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Correlation Effects in Atoms. III. Four-Electron Systems*
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The binding energy of the ground state of four-electron systems is investigated in the framework of
Hartree-Fock perturbation theory, First, we show that the original problem can be decoupled into a series
of helium-like equations describing pair correlation between electrons. Then, the variational-perturbation
method is applied to each of these equations through Gfth order in energy. We have obtained for the cor-
relation energies the values E„» (Be)= —0.0925 atomic units (a.u.) and E„„(B+)= —0.1096 a.u. The ex-
perimental numbers are E, ,0'"& (Be)= —0.0944 a.u. and E„'"&(B+)= —0.1116a.u.

I. INTRODUCTION
' 'HE quantum mechanics of one- and two-electron

systems can be said to be understood in complete
detail, ' with the possible exception of very small rela-
tivistic effects. However, attempts to extend the
methods which have been so successful in dealing with
these simplest of systems have proven to be dificult.
In this paper, we wish to investigate, starting from erst
principles, the binding energies and wave functions of
four-electron systems. Recently, a great deal of work
has been done on three- and four-electron atoms, ' '
and there are several approaches which have provided
some useful insight into these problems. We shall com-
ment on some of these approaches in what follows.

Certainly the most comprehensive attack on the
many-electron problem is the Hartree-Fock method,
which replaces the true many-body problem by a series
of one-body problems in which each particle moves in a
self-consistently determined potential generated by all
the other particles. For many systems, and in particular
for the four-electron atoms and ions, the Hartree-Pock
equations have been solved and give accurate approxi-
mations to atomic wave functions and binding energies.
In our case, since the Hartree-Fock energies and wave
functions are known, the problem comes down to find-
ing the relevant corrections to the energies and wave
functions. We de6ne
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where Et,t and 0't, t are, respectively, the total noe-
relutivistic energy and wave function, whereas EHF and
+Hp are the Hartree-Fock energy and wave function
of the system considered.

Since Et,t as defined above is not directly accessible to
experiment, we have estimated it as follows: We take-
the extremely accurate calculations of Pekeris to pro-
vide us with the nonrelativistic energy of the two
electron core (1s-1s) corresponding to the four-electron
system in question, and then use the experimental
ionization potentials to obtain the binding energies of
the outer two electrons. We estimated the relativistic
corrections to the experimental binding energies in the
manner suggested by Watson, ' i.e., by using a simple
Dirac-type relation for the energy. For Be and B+, in
which we are interested in this paper, these relativistic
corrections are less than 1%%u~ of the correlation energy,
and therefore the precision with which they are esti-
mated is not of great importance for our purposes. Thus,
we believe that the values

11. DERIVATION OF THE BASIC EQUATIONS

Since the Hartree-Fock wave functions give an ex-
cellent approximation to atomic energies, it seems
reasonable to apply the Rayleigh-Schrodinger perturba-
tion theory to our four-electron system, starting from
the Hartree-Fock Hamiltonian as zeroth-order approxi-
mation. We begin by establishing some notation. We
define the operators T(r) and V;(r) by

T(r)f(r) =——rsV'f(r) —(Z/r) f(r), (1a)

e C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
'Thoughout this paper we will mean by a.u. atomic units, . in

which the reduced mass of the electron is set equal to one.

E,.„'"'(Be)= —0.0944 a.u. ,
'"'(B+)= —0.1116 a.u. ,

are very accurate estimates of the correlation energies
for these two systems. ' It seems unlikely that the cor-
rect nonrelativistic value could differ by more than
0.5/o from these numbers. It is these "experimental"
results that we wish to understand in a reasonably
straightforward manner.
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V;(r)f(x)=—4"(x'), 4'(r')dx'f(r)
Ix—"I

TABLE I. The values of important Hartree-Pock
matrix elements (in a.u.).

4;*(r') f(x') dr'y, (r), (1b)
I
r—r'I

where Z is the nuclear charge of the system considered,
and P; is a Hartree-Fock single-particle orbital. The
subscript i refers to a complete collection of one-particle
quantum numbers, including spin. For our specific
four-electron problem, we further dehne

'U(r)= Vi, t(r)+Vi, ~(r)+V»t(r)+Vs, i(r). (2)

Jn a more general case 'U(r) would be a sum of operators
V; with i ranging over all 611ed Hartree-Fock orbitals.
The spinor wave functions pi, t, Qi, i, qh, t, and Qs~i,
whose existence is implied in our above definitions, are
the solutions to four coupled equations, namely,

I T(r)+'U(r)]$;(r)=eP;(r), (i=is),1sJ,,2st', 2sl). (3)

(1s T Is)
(2s T 2s)
~leis
~lens
~S.2e

V,
ale
&2s

—7.94206-1.58939
+2.27293
+0.48107
+0.34346
+0.02536—4.73235—0.30915

—12.44114—2.73667
+ 2.89618
+ 0.70260
+ 0.50380
+ 0.04614—8.18590—0.87381

eigenfunction corresponding to the lowest eigenvalue
of Eq. (4b) which also satisfies the requirement
(pi, I ps, )=0. For such equations, Roothaan et at."have
given very accurate solutions in a convenient analytic
form. We will use their functions, both for Be and
3+, throughout this work. Table I lists the relevant
expectation values, where we have used the following

definitions:

Because we are dealing with systems having all angular
momentum shells filled, the space parts of pi, t and pi, i
are the same, i.e.,

Villa I Qls(r) I
'I pls(r')

I

s drdr',
Ir—x'I

(6a)

and
@iat =pi.a

A. i=4i.P,

Vins, = I4i, (x) I'I4s, (r') I' drdr',
Ir—r'I

(6b)

where pi, is a function of space variables only, and a
and P are spinors representing spin up and spin down,
respectively. Similarly,

I es.(r) I'I4s (x')
I

'
I
r—r'I

(6c)

and
42.t =P»rr

4»t=p»p.

&i *(x)&i.*(r') 4's, (r)4»(r')drdr' (6d).
Ix—r'I

Using these definitions, we see from Eqs. (4a) and (4b)
that

A simple computation using Eq. (3) gives then the fol-
lowing two coupled integro-differential equations for
Qi, and Q».

I T(r)+ Vi,"(x)+2Vs."(r)—V»'(r) jA, (x)
ei $1 (r) (4a)

era= (1s I TI 1s)+Vi,i,+2Vi,»—V8„~

e» = (» I
T

I »)+ Vs.s,+2 Vip» —Vgx.

(2a)

(2b)

With this notation established, we may write the
total Hamiltonian for the system as

I T(r)+ Vs,"(r)+2Vi,"(r)—Vi, '(r))ps, (x)
= es,gs, (r) . (4b)

where

8=&o+&i,

Here we have de6ned the spin-independent operators

Vi."(.) = ei.*("),4i.(")dx' and

+0=+HF(rl)++HF(rs)++HF(rs)++HF(r4) (ga)

1
~i ——P ——V(ri) —V(rs) —V(rs) —V(r4) . (Sb)

Vi &(x)f(r) = g„*(r') f(r')dx'pi, (r), (5b)
Ir—r'I

with similar definitions for Vs,~(r) and Vs, '(r). The
quantities ei, and e2, introduced in Eqs. (4a) and (4b)
are such that e~, = ~ie t = ~~e g and 62e= E2et = E2e g ~ The
object Qi is tile eigenfunction corresponding to the
lowest possible eigenvalue of Eq. (4a), whereas q4, is the

The operator HHF(r) is the single-particle Hartree-Fock
Hamiltonian

HHF(r) = T(r)+'U(r) .

'o C. C. J. Roothaan, L. M. Sachs, and A. %.Weiss, Rev. Mod.
Phys. 32, 186 (1960).
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Eo= 2etl+2esg ) (10)

with the corresponding normalized spinor eigenfunction

fo(rt, rs, rs, r4) = [1/g(24) J
X 8[$1,t (rr)$1, t, (rs)$2, t (rs)$2, 1(r4)), (11)

where Q, denotes the operation of antisymmetrization in
all coordinates. The quantities fo and Eo being known,
we look for the solution to

in the form

The generalization to more than four electrons is ob-
vious. The equation

Hgo= Ego (9)

has as its lowest eigenvalue (in the Hilbert space of
totally antisymmetric functions)

where Po is the ground-state solution to the Hartree-
Fock equation. It was also noted there that this equa-
tion could be derived from a variational principle '
based on the expression

Fr[A'j = 81'
I Ho —Eol 6'&+28 1'I H1—Etl 6& (16)

where $1' is a (real) trial function. Varying F1@1'7
with respect to ftt, one obtains Eq. (13a) for the func-
tion it 1, which makes Fr[fr'g stationary. If we are deal-
ing with the ground state of a system, which is the case
in this paper, it is easy to show using the completeness
of the eigenfunctions of B'0 that we actually have a
minimum principle, i.e., Ftg 1 j takes on its smallest
possible value for ft' ——$1, where $1 satisfies Eq. (13a).
This smallest value is just the expression (14b) for E2.
Because of the form of Eq. (13a) it is clear that we can
always pick $1 orthogonal to fo. Throughout this paper
we will constrain $1 to satisfy this orthogonality condi-
tion. With this convention, E2 is given simply by+=24"

n=O
(12a)

Es= 9olHtIA&. (17)

(12b)

This leads to the equations

(Ho—Eo)lt 1+(H1—E1)fo
——0,

n—1

(Ho Eo)f„+Hr—f„r QE f„—E„fo 0— ——
en~ 1

(13a)

"F.W. Byron, Jr., and C. J.Joachain, Phys. Rev. 146, 1 (1966),
to be referred hereafter as 3JI. In this paper the following mis-
prints should be corrected: in Eq. (8d), the first term should be—(x2~HO —Eo)xr) and in Eq. (9b) the last term should read—2&2(&2'

( o 2).

(tt)2), (13b)

and, therefore, we have"

(14a)

Es= Q'o I H1 Et I 6&= 9'1 I Ho —Eo I 4&, (14b)

E =(~.IH. EI~ )-2E.-Q. I~ &, (14c)

(6 I Ho Eo I 6&—Esp 1 I 6)—2E2(po I lt 1&, (14d)

E.= Q. I
H E.I ~.& 2E.Q-.

