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above, but they have no evidence of a line near 780 A.
Our results are in agreement with their conclusions.
For example, from Table XIV we see that there is a
series line at 685.46 A corresponding to the transition
3Py-(2P°)5d" 3P° and one at 685.44 A a corresponding to
3P,-(2P°)5d" 3D°.

The Rydberg series of levels, which belong to a dis-
crete spectrum and which precede each threshold in the
photon energy scale, provide an indirect method of ioni-
zation by absorption into a short-lived state followed by
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auto-ionization. Thus, peaks in the absorption cross
section can be expected near (or at) each auto-ionization
level. The analysis of these resonances will be treated
elsewhere.

The good quantitative agreement between theory
and experiment for the absorption-line series in atomic
oxygen justifies our retention of only the terms of the
ground-state configuration in the close-coupling expan-
sion. It is noted that the same approximations were
made for the atoms considered in the previous sections.
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Using the Hanle-effect technique, the cross sections for collisional depolarization of the Rb 2Pys, 3/2 and
Cs 2Py, states by inert-gas collisions have been measured. (The natural lifetimes of these states were also
obtained from the measurements.) The 2P, »-state depolarization cross sections are much smaller than any
previously reported for L%0 states. This results from a strong selection rule governing nonresonant col-
lisions. This selection rule is deriwed and its effect on J = $-state depolarization is demonstrated. A relation-

ship between the reported cross sections and sensitized fluorescence cross sections is noted.

I. INTRODUCTION

HE collisional depolarization of atomic states by
thermal atom-atom collisions has been calculated

in several formalisms.~ The theories have considered
isolated fine-structure states, with hyperfine compo-
nents, using the adiabatic approximation to evaluate
cross sections for foreign gas (nonresonant) depolariza-
tion. Franz and Franz have discussed the effect of the
fine-structure interval in the nonresonant collisional
depolarization of the alkali p doublets, and the implica-
tions to optical pumping of a Am;=0, %2 selection rule
that occurs in several theories for collisional transfer
between the J state of these doublets.? It is demon-
strated here that there exists in addition to that weak
selection rule, a strong selection rule governing de-
polarization within a J level by inert gas collisions. This
strong selection rule asserts that in the adiabatic ap-
proximation the entire electrostatic collisional interac-
tion (including exchange) will not cause transitions be-
tween states JM and J —M when J is half-integral. The
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effect of this selection rule on J=%-state depolarization
is very apparent, since it requires that the depolariza-
tion must be produced by smaller nonadiabatic contri-
butions to the interaction. We present experimental
results for the nonresonant collisional depolarization
cross sections o of the Rb 5p and Cs 6p fine-structure
levels, verifying that the J=41 state cross sections are
unusually small. A discussion of the extension of the
present adiabatic theories to the J=% problem is in-
cluded, and the meaning of the Am; selection rules in
the adiabatic theories is reviewed. The effect of the
reported cross sections on ground-state optical pumping
can be established by use of formulas for relaxation of
hyperfine components in Ref. 2 in conjunction with
procedures in Ref. 4; no discussion is included.

The theories have treated the collision Hamiltonian
V as a perturbation that alters the populations of the
electronic states of the separated atoms, using the
dipole-dipole interaction and straight-line paths for
V(b,v,t) of a collision with impact parameter b and
relative velocity v. For this V, the nonresonant colli-
sional depolarization arises from the Van der Waals
interaction, and if [V2(b,v,t), V2(b,v,')] is neglected,

)

