
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II. COMPUTER PROGRAM

The cross-section calculations were programmed in
poRTRAN for the ORNL 1604 computer. Equation (4)
expresses the cross section as a sum of terms which are
functions of A „and 8„, the scattered-wave amplitudes.
With the boundary conditions for an elastic inclusion,
A„and B„may be found by solving a set of four
simultaneous equations. The coefficients of these
equations are complex numbers. The equations and
their coefficients are given by Pao and, Mow. '

The program solves these equations by elimination
and back solution in complex arithmetic form. The
cross sections were surruned until the terms became
negligible as determined by the following conditions:
(a) the term index, n, exceeded by at least 5 the largest
argument of the corresponding spherical Hankel or
Bessel functions in the coefficient formulas; (b) the
magnitude of the cutoff term was (0.0001 times the
sum of all preceding terms; (c) the inagnitude of the
cuto6 term was less than that of the preceding term.

A subroutine' written by Hagin was used to compute
spherical Bessel functions from which in turn the Hankel
functions were computed. An extensive check of this
subroutine was made and, after a slight modification
necessary for the zero-order functions, a comparison
with the British Association Tables showed the routine
to be accurate to at least six decimals for arguments
(100.0, and for orders 0—100 the cross sections always
reached cutoff far in advance of the accuracy-check
limits.

' V. H. Pao and C. C. Mow, J. Appl. Phys. 34, 493 (1963).' C. F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).
3 N. G. Einspruch et al., J. Appl. Phys. 31, 806 (1960).' G. Johnson and R. Truell, J. Appl. Phys. 36, 3466 (1965).

'Available from CDC 1604 user organization as COOP L3
UCSD BFFGH, Z. G. Hagin, Texas Instruments, Inc. The sub-
routine is based on the method described by Corbato and Uretsky,
J. Assoc. Comput. Machines 6, 366 (1959).
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III. RESULTS

The results presented here are for a fictitious solid
which is both isotropic and obeys the Cauchy relations.
The Cauchy relations lead to a value for the longitudinal
velocity of sound which is K3 times the transverse. We
do not feel that the assumption of the Cauchy relations
affects the conclusions we will draw. The results are

displayed as plots of logo.& against loge where x is the
product of the wave number arid the radius of the
particle. Since we are concerned with a continuum
approximation the actual values are unimportant. In
our discussion it is convenient to consid, er erst the
situation where the properties of the inclusion are very
different from those of the matrix or the case where the
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scattering is strong, and then to consider the weak-
scattering case where the inclusion and matrix have
similar properties.

A. Strong Scattering

Figures 1 and 2 show a series of log-log plots of the
scattering cross section against x. In each series the

ratio of the density of the matrix to that of the particle
is held constant. Figure 1 is a series where the density of
the particle is ten times that of the matrix. In Figure1(a)
the ratio of the velocity of sound in the particle to that
of the matrix is 2, in 1(b) it is 1, and. in 1(c) it is —,.
Figure 2 presents a similar series where the density of
the particle is ~'~ that of the matrix.
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B. Weak Scattering

Here we have abandoned the assumption of the
Cauchy relations because the meaningful parameters
are the fractional changes in the elastic constants.
Figure 3(a) shows the results for a 20% change in p,
and Fig. 3(b) refers to a 10% change in the longitudinal
velocity of sound. The reason for these two choices will
become apparent in the discussion.

IV. DISCUSSION

A. Strong Scattering

I. Density of Scattering Center Greater
tham That of the Matrix

possible to obtain an approximate analytic expression
for the cross section which reproduces this maximum.
Ludwig' has performed this calculation for the case
where the density difference is large and has obtained
the following expression for the resonant frequency:

6 2 1~'
+

(pp/p)RO'(c, ' col

where p is the density, Ro is the radius of the particle,
and C~ and. C~ are the longitudinal and transverse
velocities of sound, respectively.

From this expression we obtain

A comparison of the results shown in Fig. 1 shows a
remarkable similarity if the Quctuations in cross section
which occur in the transition region are ignored. This
similarity clearly indicates that the difference in
density between the particle and the matrix is mainly
responsible for the scattering. In ad.dition there is a
large peak in the cross section at x=0.36 which is broad
enough that it must be taken into account. Since the
peak occurs at a value of x which is less than 1, it is

x '=6

In our case, C'=V3C„and

XR2=——

' kV. I udwig {to be published).