I ~.&-E-.Q. I ~.&—2Esg o I ys) —2E4Q o I yt) (14e)

The expression (14a) for E1 is readily evaluated using
Roothaan's functions for $1, and $2, in Eq. (11). We
have

E1=—Vr, r,—4&1.2.—&2.2.+2&.* (15)

The sum E»—E,+E1 is what is usually referred to as
the Hartree-Fock energy. For Be, EHF(Be) = —14.3730
a.u. , while for B+, EHF(B+)=—24.2376 a.u.

%e now proceed to the calculation of E2, given by
Eq. (14b) and therefore we have to solve Eq. (13a) for
pr. In BJI,"Eq. (13a) was solved for He in the case

One would like to build a trial wave function $1' with
a number of variable parameters in it, compute Fr[i/1'j,
and then vary the parameters to ge t a minimum. In
BJI, this was done for helium, and good results were ob-
tained for E2. It might be thought that helium is a poor
precedent to cite in this paper, since the possibility of
many-electron overlap integrals, of the type already
encountered in the study of lithium by James and
Coolidge, " would seem to make this a prohibitively
dBBcult program to carry out for Be. However, we will
show that in fact we can reduce the problem of solving
Eq. (13a) to a decoupled collection of two-electron prob-
lems, so that the techniques of 3JI can be employed.

Since electron-pair correlations are expected to
dominate the problem, it seems reasonable to take our
trial function to be of the following form:

01 (rl r2 rs r4) 3[xi tl $(r1 r2)$2 t(rs)lf)2 1(r4)
+Xla t ss t (rig rs)$18 1(r2)$2@4 (r4)
+X1 ts 1(rt,r4)gt, g(rs)ys, t(rs)
+X1.22. t (rs, rs)41. t (rr)q4. 2 (r4)

+~1 42 o(r2 r4)$1 t(11)$2 t(12)
+X2.22. 2(rs, r4)pt, t(rt)q&1, 2(rs)jjg(12), (18)

where the X;; are totally antisyzm&etric in the space
and spin coordinates. The operator S denotes the linear
combination of all 12 symmetric permutations on r~, r2,
rs, and r4. The function $1'(rt, rs, rs, r4) is then totally
antisymmetric. In fact, what we are doing here is adding
to the Hartree-Fock solution fo a function $1' contain-
ing all possible terms in which electrons with quantum
numbers i and j correlate through some function X;,,
while all the other electrons stay in their unperturbed
Hartree-Fock orbital s.

"H. M. James and A. S. Coolidge, Phys. Rev. 49, 6gg (1936).
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Now, let us consider the functions X;;. Because of
the operator 5, it is clear that X;; cannot contain any
components of pz(k/ i,j). Indeed, if it did, such a com-
ponent would vanish upon applying S, since X;; is
antisymmetric. Thus, without loss of generality, we

may take"

&x' (r,r') I e.(r))=(x' (r,r')14~(r')) =0 (19)

for k&i, j.
Finally, we anticipate here that X;; contains no

components of P; or g;. This will be shown at the end. of
this section. Thus, we conclude that the X;; contain no
components of any of the ulled Hartree-Fock orbitals.
This is one way of looking at the success of the Hartree-
Fock model of the atom. Precisely those intermediate
states that one would expect to contribute predomi-
nantly to fi (and hence to E2 and Ep) do not occur either
because of the Pauli principle Csee Eq. (19)7 or because
of the particular form of the Hartree-Fock potentials
(g;, )t; orthogonal to X,;), as we shall see below.

Knowing that X;; is orthogonal to all the filled. single-
particle Hartree-Fock orbitals, we can easily derive the
basic equations for the X,;. Returning to our expression
for FiCgi'7 Csee Eq. (16)7, we find for the first term"

&6 I
Hi —~iI 6')=2' &Y~C4'(r) 4»(r') —@'(r')yi(r) 7 I

(1/I r r'
I
—) V,—(r) V;—(r) V;—(r') V;—(r') —e,;&'&

where we have dehned
I X;;(r,r'), (21)

~i, tx. ~"'= —~~,x. ,

pls t2)) t —pisi2s i )' i828+ Vex )
(].) (],) TI'

&].s t28 4 &la 42s t ~1a2s y

&2s t28 I ~2a2s ~

(228)

(22b)

(22c)

(22d)

owe-body operators. For example, if one tried to obtain
such a result for the expectation value of the total
Hamiltonian H between two functions having the same
form as our )J i', the presence of terms like ri2 ' would
prevent this decoupling from occurring (i.e., there are
more than just pair-correlation effects in atoms).

The second term in Fig i'7 Csee Eq. (16)7 is 2&fp I
Hi—EiIPi'). Although this expression does contain terms

of the type rip ', )Ji' occurs only on one side of the inner
product. A simple calculation using Eq. (15) and the
orthogonality properties of the X;; yields the result

(t'ai I
Ho EpI)J'i')=p' —(x';(r,r') I

H»(r) Note that
(22e)

+H»(r') —e;—p;I x;;(r,r')), (20)
Thus, collecting Eqs. (20) and (21), we obtain for

where we have used the fact that H» contains only F&CPi)'7

FiC&i 7=&' f&x;;(r r')
I
H»(r)+H»(r') p; e;—I x;,—(r r'))+2&2v2Cg, (r)p~(r') —qs;(r')p, (r)7I (1/I r—r'I)

—V'(r) —V~(r) —V'(r') —V1(r') —pv"'
I x'9(r, r'))) (»)

+le now vary the X;; independently and obtain the basic equations for our problem:

CHHr(r)+H HF(r') —p,—7',;(r,r') =—C(1/ I
r—r'

I )—V;(r) —U, (r) V;(r') ——V;(r') —p@&'&7-',v2

X C4,(r)4, (r') —4;(r')4, (r)7 (24)

Thus, the problem of obtaining Pi reduces to a matter of solving a collection of decoupled two-body problems of
the type discussed in 8JI.The value of FiCfi 7 at the minimizing values of the X;;obtained from Eq. (24) is just

where

+2—Ql ~. .(2)

i,j

p;, &'& = &x;;(r,r') I (1/I r—r'I) —V, (r)—V;(r) —V;(r') —V;(r') —p;;i'& pv2Cp;(r)p;(r') —p, (r')p, (r)7).

(25a)

(25b)

Returning to our pair equation CEq. (24)7, we note that
if we take the inner product of the right-hand side of

' Throughout this paper, we extend the definition of inner
products to expressions of the form

(f()) lab)) ff ) &,)a())&y=— '.
i.e., such an "inner product" is actually a function of z.

~4 +le use the notation P; to denote a sum on all distinct Pu&s
of indices.

this equation by P;(r)P;(r') for by p;(r')p, (r)7 we get
zero because of the definitions (1b) of the potentials
V; and (22a)—(22d) for pg&'&. Thus our equation is well
posed since, due to the Hermiticity of BHp, the inner
product of the left-hand side of Eq. (24) with P, (r)P, (r')
Cor P;(r')P, (r)7 also vanishes. Let us agree to choose the
indeterminate inner product &@,g;IX;;) to vanish. In
solving the pair equations variationally, we will cori-
strain our functions X;; to satisfy this condition. Now,
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because X;; is antisymmetric. Since we have already
decided to choose this inner product to be zero, we con-
clude that a=o, so that

(4'(r') I
X' (r,r')) =0,

and similarly,

(A(r') I x"(r,r')) =o. (26b)

Hence X,; contains no components of $, or p;, as we

because of the special properties of the Hartree-Fock
potentials, if we multiply the right-hand side of Eq. (24)
by just, say, @;(r') and integrate over all space, this
integral is identically zero (integration implies, as usual,
summation over the appropriate spin indices). Integrat-
ing the left-band side of the equation after multiplying
by @;(r') and using the Hermiticity of HHF, we get the
equation

LHHF(r) —')(4'(r') I
x* (r,r')) =0,

which tells us that

(0'(r')
I
x' (r r')) =& (r),

where a is some constant. Now, taking the inner product
of both sides by P, (r), we get

(0'(r')4»(r) I
x' (r,r')) =~.

But we have also

(&'(r')&'(r)
I
x' (r' r)) = —d'

claimed above. Note also that the orthogonality prop-
erties of the X;; guarantee that Q'0 I/i) = 0.

One might be tempted to object that although we
have succeeded in obtaining a simple set of equations
for Pi, we have not taken Pi' to be of the most general
form possible, and therefore the true E2 for the four-
electron system might be lower than the E2 which we
would obtain from our Eq. (24) and Eqs. (25a) and
(25b). However, if we substitute into the basic equation
[Eq. (13a)) the expression (18) for Pi' and make use
of the fact that the X;; satisfy Eq. (24), a simple cal-
culation shows that the basic equation of first-order
wave-function perturbation theory [Eq. (13a)) is
actually satisfied exactly. Thus we have found the solu-
tion (unique if Q2Ipi)=0) for the first-order wave
function.

In concluding this section we note that our above
discussion is not at all restricted to four-electron
systems, and Eq. (24) which we have derived for the
X;; applies to atoms with any number of electrons. In
Sec. III we point out in what ways the practical matter
of actually solving the equations for the X;, is expedited
by having a four-electron ground state (or more gener-
ally, an atom with all angular momentum shells filled).