S(b,v)=Saa(b,v)= exp( — 1/

—00

dt Vddz(b,v,t)/hAEav)

is obtained,? where we represent the effect of one colli-
sion by (0 )=S(b,v) ¥(— ). This integral can be
evaluated in the collision frame (b and v along coordi-
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nate axes); then the integrals over collision directions,
velocity distribution, and impact parameters lead to
the observed damping rates y;=#@o; for the orientation
(1=1) and alignment (=2) of the excited-state density
matrix referred to any laboratory frame (» is the foreign
gas density, 7 is the average relative velocity).? Since
the integral is proportional to 55, most of the depolari-
zation is caused by “strong” collisions for which the
integral exceeds 1 (b, is defined as the b at which the
integral equals unity). In strong collisions, neither
[Vaad(b,v,t), Vaa2(b,v,t')] nor the difference between
the complete electrostatic interaction and Vga¢ are
negligible, and Saq(b,v) is not a valid solution. The cal-
culated cross sections are generally insensitive to this
because the average effect of strong collisions is approxi-
mately complete mixing of all the m; levels of each J
state, whether Sg¢a or a more appropriate S is used.
Thus, because the Van der Waals interaction (and
presumably also the actual interaction) is a rapidly
varying function of internuclear separation, the cross
sections are about mb¢?, typically ~10~1* cm? regardless
of minor difference between Sgq and .S when d~d,. But
the ratio vy1/v» for a particular J state depends only
on the ratios of the (Jm|S|Jm ;") for the collision frame
states | Jmys), and if Sgq is used, the ratios obtained are
not the same as those from the more appropriate model
of complete 7,; mixing by all strong collisions.® The
largest difference arises because (Jmy|Saqa|Jms )=0
unless my;—m;’ is an even integer. This selection rule
would also have important consequences in the case of
a J=1 state because the collision-frame excited-state
density matrix, and thus the laboratory-frame density
matrix, will not be altered by collisions unless they cause
transitions between the m ;=23 levels (the phase shifts
in both m levels will be the same). If these transitions
were forbidden, o=0 would result. Since Saq does not
apply to strong collisions, one could hardly expect from
the Sg4q selection rule that ¢ of a J=1% state would differ
greatly from 10~'* cm? But there is a much stronger
argument against the J, my=3%, $<>%, —1 transitions,
and as a result o of a J=1% state (L>0) can be much less
than 10~ cm? We will elaborate on this by considering
the problem of the Rb 5p and Cs 6p doublets.

When considering the nonresonant collisional de-
polarization of atomic states characterized by Russell-
Saunders coupling (L5%0), two extreme cases occur with
the usual problematical region in between. When the
fine-structure separation AE; is much less than #%/7,,
S remains stationary while the orientation of L is
changed by a collision (7.2 [V (b,v,f)dt/V max is the
collision time). The resulting cross sections can be cal-
culated using the results of Ref. 2, with L and J in place
of J and F; of course ¢~10-1* cm? results for all the
levels of such a multiplet. When AE>%/7., S and L
remain coupled during a collision and J must be de-

% See Sec. IL.D of Ref. 2 for a discussion of the strong-collision

mixing and the two approximations for its evaluation. The Am
selection rule can be seen from Eq. (20).
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polarized; the results in Ref. 2 may be used directly for
this case. The ratios of the o for depolarization within
different levels of a multiplet will differ in this regime,
but ¢~10" cm? again results for J>% cases. Thus
collisional depolarization cross sections normally change
by small amounts between these two regimes, whereas
the cross sections for transfer between the levels sepa-
rated by AE generally undergo large variations. Colli-
sional transfer between the J levels of the lowest alkali
p doublets is an example closely related to the measure-
ments reported here. For Li and Na, AE;<#r,, so that
inert gas collisions can change the orientation L without
changing S, thereby causing AJ transitions with cross
sections gas near 107* cm?2 But for Rb and Cs, AEs
/7. so that J is depolarized, and therefore the AJ
transitions are not caused by the long-range interac-
tion; oay<K10~4 cm? results.®” The depolarization of
these 2Py, states of the alkalis also tests the effects of
AE; versus #/7, on collisional depolarization. The Li
and Na 2Py, states should have o~1071% cm? for inert-
gas collisions. The Rb and Cs 2Py, states must be de-
polarized primarily by J, my=%, 3 <> %, —% transitions,
but as noted already this will have an unusually small
cross section. Thus the transition from L disorientation
to J disorientation causes a drastic reduction in o of
these 2Py;, states, whereas the same transition would
not greatly alter ¢ for a J>}% state.