(7)
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where Vo ——43mRO~, e=bp/p,

2 (2 1)(2 1) '
7=

I + II +
eROECp Cp) (Cp Cp)

For bp/p=9, x+=0.31. Ludwig s expression for the this can readily be explained by an increasing trans-

total cross section is parency of the particle to sound. It develops that an
approximate expression for the cross section can also

o,...&=2V,eq —
~
q/~)1+P&~', be obtained which takes this into account.

0)pl It is possible to obtain expressions for A„and 8„
valid in the high-energy limit by replacing the Bessel
functions with the approximation valid for large
arguments. Assuming that the properties of the matrix
and the sphere do not differ greatly, it is found (after
some manipulation) that

~R ~

Mg M —$2rGP/M

For our case, Eo——10—' cm and the cross section at
resonance calculated from Ludwig's approximate ex-

pression is 3.6)& j.0 ' cm', in good agreement with the
exact value. (For these long wavelengths, of course,
there is no difference between the transport cross section
and the total cross section. )

Ke may conclude, then, that for the case where the
density of the particle is much larger than that of the
matrix the differences in the elastic constants may be
neglected. The analytic approximation which can be
used for this case, then, can consist of an approximate
calculation of the long-wavelength cross section which
includes the first resonance. At short wavelengths a
constant cross section equal to the geometrical area of
the particle can be used.

Z. Dertsity of Scattering Center Less
tham That of Matrix

In this case, again, the geometrical cross section can
be used at short wavelengths, while at long wavelengths
a Rayleigh law is operative. However, a calculation in
Born approximation yields the wrong numerical value.
An approximation derived from the long wavelength
limit for the partial-wave analysis (due to Ying and
Truell), 2 on the other hand, will work. A comparison
of the two shows that Born approximation breaks down
because it does not include the energy scattered into
a d wave.

It is interesting that no evidence is found for a low-

frequency resonance (values of x(1).Of course none
would be expected due to the density difference, but
none has been found even when the Lame constants of
the particle exceeded those of the matrix by a factor
of 10. Reference to Fig. 1(c) also reveals no apparent
evid, ence of a low-frequency resonance aside from that
due to the density difference.

B. Weak Scattering

Here the Born approximation can be expected to
work at long wavelengths and this is, in fact, the case.
At short wavelengths, however, the cross section falls
well below the geometrical cross section. Qualitatively,

5p In')
l~„l- ——Il~„ I+. (~,~,).

p

In this expression, A„ is the limiting value of the
coefFicient for a large difference in properties, bp= p2 —p»,
and be» ——ng —0.». Similarly,

5p 8p)

t&

On substitution in Eq. (4) the terms in sin'(Ro8a ~) cancel
and. the high-energy limiting value for the cross section
is approximately

bp bn» bp bp»
0 ~mG +-

i p n» p p»

V. SUMMARY

It is apparent that the approximation mentioned in
the Introduction rarely works. On the other hand, , it is
possible to find the following analytic approximations
which are valid:

(a) If the scattering is strong and due to a large
difference in density, Born approximation may be used
at long wavelengths provided. the first resonance is
included. The geometrical cross section is applicable at
short wavelengths.

(b) If the scattering is strong and due principally to
a difference in elastic properties, the long-wavelength
approximation obtained from the partial-wave analysis
should, be used followed by a geometrical cross section
at short wavelengths.

(c) If the scattering is weak, Born approximation is
applicable at long wavelengths and the geometrical
cross section multiplied by the factor in Eq. (8) is
applicable at short wavelengths.

Finally, let us consider the effect of colloids on the
thermal conductivity. The appropriate scattering cross
section will depend most strongly on the radius of the
colloid and the elastic properties are of lesser impor-
tance. It is possible to use this fact to obtain the mean
size of the colloids from thermal-conductivity data.
Since the cross section is so much more sensitive to the
colloid, radius, it should not be necessary to have a
precise knowledge of their elastic properties.