III. REDUCTION OF THE PAIR EQUATIONS

%e now want to factor out the spin dependence from
the pair equations. I et us begin by writing down the
six pair equations for the four-electron problem. Using
Eq. (24), we get

I HHF(rl)+HHF(r2) 221 )xl tl 1(rl r2)

= —[1/r12—Vi, t (ri) —V1,1(ri)—Vi. t (r2) —V1.1(r2)—di, t 1,1('&)-,'V2[&1,t (ri)$1,1(r2)—gi, t (r2) &1,1(ri))
[HHF(rl)+HHF(r2) 21 —22 )xl t2 1(rl r2)

= —[1/r12—Vi, t(ri) —V2. 1(ri) Vi. t(—r2) —V2. 1(r2)—di. t2, 1 "&)-,'v2[@i,t(ri)&„1(r,)—p„t(r2)@„1(r,))
[HHF(rl)+HHF(r2) dl E2 )xl t2 t(rl r2)

= —[1/r12 —Vi. t(ri) —V2, t(ri) —Vi. t(r2) —V2. t(r2) —di, t2, t ('&)2%2/&1, t (ri)&28 t (r,) (t&i, t (r—2)(t&2, t (ri)),
[HHF(rl)+HHF(r2) 61 E2)xl $2 t'(rl r2)

= —[1/r 12
—Vi.1(ri)—V2, t (ri) —Vi, 1(r2) —V2, t (r2) —ei, & 2, t ('&)2%2[$1,1 (ri) p2, t (r,)—pi, 1(r2)g2, t (ri)),

[HHF(rl)+HHF(r2) 21 d2 )xl 12 1(rl r2)
= —[1/r12—Vi, i(ri) —V2, 1(ri) Vs&(r

—) 2V2,1(r2—)—~1, &2, 1('&)2%2[pi, 1(ri)(I&2, 1(r2) (t&1, 1(r2)—$2, 1(ri)),
[HHF(rl)+HHF(r2) —222')x2 t2 1(rl r2)

= —[1/r 12
—V2. t(ri) —V2,1(ri)—V2, 1 (r2) —V2, 1(r2)—d2, 12, 1('&)2~2[g2, t (ri)(t&2, 1(r,) (t&„t(r,)—(t&„1(r,)].

(27a)

(27b)

(27c)

(27d)

(27e)

(27f)

Before proceeding further let us note that these rather
messy equations have a very simple physical interpreta-
tion. Each equation is precisely what would arise if one
performed Grst-order wave-function perturbation theory
on a particular two-body reduced Hamiltonian. For
example, Eq. (27a) is obtained from the reduced
Hamiltonian H„~ given by

d 2 (rl)+2 (r2)+1/r12+ V2 t(rl)+ V2 1(rl)
+V„t(r2)+ V2, 1(r2) (28)

starting from a zero-order wave function given by

42=-,'~2[41.t(ri)41.1(r2)—4i.t(r2)41, &(ri)).

The same reasoning applies to any pair. This is just the
Hamiltonian for two particles moving in a central
Coulomb potential of charge Z, interacting through the
true electron-electron interaction, but seeing also an
"average potential" (nonlocal because of exchange) due
to the two 2s electrons. Unfortunately, because of the
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interelectronic interactions, this reduced two-body
Hamiltonian is not valid to all orders in perturbation
theory. If it were, one might envision solving the whole

problem by tackling each tvro-body Hamiltonian of the
type given in Eq. (28) by the Rayleigh-Ritz method,
employed so successfully in helium by Hylleraas and
others. '5 Even this program would not be without
serious difhculties, however, since in trying to solve the
2s-2s pair problem one would be looking for a very
highly excited state of the two-body Hamiltonian.

Returning to our problem of reducing Eqs. (27a)—
(27f), we note that the functions X;; can be written in

general as

x(rl, ru) = f(rl, ru) C,(1,2)+g(rl, ru) C,(1,2),

where f and g are functions of position alone, f being a
symmetric furction and g being antisymmetric. The
objects C, and 4& are spin-wave functions of total spin
equal to zero and one, respectively. Nova, for the ground
state of the four-electron problem, the space parts of
&1,2 and &1,2 are the same, as are the space parts of
$2, 2 and &2, 2. For this reason, we find that

[+HF(rl)++HF(12)7X(rl, ru) = [8(rl,ru) f(rl, ru)7c, (1,2)

+[8(rl,ru)g((», ru)7%(1,2), (29)

where 8(rl, ru) is an operator, symmetric under the
interchange of r1 and r~, which acts only on space
variables;

8(rl, ru) = T(rl)+ T(ru)+2 Vl,"(rl)+2 Vu, "(rl)
+2Vl, (ru)+2 Vu, "(ru) Vl, '(rl)—

Vug (rl) Vls (r2) Vus (ru) ~ (30)

Kith these results in hand, the reduction of the basic
pair equations is straightforward. For the inner-shell
correlation functions X18g18g and X2, t~, g, the reduction
is particularly simple, since the right-hand side of
Eqs. (27a) and (27f) has a pure singlet spin dependence.
Hence, we write

xl, ul, p(rl, ru) = f(rl, ru)-,'v2[n(1)p(2) —n(2)p(1)7, (31a)

Xu, uu, u(rl, ru) =g(rl, ru) 12V2[n(1)p(2) —n(2)p(1)7. (31b)

Then from Eqs. (27a) and (27f) we obtain

[8(1112) 2elg7f(rl r2) [1/r12 vl (rl)
—V„"(1,)—sl, r 1,1 &'&7&1,(rl)$1,(ru), (32)

[8(rl,ru) 27og2(r —r l)=2[1/r» vu "(rl)
V2 (r2) ou 22 1 74 2 (11)4'2 (r2) (33)

Remember that in solving these equations we must
constrain f(rl, ru) to contain no components of pu„
and g(rl, ru) xnust be constrained to contain no com-
ponents of pl, . In addition, if we require that

&4 &.If)=Q & lg)=o (34)

» E. A. Hylleraas, Z. Physik 54, 347 (1929).

then, automatically, f(rl, ru) will contain no components
of gl, and g(rl, ru) will contain no components of pu, .

In the case of the inter-shell correlation functions, we
first note that apart from reversal of spin, Eqs. (27b)
and (27d) are equivalent; i.e., we can use the same space
function for both equations. The same remark applies
to Eqs. (2/c) and (2'/e). In what follows, we will discuss
only Eqs. (27b) and (27c). For Eq. (27c), the right-hand
side is a pure triplet spin function, so we can write

Xl, tu. u (rl, ru) =hl, l(rl, ru)n(1)n(2),

and similarly, from Eq. (27e),

xl 12 l(rl r2) hl, l(rl r2)p(1)p(2)

(35a)

(35b)

Finally, we consider Eq. (27b) for X1,22, 2. In this
case, the right-harid side of Eq. (27b) has a combination
of singlet (S=0, 3I,=O) and triplet (S=1, M, =O) spin
dependence, so that we write

Xl.t 2, g(rl, ru) =hl, o(rl, ru)-,'~&[n(1)p(2)+n(2) p(1)7
+hp, p(rl, ru)2'%2[n(1) p(2) —n(2)p(1)7, (3/a)

and similarly from Eq. (27d)

Xl, lu, u(rl, ru) =hl, p(rl&ru) 2V2[P(1)n(2)+P(2)n(1) 7
+hp, p(rl, ru)'2%2[P(1)n(2) —P(2)n(1)7, (37b)

where h1,0 is an antisynonetric function and ho, o a sym-
metric one. A straightforward computation yields

[8(rl,ru) —ol.—o2.7hl, o(rl, ru) = ——',[1/rlu —ol, uu. 1 i'&7

X[41 (rl)$2 (r2) $1 (ru)$2 (rl)7
+ [V2 (rl)+ Vl (ru)741 (11)$2 (r2)

—-', [Vl."(rl)+ Vu, "(ru)7&1,(ru)$2, (rl), (38)
and

[8(rl, ru) el.—eue7—ho, o(11,12)= 2 [1/r» ols to 1 7:
x [y .(rl)y .(")+e .(")eu.(11)7

+ [Vu (1'1)+Vl (ru)741 (11)4'2 (r2)
+-', [Vl,"(rl)+ Vu, "(ru)74 la(ru)4 us(rl) . (39)

It is apparent from Eqs. (37a) and (37b) that ol, tu, l &"

=&1,g2, t&'. Apart from a statistical over-all factor
2 "', the difference between Eqs. (36) and (38) is a
matter of constraints. We note that Eq. (36) needs no
constraints because of the spin factors which multiply

where the subscripts in the function h1, 1 indicate that
we consider a triplet state with total spin S=i and
M, =&1. A simple calculation yields for h1,1 the
equation

[8(rl 12) el ou 7hl, l(rl, ru) = —[1/r» —vl, (rl)
V2 (rl) Vl (r2) V2 (r2)+ Vl (rl)+ V2 (rl)

+Vl (r2)+ V2 (r2) ol tu 2 & "7-',V2

X&1,(rl)pu, (ru) —4'1, (ru)4'2 (rl)7. (36)

Clearly, because of (35a) and (35b) we have

618t28t(') = 618428~(')
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kr, t in Eq. (35a), i.e., X»t»t is automatically orthogonal
to pt, l, and ps, t because of spin considerations. This is
further reflected in Eq. (36), where the form of the
right-hand. side guarantees that h~, ~ will contain no
components of $t, or p». On the contrary, in solving
Eq. (38) we must constrain ht, s to contain no com-
ponents of P» or P» (or, alternatively, we must con-
strain Xt, ts, s to contain no components of Q»s or
Ps, t) even though the form of Eq. (27c) guarantees
that Xt, ts. t will contain no components of Q~, t or q4, s.
Once the appropriate constraints are applied, it can be
shown that Eqs. (36) and (38) turn out to be the same.
Therefore, we can omit Eq. (38) in what follows, since
on the subspace of the two-particle Hilbert space on
which h~, o is diferent from zero it is equal to a constant
multiple of ht, ~. Finally, in solving Eq. (39), we have
to constrain ho, s to contain no components of Qt, or $s,.

Thus, we see that the problem comes down to solving
Eqs. (32), (33), (36), and (39), the relevant constraints
discussed above being taken into account. We now
proceed to the solution of these equations.

p(s, t,u)= e&"' Q Ct„„s't"I", —(42)

where s=rt+rs, t=rt —rs, N=rrs, and k is a scale
parameter roughly equal to twice the eGective charge
seen by the two electrons. It is well known from the
work of Hylleraas and. others'" in the two-electron

IV. SOLUTION OF THE PAIR EQUATIONS

We propose to carry out the solution of the reduced
Eqs. (32), (33), (36), and (39) by the variational
method discussed in BJI. Each of these equations has
the form

(40)

where (P and Q are given Hermitian operators, p is any
of the unknown functions f, g, ht, t ky, p ol }r0.0 deaned
in Sec. III, and g is a given function. Equation (40) can
be derived from the variational expression

(41)

where we have used the notation «&'&[p'j because of the
fact that each of the variational expressions from which
are derived. Eqs. (32), (33), (36), (38), and (39) can
actually be shown to be a milimlfN prirtcip/e for the
appropriate «;;"& referred to in Eq. (25b). We emphasize
that the existence of a mAunslm principle for all of the
g;;&') is directly linked to the constraints imposed upon
the functions f, g, Itt, t, ht, s, and hs, s, because the
constraints project out of the relevant 6rst-order trial
function all components of those states whichhave lower-
zero-order energy than the state in question.

Before proceeding to the solutions it is necessary to
decide on a good choice of trial function for p'. In BJI,
we used for helium the Hylleraas-type function

systems that this set of trial functions is a very good one,
and in BJI we found that with a small number of terms
in Eq. (42) we could get within 0.5% of the helium cor-
relation energy. However, these functions su6er from
one grave defect when applied to a Hartree-Pock —type
problem: Because of the existence of the nonlocal ex-
change potential there occur certain integrals" in the
variational expression which cannot be done in closed
form. This diQiculty arises because of the use of the
variable N=rts in Eq. (42). As one includes higher and
higher powers of I, these intergrals require progressively
more complicated ininite sums in their evaluation.
Now, in BJI it was found that with only 10 parameters
in Eq. (42), i.e., only terms linear and quadratic in I,
a very good value for the correlation energy could be
obtained. Clearly, we expect the same to be the case in
our four-electron system for the calculation of the
is-].s correlation energy, which should be particularly
amenable to the treatment of BJI. Indeed, the effective
central charge seen by the inner two 1s electrons is
close to Z=4, as opposed to just Z=2 in helium. In
fact, we employed this method in calculating the is-j.s
correlatj. on energy and achieved satisfactory results.
However, the 2s-2s correlation energy poses a more
serious problem. Here we are dealing with a rather
loosely bound excited two-body state, and we may
anticipate that a wave function w'ith only 10 parame-
ters, even of the Hylleraas type, might not be able to
represent adequately such a diBuse structure. In actual
calculations of the 2s-2s correlation energy, just such
difhculties were encountered.

At the opposite pole from the Hylleraas-type function
is a trial function which is of the "configuration-
mixing" type:

1
py(ft, fs, cost}12)=—P 4 .(rt ~s"+~t rs )

4~ i,m, n

X(e &~"'e &e"'+e &I"e &~"')P~(cos8rs), (43)

where the choice of the plus sign or of the minus sign
gives us a symmetric or antisyxrunetric function of the
space variables. This function, too, has several draw-
backs. Calculations by Watson' and Keissa utilizing
the condguration-mixing method have been able at best
to get within 7%of the Be correlation energy. Schwartz'r
has pointed out that one pays dearly for the omission of
terms in r~2, which is in some sense the optimal way of
in.eluding the angular part of the correlation function.
It turns out that the expansion in Legendre polyn. omials
is rather slowly convergent, and the dBBculty of getting
accurate values for the contribution of the higher terms
in P&(cosprs) grows rapidly as / increases.

On the other hand, these functions have some attrac-
tive features. All the integrals in the variational princi-

"These are the integrals referred to as g(t, m&e,n, tt,y, a,b) with
o and b odd in Appendix III of 8JI (Ref. 11)."C. Schwartz, Phys. Rev. 126, 1015 (1962}.
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pie are easy to perform, and the constraint requirements
on p can be seen to be purely on the function of r& and
ru multiplying the relative s-wave (t= 0) term in p. Per-
haps more important from the computational point of
view is the fact that the problem for a particular p
decouples into a series of relative partial-wave problems,
i.e., we can write

f(rl, ru) =P P "&(rl,ru)Pa(cos812),
l

g(rl, ru) =P G(')(r4yu)P&(cos812),
l

(45a)

(45b)

To summarize, let us write out our trial functions for
the four diferent cases:

(2) Q 0..(2)())
L=O

hl, l(1'1 r2) = Q Hl, l (yl r2)PE(cos812)
l

(45c)

and obtain trivially minimum principles for each c;;&'&(1).
Also it seems reasonable to suppose that functions of
the type (43) might do very nicely in trying to calculate
inter-shell correlations, since the difhculty in helium,
as noted by Schwartz, '7 comes primarily from the
problem of representing adequately the cusp behavior
of the correlation function at r~ ——r~. For inter-shell cor-
relations, we expect the region r~= r2 to be considerably
less important than it would be for inner-shell correla-
tions, where the pair of electrons overlap maximally.
We have veri6ed that this is the case in helium, where
we have investigated successfully in this way the
perturbation theory of the (1s2s) 'So and the (1s2s) 'Sl
states. "Therefore, in the case of the four-electron sys-
tem, we have used trial functions of the type (43) for
the inter-shell correlation functions Jao 0(rl, ru) and

1,1(rl r2) ~

Going back to the ieeer-sheQ correlations, we note
that there exists a type of function which retains much
of the simplicity of the configuration-mixing type (43),
but nevertheless manages to give some cusplike be-
havior at r~=r2, namely,

ho, o(rl r2) Q HQ, O (yl y2)Pl(cos812) (45d)

where

P(l)(yl yu)
—P g (&)r mr n~—)ar&0 $&)r&—(46a)

G(l) (y r ) —g g (l)y my n&
—$a'r&0—P'r& (46b)

Hl, l&"(rl, ru) = Q C „('&(rl"ru"+rl yu )

X(0—ra r&g ra ra+a r'a rs0 r'0'») (46d)

As we remarked before, the constraints all refer to the
form of the relative s-wave (3=0) correlation functions.
The simplest constraints, i.e.,

(47a)

X (0 ~arly r ars (, Qn»0 arl) —(46C)

Ho 0 (yl y2) 2 D (yl y2 +yl y2 )

p(y&, y&, COS812)=—p Carnnr&~r "e (a"'"&e '0"'"&
4~ t,m, n

XPa(cos812), (44)

«"~.IG"))=o,

«.~"IH .."')=o,

(yiA s*
~
Ho, o"')=0,

(47b)

(47c)

where r& denotes the greater and r& the lesser of r~ and
r2. Using functions of this type in helium, we were able
to get extremely accurate results for the ground-state
correlation energy. " Therefore, we used the (r&r&)
basis to calculate the inner-shell correlation functions
f(rl, ru) and g(r l,ru) in the four-electron system.

are easily disposed of by the use of Lagrange multipliers.
However, for P('), we must also require that our trial
function contain no components of $2,.Thus, instead of
taking F& ' as trial function in the 1=0 partial wave,
we shall use

F"'(r4ru) =F"'(r4yu) —qb. (yl) (42, (rs)
~

P(') (ra, ru)) —pu, (ru) «2, (rs) ~
F ( ) (r4rs))+&t 2,(rl)pu, (ru) Qu Ijlu,

~
F&0)). (4ga)

Similarly, instead of G, we use

G"'(y4yu) =G"'(y4yu) —
&t 1 (yl)(41.(ya) I G"'(rara)) —41.(yu) «1.(ya) I

G"'(r4ys))+4 1.(rl)41.(ru)(41A 1.I
G'") (4gb)

For the inter-shell correlation functions, we have a more complicated expression to guarantee that no components
of either &t 1, or pu, are present in Ho, o"&. Thus we define

Ho, o( (rl,yu) = Ho, o (rl, ru) —41,(yl) «1,(ys)
~
Ho, o (ra, ru)) —$1,(yu)(0)rl, (ys)

~
Ho, o (r4ys))+$1 (yl)$1, (yu)

X«141
~
Ho, o( ))—q4, (rl)(@2,(ra)

~
Ho, o( )(ra, ru)) —$2,(ru)(@2,(rs)

~
Ho, o( )(rl, rs))

+A (r1)4'2 (ru)(4'ur(&i'2
~
Ho, o ") (4gc)

1' I", )&Y. Byron, Jr., and C. J. Joachain, preceding paper, Phys. Rev. 157, 1 (1967), to be referred to as BJII.
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wllclc wc have OIlllttcd two tclIIls 111 $1 (fr)$2 (F2) a11d

&I,(r2)$2, (rr) which are unnecessary if Ho e&o& already
satisfies Eq. (47d).

With this in hand, we substitute our various trial
functions into the variational expression for E2, Eq. (16),
compute the inner products, and vary the parameters to
obtain a minimum. As shown above, the problem breaks
up into separate variational problems for the e@&'&,

which in turn split up into still smaller variational
problems for the e;;I2& (l), the energies contributed
by each relative partial wave. In practice, we deter-
mined reasonable values of the nonlinear parameters
(a,p,n', p', u, b,u', b') in Eqs. (46a)—(46d) by physical
considerations connected with eRective charges. Thus,
our variational expression is a quadratic form in the
linear parameters Amn"', Bmn, Cmn y

and Dmn ') of
Eqs. (46a)—(46d), so that, as in BJI our problem re-
duces to one of matrix inversion. With the parameters
determined in such a way that they minimize the
variational expression PI[&PI $ LEq. (16)), it is a simple
matter to calculate the various e,,&2& from Eq. (25b).
All the integrals appearing in the calculation can be
written in terms of finite sums of the basic integrals
V(t,2&2,~,P) and W(t, 2&2,m,n,P,y) discussed in BJI. These
integrals can in turn be written as finite sums of fac-
torials and. powers or, more conveniently, may be evalu-
ated by the use of recursion relations. "The most com-
plicated expressions encountered are those involved in
computing the matrix elements of the exchange poten-
tials V Lsce Eq. (Sb)j.These actually involve signifi-

cant computational labor in each relative partial wave.

V. THE SECOND-ORDER ENERGY

In this section we want to discuss the contributions
of the various pairs to E2.

A. Is-Is Correlations

For the 1s-1s case, we used 21 terms in Eq. (46a) for
each relative partial wave; i.e., we allowed 221+n to

TABLE II. The contribution of each relative partial wave to the
1slIsl correlation energy in second order (in a.n.).

0
1

2

3
4
5

6
&~ 7

Total

—0.01236
—0.02242
—0.00352
—0.00099
—0.00038
—0.00017
—0.00009
—0.00015

—0.04008

—0.01197
—0.02317
—0.00360
—0.00101
—0.00038
—0.00017
—0.00009
—0.00016

—0,04055

take on all possible positive values up to 2m+22=5. We
evaluated explicitly all terms through 1=6 in the rela-
tive partial-wave expansion (45a). The contribution of
the higher partial waves to e~, g~, q(2) was estimated by
extrapolation, using the fact that it drops oQ like / 4 for
large /."This asymptotic behavior seems to set in quite
rapidly after l=4. The results are shown in Table II.
The most interesting feature concerns the relative
s-wave contribution e1,21, I, "&(0). In doing perturbation
calculations for the ground state of helium starting from
a hydrogenic Hamiltonian, one 6nds a very large rela-
tive s-wave contribution, " but here, because of the
Hartree-Fock potentials the size of the relative s-wave
contribution is reduced until it is actually significantly
smaller than the relative p-wave contribution. Beyond
the relative p wave, the terms er, II, g

&"(l) drop off quite
rapidly. The same phenomenon occurs in doing Hartree-
Pock perturbation theory in helium and is discussed in
BJII.

Another interesting point. about the relative s-wave
contribution is how it is eRected by the constraint which
prevents any components of @2, from appearing in
P&o&(rr, r2) [Eq. (48a)j. This constraint must clearly
increase eI, &I, I, &2&(0), as may easily be seen by writing

~
(qh, (rI)QI.(r2)

~
1/r 12

~

-',v2[$ (rr) @„(r2)+f (r2)P (rr) j) (
'

eI.II, I "&(0)=
mals, nels 2 Rye

—6m —6„
(49)

where the sum runs only over terms in which both m
and e refer to s states. If we apply the constraint that
no p2, components appear in the 1s-1s correlation func-
tion, then in the above sum we must exclude all states
in which either m or g is equal to 2s. Since e~, is the
lowest single-particle energy, we see that the removal
of $2. components will remove terms from Eq. (49)
with negative energy denominators, thus increasing
c1,2I, I, &2&(0). The restriction 212&1s, 22/1s is guaranteed
by the form of Eq. (32) for f(rr, r2). This essentially is
the reason that er, 2I, I, &'&(0) is so much larger in hydro-
genic than in Hartree-pock perturbation theory: In

first order, the potentials in the Hartree-Fock case act
as projection operators to annihilate any component of
pI, . Similar remarks apply, 2222ttutis 2NNta2tdis, to the
functions g, h],y and hp, p.

If we neglect the constraint imposed in Eq. (48a) and
just compute er, 21,t "'(0), including the @2,components,
we find for Be, a value which is 0.00152 a.u. lower than
the number given in Table II, whereas for B+, the value
is 0.00204 a.u. lower. This is in accordance with our
above discussion. It turns out that this is essentially
the only difference between the 1s-1s correlation energy
in Be and in Be++ or in B+ and in B'+. Thus, the outer
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two electrons in Be and B+make themselves felt in the
1s-is correlation energy owly through the exclusion
principle, not through the electrostatic forces which
they exert on the 1s electrons.

TABLE IV. The contribution of each relative partial wave to the
1sT2sj, correlation energy in second order (in a.u.).

B+

TABLE III. The contribution of each relative partial wave to the
1s)2sf correlation energy in second order (in a.u.).

0
1
2
3

p4
Total

Be
—0.000009—0.000645—0.000041—0.000005—0.000001
—0.000701

„,»,&(2)
B+

—0.000014—0.000887—0.000059—0.000008—0.000001
—0.000969

"W. R. Conlrie, Can. J.Phys. 43, 102 (1965).

3. Inter-shell Correlations

To evaluate the inter-shell correlations, we used 20
parameters in Eqs. (46c) and. (46d) for Ht, t&'& and
Hp, o ( ) thereby including all terms in the sum with
tw+n, &7. Partial-wave contributions through /= 3 were
calculated, and the remaining terms were estimated by
extrapolation. We expect the values of e~, g2, g&'& and
~~, q~, g&" to be small because of the small overlap be-
tween the 1s-shell and 2s-shell wave functions. Tables
III and IV show the results for these two cases. For the
relative s-wave contribution to e~, g2, g&2), the choice
of the Hartree-Fock potential, plus the fact that the
space function ht, t(rt, rs), being antisymmetric, already
vanishes at r~=r~, serves to reduce the s-wave contri-
bution, to insignificance. The fact that the Hartree-Fock
function does not vanish properly when r;=r; can be
thought of as giving rise to the correlation effects which
we are studying. Of course, the singularity of the
Coulomb potential at r,=r; means that two electrons
cannot come arbitrarily close together. For pairs in
which both electrons have the same s component of
spin, the exclusion principle forces the pair function to
be zero at r;= r;, which works in the direction required
by the Coulomb force. For this reason, we expect
e~, q2, g&" to be smaller than e~, g2,.g&", and we see in
Tables III and IV that this is indeed the case, although
the difference is only about a factor of 2. Note also that

contains a contribution from the space-
symmetric function h~, ~ as well as from the space-
antisymrnetric function ho, (), the latter one yielding
—,'et, ts, t "'(I) in each partial wave, as pointed. out above.
Thus, in fact, the total contribution of all antisynnnetric
functions to the inter-shell correlation energy is not
significantly smaller than the total arising from all
symmetric functions. Only in the s wave is the reduc-
tion due to antisyrrunetry striking. Thus, it is possible
to be misled by choosing a "simple" variational func-
tion to estimate the relative sizes of the antisymmetric
and symmetric contributions, " since there is a good

0
1
2
3

)4
Total

—0.000380
—0.001065
—0.000108
—0.000022
—0.000012

—0.001587

—0.000576
-0.001571
—0.000167
—0.000035
—0.000015

—0.002364

chance that the "simple" function will be purely rela-
tive s wave in character. Even in the symmetric case,
the bulk of the correlation energy comes from relative
partial waves with /&1.

TABIE V. The contribution of each relative partial wave to the
2sl2sl correlation energy in second order (in a.u.).

0

2
3

5
6

&~7

Total

—0.00235
—0.02213
—0.00382
—0.00118
—0.00048
—0.00022
—0.00012
—0.00020

—0.03050

—0.00245
—0.03020
—0.00449
—0.00133
—0.00052
—0.00024
—0.00013
—0.00022

—0.03958

for the es, ts, qt'l(l), we see immediately how different
the effects in this shell are from those in the 1s-1s case.
The contribution of the 1=1 partial wave strongly
dominates all the other terms, being an order of magni-
tude larger than the 3=0 contribution and a factor of
six larger than the 1=2 contribution. The reason for
this is easily seen. In the 2s-2s case, there is a nearby
2p-2p state which is expected to have a very large
mixing with the 2s-2s state in second-order perturba-
tion theory because of the smallness of the energy
denominator associated with it. (Recall that states like
2s-2p cannot mix because we have an over-all s state).
There is no analogous state in the 1s-1s case (or 1s-2s
case), so the two shells display very great qualitative
as well as quantitative differences. If the above inter-
pretation is correct, we would expect the p-wave domi-
nance effect to be much more pronounced in B+, where
the stronger central ield should cause the 2s-2s and
2p-2p states to be even more nearly degenerate. Clearly,
when electron-electron interactions become "com-

C. 2s-Zs Correlations

For the 2s-2s shell we used the same type of trial
function (with the same number of parameters) as was
employed in the 1s-1s calculation. Looking at Table V
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TABLE VI. The contribution of each electronic pair to the
total second-order correlation energy (in a.u.). et, t8, 4

' = et, ss, t & 1.) We ftnd the total values

Electronic pair Be B+

Es(Be)=—0.0752 a.u. ,

Es(B+)=—0.0868 a.u. ,
(50)

1st'is/,
1s/2sf
1sf2sl
1s],2sl
1sl2sl
2s$2sJ,

Total

—0.04008
—0.00070
—0.00159
—0.00159
—0.00070
—0.03050
—0.07516

—0.04055
—0.00097
—0.00237
—0.00237
—0.00097
—0.03958
—0.08681

which is about 80% of the correlation energy. We
believe that these are very accurate values of E2,
probably not di6ering from the exact E2 by more than
one or two in the third. significant 6gure. W e should
emphasize that these numbers are "exact" in the sense
that no approximation other than the use of a finite
number of parameters in our trial function has been
made in obtaining them.

pletely negligible" those states mould be precisely
degenerate if we neglect very smail relativistic eGects.
When we look at 8+ in Table V, we Gnd that this is
indeed the case. In closing our discussion of the 2s-2s
shell we remark that for es. t8, 4&8&(0) the subtraction of
the 1s orbitals gives only a very small eEect, changing
esgtsgs'8'(0) by abOut 2%.

Table VI stunrnarizes our results for Es. (Note that
by our discussion in Sec. IV. e1, t2, t &2) = e1,g2, g

&" and

E.=Q I~.-E (51)

Using Eq. (18), together with the fact that 8 is a pro-
jection operator, this expression can be written as a
sum of 36 terms of which six have the following typical
form:

VI. THE THIRD-ORDER ENERGY

With the function 1il calculated, it is a simple matter
to evaluate the third-order energy E3 via the relation

et 1'1 4 ([xl tl 4(rl r2)4'2 't(r3)4'2 4(r4)]l+1 EllLxl tl 4(rl r2)$2 t(r3)4'2 4(r4) j) ~ (52)

These terms we will refer to as "diagonal, " or direct terms. The remaining ones, which we call "off-diagonal"
terms, have typically the form

31 tl 4;1 t2 4 (l xl tl 4(rl r2)4'2 t(r3)42 4(r4)pl+1 Ell~l xl t2 4(rl r4)41 4(r2)42 t(rs))& ~ (53)

Let us focus our attention on terms of the type of Kq. (52). Among the 12 terms which, because of the action
of the operator 3, appear in Eq. (52), we ftrst look explicitly at

1 1 1 1 1 1
{xl 41 t(rl r2)$2 t(rs)$2 4(r4)

l + + + + + U(rl) U(r2)
~12 ~13 ~14 ~23 ~24 ~34

—'U(rs) —'U(r4) —Ell xl tl 4(rl r2)$8 t(rs)$2 (3)r&4. (54)

Performing the integrations on the r3 and r4 variables, we get for this term

(xl tl 4(rlr2) l1/r12+2V2 (rt)+2v2 (rs)+vs 2 'U(rt) U(r2) 2v2 2 4vl 2 2V Ellxl tl 4(rl r2)) (55)

where we have used the fact that

Qs. t I
U

I us. t&= 8 8.4 l'0
l &8.4&= V,...+2V,...—V, . (56)

The other nonvanishing terms in Eq. (52) contribute precisely the exchange terms which are necessary to reduce
Kq. (52) to the form

et.t1.4'"=(xl.t1.3(rl, rs) l1/rls —vl, t(rl) —v1, 4(rl) —vl, t(rs) —v1,4(rs) —st, tl, sl'~lxt, t1,4(rl, rs)&. (57)

Note that in obtaining this result we have used the fact that the expectation value of the sum t.r84
—'—U(rs) —U(r4) j

precisely cancels all of E1 except e1,t1,g & . A similar reduction can be carried out for the remaining diagonal
terms. Thus, the six terms of the type of Eq. (52) have the form which we would expect if our two-body model dis-
cussed above (Eq. 28) were exact. However, there remain terms like the one written in Eq. (53), which prevent
this two-body model from being exact beyond the calculation of E2. Fortunately, it is easily seen by looking at
Kq. (53) that the off-diagonal terms make very small contributions to Es ~ Because of orthogonality, all one-body
operators give no contribution, so that we get from Eq. (53).

el, t1,3,.1,t8, 4
&' = (xl, t 1,4 (rl, rs)$8, t(rs)q4, 3 (r4) l

1jrls+1/rls+1/r14+1/rss
+1/r24+1/r34l Lxt ts 4(rl r4)$1 4(r2)48 t(r3)j).
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Most of the terms in this inner product vanish, and after a simple calculation one finds

el tl 4;1 t2 4
'"= 2(xl, ».4(rl, r2)&2, 4(r4)

I
(1/r24) I Xl t2 4(rl r4)4'1 4(r2))

—2(xl, t 1,4(rl, r2)42, 4(r4) I (1/r24) I xl, t 2, 4(rl, r2)&1,4(r4))

(xl tl 4(rl r2)
I
xl t2 4(rl r2))(42 t(r8)4'2 4(r4) I (1/r84) I

4'2 t(r8)4'1 4(r4)) (58)

Expressions analogous to this one are readily obtained
for all off-diagonal terms. Clearly, these terms are small
compared to the direct terms, since they all involve
expectation values of operators between orthogonal
functions. We have made estimates of typical terms of
the off-diagonal type and found that they are more than
an order of magnitude smaller than the diagonal ones.
On the basis of these estimates we consider it unlikely
that the off-diagonal terms contribute more than 0.001
a.u. to the correlation energy, and in fact they probably
contribute less than this amount. Therefore we will

neglect them in what follows. It should be mentioned
that with functions of the type we have used in calcu-
lating the X;;, it is possible, although tedious, to evaluate
the off-diagonal contributions explicitly.

Thus, to obtain E3, we need only evaluate inner
products of the type written in Eq. (57). These are not
diagonal with respect to the various partial waves
(because of the presence of r12 ') and therefore the
evaluation of the e;, (') is more complicated than was
the calculation of the ~,,&'). However, this complica-
tion is an inessential one, and using the results of our
calculation for the X;; we obtain the results listed in
Table VII for the e;, '". Adding the six ~;, (3' together,
we get

E8(Be)= —0.01029 a.u. ,

E8(B+)= —0.01337 a.u. .
(59)

Tml.z VII. The contribution of each electronic pair to the
total third-order correlation energy (in a.u.).

Electronic pair

1sllsl
1st'2sl
isf2sl
is[,2sl'

is/2sl
2st'2sl

Total

Be
—0.00210
—0.00011
—0.00022
—0.00022
—0.00011
—0.00753
—0.01029

B+

—0.00174
—0.00012
—0.00027
—0.00027
—0.00012
—0.01085
—0.01337

In looking at the results displayed in Table VII, one
is struck by the fact that e2, t2. g(" is much larger than
the other e;,'3). Of course, we expect both e~, t~, q(') and
e2, t2, g

~3) to be much larger than the contribution from
inter-shell terms, but e2, t~, g('& is more than three times
larger than e~, t~, g(", even though ~y, ty, g&" and e2, t2, &("
differ only by 25%, with el, t1, 4

"i being even larger
than e2, t2, g(2). The reason for this phenomenon is
easily seen. The outer pair of 2s electrons is loosely
bound, and we may expect that the convergence of

perturbation theory for such a pair mould be rather
slow, compared, for example, with the very tightly
bound pair of 1s electrons. In fact, we see from Tables
VI and VII that the convergence of the perturbation
expansion for the 1s-1s correlation energy is very rapid.
In a similar manner, one also sees that the inter-shell
correlation energies are also converging rapidly. How-
ever, it is clear that the results for E„„"", i.e., the
2s-2s correlation energy, are not converging rapidly,
and it would certainly not be surprising if higher-order
terms in perturbation theory made significant contribu-
tions to E„„"". We will consider this problem in
Sec. VII.

VII. HIGHER-ORDER EFFECTS

Our results so far are very satisfactory as far as the
1s-she/l and inter-shell correlations are concerned. How-
ever, for Be the sum of E2 and E3 is equal to —0.0855
a.u. , which is approximately 0.009 a.u. greater than the
experimentally observed correlation energy. For 8+,
E2+E8 —0.100 a.u. , ——approximately 0.012 greater
than the experimental correlation energy. On the basis
of what appears to be a very rapid convergence of the
1s-1s and inter-shell contributions, we conclude that the
discrepancy must be due to higher-order effects of pair
correlations, primarily in the 2s shell and probably also
to three- and four-body correlations. Thus, the question
arises of how to describe higher-order effects. The in-
clusion of three- and four-body effects is beyond the
scope of this paper, although, as we have already re-
marked, with pl determined exactly, it is possible to
evaluate the off-diagonal contributions to E3, thereby
obtaining the lowest-order contribution to the three-
and four-body effects.

In order to deal with higher-order effects, we simply
move from our equation for pl to a similar equation
for f2 which is readily obtained from Eq. (13b), namely,

(&O &o)42+ (&1 %—)$1 &2&8=0—. (6—0)

As noted in 3JI, this equation can be derived from a
variational expression

~.L~"3=8"III. ~.l~")+28"I~. ~ I~.)—
Because we have already calculated pl, it would appear
reasonable to construct a function $2' just as we did for
|Jr' and then form F2I p2') which will yield $2 upon
variation of the parameters in $2' .With $2 obtained we
then find E4 and E8 by using Eqs. (14d) and (14e).
Since we have chosen pl to be orthogonal to 1J 8 and since
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we are free to make the same choice for $2 I
because of

the form of Eq. (60)), Eqs. (14d) and (14e) simplify to

E = (~—.IH. E.-I~.)-E.(~ l~.), (62)

E8= &AIH1 —Elle) —2E2&41IA)—E8&AIA) &6»

Comparing Kqs. (60), (6]), and (62) we see that the
value taken on by F2 when $2' is equal to the true p2
is just E4, apart from a term in (/iI /1& which does not
depend on |t 2. Thus, Eq. (61) is a variational principle
for E4, and in fact it is easy to show that since we are
dealing with a ground state we actually have a nzieimlm
principle for E4.

However, we note that F2I p2'), because it contains
the inner product Q2'IH1 —Eilpl&, will not decouple
exactly into a set of pair problems as did Fil $1'). This
inner product is exactly of the form of the inner product
occuring in the expression for E8 tEq. (51)), so since E8
did not decouple exactly into a sum of e@('), the term
Q2'I Hl —Ell pl) will also not decouple in this manner.
It should be noted that this is not the only reason that
decoupling does not occur. Another, slightly more ob-
scure, reason comes from the term (p2'IH8 —E8I$2').
In discussing a similar term in Fll $1') we concluded
that it did decouple into a set of pair terms. This de-
coupling depended critically on the fact that the I,;
contained no component of ggy filled. Hartree-Fock
orbital in f8. However, for $2', we will want to replace
the X,; of Eq. (18) for pl' with X;, and although it will

still be true, for example, that X2, g2, g' will contain no
components of pl, t or &1,4 because of the exclusion
principle, nevertheless, components of &2, t and &2, 4

are no longer excluded because of the form of the equa-
tion for f2 as they were in the case of pl. This is again a
consequence of the term (Hl —El)$1 in the equation
for f2.

With these difFiculties in mind, let us be guided by the
physics of the situation. Since our work on Z~ and E3
has shown that the contribution to the correlation
energy from inter-shell correlations is small and is
mostly exhausted by pl, we conjecture that the domi-
ant terms in f2 are of the 1s-1s or 2s-2s correlation. type.
Thus we take our trial function $2' to be of the form

f2'=
I 1/g(12))sl xl, t1.4'(rl, r2)$2, t(r8)$2, 4(r4)

+$1 t(rl)fl 4(r2)X2 t2 4 (1'8 r4)

+41xl tl 4(rl r2)x2 t2 4(r8 r4)) (64)

where X~, t~, g' and X2, t~, q' contain a large number of
parameters to be varied, and a is also a variational
parameter. The functions X~, t~, g and X~.t~, g are given
in Sec. V. Note that in Eq. (64), because of' the operator
S, X2, g2, g' can be taken to contain no components of
@1,t on @1,4. A similar comment applies to xi, t1,4'.

Now, a term involving Xl, tl, l' (or X2, t2, 4') can be
thought as arising in perturbation theory from two
successive interactions between the 1s (or 2s) electrons.
Our assumption concerning the form of f2' is essentially

that terms in which there are two successive inter-shell
interactions between the same electrons are unimport-
ant. However, there is another type of term to be con-
sidered in second order, namely, an interaction within
one pair followed by an interaction within a different
pair. Situations in which the two pairs have an element
in corrimon correspond, roughly speaking, to triple cor-
relations in which one electron is in a different shell
than the other two. Contributions of this type are ex-
pected to be small compared to those coming from terms
in which there are successive interactions between two
electrons in the same shell. But in an atom with more
than three electrons, there exists one more possibility,
namely, an interaction within a pair of electrons fol-
lowed by an interaction within another pair having no
element in common with the 6rst. Terms like this cor-
respond to disconnected diagrams in perturbation theory.
An example of this case is an interaction between the 1s
electrons followed by an interaction between the 2s
electrons. There are two other possibilities correspond-
ing to inter-shell pairs which, because of the smallness
of inter-shell effects, one expects to be negligible.
Making a reasonably simple model of correlations, we
assume that a term representing two independent cor-
relations in different shells should arise in $2' through
a term proportional to the product Xl, t1,4(rl, r2)
&(X2, t2 4(r8, r4) of the appropriate first-order correlation
functions. This explains the appearance of the last term
on the right-hand side of Kq. (64).

If we now insert our trial function (64) into the mini-
mum principle (61) for E4, we get

F2I f2') =A+28—2E2C,

where we have de6ned

A=$2 IH,—E8ly2),

~=8"IH.-E l~ ),
c=(A IA).

(65a)

(65b)

(65c)

(65d)

(66b)

Thus the term C enters essentially as a Lagrange
multiplier in our problem.

The term A is also straightforward. It breaks up into
a simple sum of three terms. There will be no inter-
ference between the second-order correlation function
terms and the term in X~, t~, qx2, t~, q because both
X&, t&, g and X~, t2, g are orthogonal to all Hartree-Fock
orbitals (this is also why the term in xl, tl, lx2, t2, 4 does
not contribute to C.) There will be no interference be-
tween the two second-order correlation functions since

The discussion of the term C is trivial. Since we may
choose ($2lf8)=0, we will consider our trial function
lt 2' to be orthogonal to f8, or in terms of the functions
Xy, ti, &' and X2, t2, g', we will constrain them to satisfy

(66a)
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all but two terms in the overlap expression vanish because Q 1,
~
&2,)= 0 and the remaining two terms vanish

because of the action of Ho —eo. Thus, in a fairly straightforward manner we get

~ = (Xl tl 4'I &HF(r)+&»(r') —201. I Xl t1.3'&+(X2.».4'I &HF(r)+&HF(r') —202 I X2.».3')

+43 (Xl tl 4(rl r2)X2 t2 4(r8 r4) ( +0 +0
~
8LXl tl 4(rl r2)X2 t2 4(r3 r4)]) ' (67)

The term B poses the only significant problem in the evaluation of F2Ltt'2 ].On the right-hand side of the inner
product LEq. (65b)] pl is the sum of six first-order pair-correlation terms, and on the left-hand side we have a sum
of three terms given by Eq. (64). The reduction of this expression will involve the neglect of certain terms, and
therefore, since we neglect them in the variational principle (i.e., a functional), we are on less Grm ground than
when we neglect terms in a scalar like E3 However, the 12 terms involving overlaps between inner-shell functions
like X~, t ~, g ', X~, t ~, q, etc., and the inter-shell functions X~, t~, g, e tc., are expected to be extremely small so that
neglecting them is probably not a serious error. Thus we are left with six terms in 8 which should be considered
carefully. The two direct terms between the inner-shell correlation functions reduce to

and
(xl.t1,3'(rl, r2)

~
(1/r12) —Vl, t(rl) —V1.4(rl) —Vl. t(r2) —V1,4(r2) —01.tl. 8 "'

~
xl, tl. 4(rl, r2))

(x2, t2. 4'(r3, r4)
~
(1/r84) —V2. t(r8) —V2, 4(r8) —V2, t(r4) —V2, 4(r4) —02, t2, 8 '"

~
x2. t2. 4(r3,r4))

(68a)

(68b)

after a simple calculation completely analogous to the evaluation of similar ("diagonal" ) terms in E3~

Next we investigate the contributions involving overlaps between the two different inner-shell terms. These are

and
(Ql, t(rl)&1, 3(r2)X2, t2, 3'(r8, r4)

~
(1/r»)

~
&[Xl,tl, 4 (rl, r2)$2, t(r3)$2 4(r4)])

(Xl, tl, 4'(rl, r2)4 2.t(r3)42. 4(r4) ( (1/F34)
~ ~F1,t(rl)41. 3(r2)X2.t2. 4(r3,r4)]).

(69a)

(69b)

The two terms contributing to each of these expressions which do not involve overlaps between different shells are
identically zero because of the constraint equations, Eqs. (66a) and (66b). Again, the remaining terms involve over-
lap integrals between different shells which we neglect. We note that except for one part of Eq. (69a) and also of
Eq. (69b) which is very much smaller (by probably two orders of magnitude) than a typical term of B, the remain-
ing terms which are discarded contribute only to the relative s-wave part of X~,t ~, q

' and X~, t~, g
'. We expect the

s-wave contribution from X2,t2, 4' to be very small by analogy with the s-wave contribution from X2, t2, 3 (see
Table V), so that errors in this partial wave will be relatively unimportant.

Finally, the last contributions to 8 will come from the overlap of the term in X~, t ~, gX~, t~, g with the 6rst-order,
inner-shell correlation terms in p 1. These terms are

and

43(X1 tl 8(rl r2)X2 t2 8(r8 r4)
~
+1 +1~ 3$X1 tl 4(rl r2)42 t(r3)42 4(r4)]

+(Xl tl 3(rl r2)X2 t2 4(r3 r4)
~
+1 +1~ 8(41 t(rl)4'1 3(r2)X2 t2 3(r8 r4)])

(70a)

(70b)

and they involve only functions which are not varied.
Combining the results expressed in Eqs. (68a), (68b), (70a), and (70b), we get for B

B= «1, t l.4'
~
(1/r12) —Vl, t(ri) —Vl. 4(rl) —Vl, t (r2) —V1,3(r2)—01.tl, 4 "'

~
xl. tl.4)

+(x2 t2 4
~
(1/&34) V2 t(r3) V2 3(rs) V2 't(r4) V2 8(r4) &2 t2 4 ~x2 t2 4)

+43(X1 tl 4(rl r2)X2 't2 4(r8 r4)
~
+1 +1~ 8''1 t(rl)41 4(r2)X2 t2 3(r3 r4)])

+43(X1.t1,4(rl, r2)X2. t2. 4(r3, r4)
~
&1—K

~
&LXl, t1,4(rl, r2)&2. t(r3)y2. 4(r4)]) . (71)

Following Eq. (65a), we now combine Eq. (67) for 2 with Eq. (71) for B to obtain F2C.'tt'2']. We constrain X„»,4'

and Xl, t2, 3' according to Eqs. (66a) and (66b) and vary F2L$2'] with respect to Xl, t1,4', X2, t2, 4', and a, so that we
obtain the relations

NHF(rl)++HF(r2) 201 ]xl tl 4 (rl r2)

+L(1/F12) —Vl, t (rl) —V1, 4 (rl) —Vl, t(r2) — ,V(lr 4) 201, t1,4
"—]xl, tl. &

=0, (72a)

LHHF(r8)+IIHF(r4) —202,]x2, t2, 4'+L(1/r84) —V2, t(r3) —V2. 8(r8)—Vl, t(r4) —V2, 4(r4) —02, t2, 4 &'1]x2,t2, 4 =0, (72b)

~(X1 tl 4(rl r2)X2 t2 4(r3 r4) ~+0 +0~ Iyl tl 4(rl r2)X2 t2 3(r3 r4)])
+(Xl.tl 4(rl r2)X2 t2.3(r3,r4)

~
&1—K~ &/&1, t(»)y1, 3(r2)X2 t2 8(r3 r4)])

+(xl t1*8(rl r2)x2 t2 3(r3 r4) )+1 El) ) @t xl tl 3(rl r2)42 t(r8)$2 4(r4)]) ~ (72c)
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We make our usual approximation concerning the neglect of integrals involving overlaps between di6erent shells.
Hence, we can easily reduce Eq. (72c) to the form

243L&lstls4 (Xlstlsl l X2st2s4)+ &2st2s4 (Xlstls4 l Xlstls4)]
+V2L&ls tl 4 (X2 t2 4 l

X2 t2s 4)+ &2 t2 4 (~lstl 4 l Xl tls 4)]=0 s

from which we conclude that a=2 '12

Equations (72a) and (72b) are just the equations which we would get from a model Hamiltonian of the form of
Eq. (28). They can be solved by the methods of 3JI, which we have already used in solving for the first-order cor-
relation functions. If we insert the solutions of Eqs. (72a) and (72b), along with the value 43= 2 'l2, into Eq. (64),
$2' becolnes the true second-order wave function which we will use in calculating E4 and E3.We thus see that when
we come to second order in wave-function perturbation theory, our wave function is not strictly speaking what one
would obtain from a simple-minded solution of the two-body model Hamiltonians of the type of Eq. (28). However,
the terms which must be added are of a very simple and intuitively reasonable kind (X»t»4X2»2s&) and they can
also be obtained in a straightforward manner from the perturbation solutions to the pair equations. Another way
of looking at these results is, of course, by examining ordinary perturbation theory in terms of sums over inter-
mediate states and picking out subsums which can be argued to dominate in various ordrs. . This approach lends
strong support to the approximations made in this section.

Having determined Xl, tl, 4' and X„t2,4' by the variational method (we used trial functions of the same functional
form as we employed in obtaining xl, », 4 and x2, t2, 4), we now evaluate 84 and E3. The first term in E4 l see Eq.
(62)] is —($2lH3 —E3l f2). In the same way in which we arrived at Eq. (67) for A, we find

(4'2lB0 ~olA) (Xl 'tl 4 l+HF(rl)+IIHF(r2) 2&1 lxl tl 4 ) (X2 t2 4 l+HF(r3)++HF(r4) 2&2 lx2 t2 4 )
+&1stls4 (X2st2s4 l X2st2s4)+&2st2s4 (Xlstls4 l ~lstls4) s

where we have reduced the term involving Xl, t1,4X2, t2, 4 in a manner similar to that used in solving Eq. (72c) for
42. The second term in E4 is —E2Q 1 lfl), which we write as

E2Q'll $1) (&1 tl 4 +&2 t2 4 )l„(X1 tl 4 l
Xl tl 4)+(X2 t2 4 l

X2 t2 4)]+remainder.

The terms appearing in the remainder are readily
evaluated and are found to be very small compared
with the term written out in detail. We neglect these
terms since they are analogous to inter-sheQ terms and
terms involving overlaps between di6erent shells,
which we have always neglected. An an example, for
Be the omitted terms contribute 0.0002 a.u. to E2Q 1 l $1),
while the terms retained contribute 0.0021 a.u. The size
of the neglected. terms gives a rough idea of the order of
magnitude of the overlap sects vrhich we have ne-
glected and which correspond in part to triple and quad-
ruple correlations and in part to pair correlations be-
tween electrons in diferent shells. We see that the
term xl, t 1,4x2s t2, 4 in $2 has the effect of removing terms
like 4»tls4'"(X2st2sll&2st2s4) frOm the final eXPreSSiOn

for E4, so that 6nally we have

E4——Q' 3 "&4&

s se7

with

2;s &4& =—(X@'
l HHF(r)+ HHF(r') —3;—3, l

X;s')
—';&"(x';lx,;), (73b)

which is just what we would have obtained if we had
calculated the eigenvalue of the appropriate reduced
Hamiltonian of the type of Eq. (28) through fourth
order in energy. Entirely similar considerations show
that, with the omission of terms of the type which we

have been neglecting, E5 may be written in a similar
manner;

jV3—P' 3, (3) (74a)

with

3 '"=(&' l(l/lr —r'l) —I"(r)—I'(r) —I"(r')
—I's(r') —3v"'

l
X's') —24v'"(X's

l
Xv')

—...&»(x,, l x,;). (74b)

Evaluating c;, (4& and e;;(') for the inner-shell pairs which
are of interest, we Gnd for Be:

~1,t1,g
&"= —0.00026 a.u. ,

~1,t1,g"'= —0.00003 a.u. ,

For 8+ we get

32s t2, 4'4' =—0.00478 a.u. ,

E2 t2, g&"= —0.00201 a.u. .

= —0.00018 a.u. , e2s t2, g' ' = —0.00615 a.u. ,.„t„&() = —0.00002 a.u. , .2.t2.~(') =—0.00297 a.u. .
Table VIII surrunarizes the contributions of various
orders of perturbation theory to the quantities E„„"",

1s-2e and g 2s-2e for Be while Table IX lists the
same quantities for B~.

In calculating these results it is found that the
s-wave contribution to e2, t2, g& is smaller than the
dominant p-wave term by about a factor of 20 or 30.
Thus, even errors in the s wave of the order or magni-
tude of 50'Pq are unimportant for our purposes. This
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Tel p VIII. The contributions to Ecorr s
q Ecorr s ss and Ecorr

from each order of perturbation theory for Be (in a.u.).
while for B+ we have

Order of
perturbation

theory

Second
Third
Fourth
Fifth

Total

is-is
—0.04008—0.002 10—0.00026—0.00003
—0.04247

1$-2$

—0.00458—0.00066

~ ~ ~

—0.00524

2$-2$

—0.03050—0.00753—0.00478—0.00201

—0.04482

E ""(B+)= —0.0425 a.u. ,

E,.„""(B+)= —0.0075 a.u. ,

E,.„""(B+)= —0.0596 a.u. ,

E..„'o™(B+)= —0.1096 a.u. ,

Thus, our final results in both Be and B+ are in good
agreement with the experimental results:

E„„''(Be)=—0.0944 a.u. ,
TAg LE IX. The contrjbutjons to E 1s-1s E 1s-2s and Eco 2s-2s

from each order of perturbation theory for B+ (in a.u.).
E„„'"&(B+)= —0.1116 a.u.

Order of
perturbation

theory

Second
Third
Fourth
Fifth

1$-is

—0.04055—0,00174—0.00018—0.00001

1$-2s

—0.00668—0.00078

2s-2s

—0.03958—0.01085—0.00615—0.00297

There have been several investigations of the binding
energy of Be in the past few years, and it is of interest
to compare our results with those of other authors.
Kelly' has used the Bethe-Goldstone version of pertur-
bation theory and has obtained results which are in
very close agreement with ours. He finds

Total —0.04248 —0.00746 —0.05955

VIII. CONCLUSIONS

Summarizing our Anal results in Be, we have

E,.„""(Be)=—0.0425 a.u. ,

E,.„"-"(Be)= —0.0052 a.u. ,

E„„""(Be)= —0.0448 a.u. ,

total(Be) 0 0925 a u

strengthens the arguments made in reducing the
quantity Fr[if 2'j. It is also clear that the contributions
of the 1s shell to E4 and E~ are insigni6cant. Thus for
the accuracy needed we could have neglected the func-
tion X1,t 1,g

' entirely, so that many of our overlap prob-
lems would not have existed. We have retained it to
illustrate the typical difficulties which one would en-
counter in a more general situation. It is interesting to
see the very significant effect of the term X1s t 1s g X2s t 2s g

in the trial function P~ . If we had omitted this term, we
would have found values of E4 20 to 30% smaller in
magnitude than the results given in Tables VIII and
IX. The effect would have been even more drastic in

E5, where the magnitude of the results presented in
Tables VIII and IX would have been reduced by 35
to 50%.Had we omitted this term we would have found
for the total correlation energy E„„"'"(Be)= —0.0897
a.u. and E„„'""(B+)= —0.1071 a.u. , instead of the
results given in Tables VIII and IX. These tables also
illustrate the slow rate of convergence of the 2s-2s
correlation energy. We see that the final values of
E ""for Be and B+ will probably be 0.001 to 0.002
a.u. lower than the values given by the tables. We did
not pursue our calculation to higher orders, partly be-
cause the effects of three- and four-particle correlations
will begin to compete seriously with pair correlations
and partly because problems relating to loss of pre-
cision become more significant in solving for fa.

E ""(Be)= —0.0421 a.u. ,

E,.„""(Be)= —0.0050 a.u. ,

E,.„""(Be)= —0.0449 a.u.

E o a (Be)= —0.0920 a.u.

We see that our result for the 1s-Is contribution is 1%
lower than Kelly's, and for the 1s-2s contribution our
result is 4% lower. The difference between our figures
and those of Kelly in both these cases is about the same
as the estimated numerical uncertainty in our results.
In our case, one can see explicitly the very rapid con-
vergence of perturbation theory which makes it seem
very unlikely that the 1s-1s and 1s-2s correlation
energies which we have calculated diff er from the
actual energies by more than the above stated un-
certainties. In particular the results of Sinanoglu et ul. ,

~

Ecorr1s-1s 0 0440 a 'u and E r
1s-2s —0.0065 a.u.

definitely disagree with our results. Sinanoglu's result
for the 1s-1s shell is rather close to what we wouM have
obtained if we had not removed the components of
@~, from our trial function for Xi, ti, 4. In the case of the
2s-2s energy, Kelly's result and ours are essentially
identical, although we can see from Table VIII that if
we carried out pair model to higher orders we would
probably obtain a result about 0.001 to 0.002 a.u. tower
than the result we have found. Again, we are in disagree-
ment with Sinanoglu, who finds Ec ""=—0.0438 a.u.
a result 2% higher than ours.

Basically, we feel that the close agreement between
our work and that of Kelly, which are after all just
two diff erent approaches to perturbation theory, tends
to suggest that the results presented here reQect faith-
fully the content of the lowest orders of perturbation
theory. Furthermore, the rate of convergence of pertur-
bation theory seems to be quite rapid for the 1s-1s
and 1s-2s correlation energies, so that for them con-
tributions from higher orders are in all probability not
signi6cant. The main uncertaintly in our results comes
from the slow convergence of the 2s-2s contributions,
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but even here the indications are quite good that higher
orders will contribute no more than —0.002 a.u. to our
result.

Regarding 3+, there does not seem to be any theoreti-
cal work on this ion. We have included it here to point
up some of the more interesting features of the four-
body system. We see that the 1s-2s correlation energy
increases by about 50%%uo as we go from Be to B+, which
illustrates the physically reasonable fact that the inter-
shell correlation energy depends critically on the
distance between the shells in question. It is for this
reason that we expect intershell effects to be much Inore
important in systems with more than four electrons,
where there in strong spacial overlap between the 2s
and 2p shells. Also in B+ we see a very large increase in
the 2s-2s contribution to the correlation energy. This
occurs because of the fact that the 2p state of the
Hartree-Fock Hamiltonian gets progressively closer in
energy to the 2s state as the central 6eld becomes larger
and larger, thus contributing smaller and smaller energy
denominators in the sums over intermediates states
occuring in perturbation theory. Also of interest is the
great stability of the 1s-].s correlation energy, which
is to be expected from similar studies of the two-body
systems He, Li+, Be++, 8'+, etc. '

In closing this discussion, we emphasize again that
the results obtained can be viewed in lowest order of
perturbation theory as coming out of a simple two-body
generalization of Hartree-Fock theory Lsee Eq. (28)„l,
where each pair of particle is thought of as interacting
though the true Coulomb potential, but also seeing an
average potential due to the other electrons which re-
main in this approximation in their unperturbed
Hartree-Fock orbitals. However, if we go higher in
perturbation theory, correlations mithin disconnected
pairs of electrons modify the perturbation wave func-
tions in a significant way, although it is still possible to
take these effects into account in a straightforward
manner by using the pair-correlation functions already
calculated in the two-body Hartree-Fock model. The

ss C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32, 194
(1960).

effect of this change in the character of the wane flection
is just to give an expression for the perturbation theory
t,'eergy which is precisely what one would obtain by
applying the two-body model in a simple-minded way
to compute the total energy.

We believe that the method described here can be
extended in a trivial way to the lithium atom. There will
be coupling between singlet and triplet parts of the
two-body correlation functions in this case, but this is a
minor complication. In calculating the correlation
energy in lithium, one will also need analytic solutions
to the true Hartree-Fock equations, i.e., solutions in
which the 1st' orbital has a different space wave func-
tion than the 1sJ. orbital because the 2s shell is not
closed. (Thus, Xt, tt, q will not be a pure singlet function
as it was in Be and B+.) Again, this represents an in-
essential complication. We believe that one should be
able to get extremely accurate results in lithium by
going through fifth order in energy. Extending this
method into the 2p shell (boron, carbon, etc.) will
entail some vector-coupling modifications, but, more
important, the approximations concerning inter-shell
effects (2s-2p) will have to be examined carefully. A
further problem is that of determining the effect of
approximate solutions to the Hartree-Fock equation in
this method, since the solutions to the true Hartree-
Fock equation, involving potentials which are not
spherically symmetric, are not readily obtainable, ex-
cept in very special cases (e.g. , closed angular-momen-
tum shells). This is probably the most serious difficulty
which will occur in generalizing this method to more
complicated systems.
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