II. EXPERIMENT

We have measured cross sections for the collisional
depolarization of the Rb8” 5p 2Py and %P3/, states and
the Cs 6p 2P,,; state by inert-gas collisions. We used the
Hanle-effect method because it offers several advantages
over a direct measurement of the polarization of the
scattered light, but otherwise obtains the same infor-
mation. The principal advantages are the independence
from corrections for instrumental scattering, a com-
paratively small dependence on optical depth, and a
clear magnetic-field separation of the effects of ground-
state pumping in the buffered cells. The Hanle-effect
linewidths were obtained for each inert-gas pressure in
the limit of zero optical depth. In contrast to zero-field
polarization measurements, this was very easy because
the nuclear spins of Rb%¥” (I=%) and Cs (I=1%) make
the Hanle-effect widths comparatively free from co-
herence narrowing. At the highest temperatures used,
22°C, less than 59, narrowing was obtained even from
3-in.-diam cells without buffer gas. The cross sections
were obtained by fitting the Hanle-effect linewidths
AH to Am|gr|pAH/f=1/7+nbs,' where Am is 2 or
1 for alignment or orientation, 7 is the natural lifetime
of the p state, and |gr| is the same for all the F levels
of each p state investigated. In this relationship we have
neglected the (#=0) line-shape corrections of about 1%,

6 Bruce Pitre, A. G. A. Rae, and L. Krause, Can. J. Phys. 44,
731 (1966).

7 C. Czajkowski, D. A. Mcgillis and L. Krause, Can. J. Phys.
44, 91 (1966).
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TasLE I. Collisional depolarization cross sections.

o (10716 cm?)

State Foreign gas Orientation Alignment
Rb 5p 2P3)s Neon 57 100
Argon 130 210
Rb 5p 2Py Helium 9.0
Neon 6.0
Argon 9.7
Krypton 10.6
Cs 6p P12 Helium 21
Neon 0.8
Argon 1.7

due to the finite size of the level width compared to the
hfs separations. An example of the data is given in Fig.
1, the measured cross sections are given in Table I, and
the natural lifetimes obtained from the #»=0 linewidths
are reported in the last paragraph. The reported cross
sections represent an average over those for depolariza-
tion within and between different hyperfine components,
with the relative pumping rates of different components
somewhat uncertain due to uncertainties in the (elec-
trodeless bulb) lamp profile. The relative sizes of these
different cross sections within one J state typically differ
by 20 to 509, hence this is not important to the present
discussion.? The (average) o2 was obtained by scattering
linear polarized light and observing the Am =2 crossing
signals; the (average) o1 by scattering circular polarized
light and measuring only the Amp=1 crossing signals
(we did not measure o3 of the 2Py, states because they
cannot be aligned by simple optical pumping, nor the
Cs 2P;jo-state signals because they are complicated by
different |gr| values). It can be seen that as AE; in-
creases compared to %/7., o of the 2Py, states becomes
one to two orders of magnitude less than 1074 cm?. Yet
o remains orders of magnitude greater than the known
aas and its magnitude must be explained by depolariza-
tion within the J=1% levels.t/7
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III. THEORY

As noted above, the 2Py, states must be depolarized
by collisional transfer between the my=1 levels, so
we will now consider this transfer by a collision of arbi-
trary b and v. We will consider the complete electrostatic
interaction, neglecting magnetic interactions with the
alkali spin since these are known to produce extremely
small cross sections for ground-state depolarization. If
we expand the state of the outer alkali electron and the
inert gas outer-shell electrons in antisymmetrized prod-
ucts of atomic orbitals, this will be almost equivalent
to using single products of atomic orbitals and adding
an exchange interaction —) ;71 'p1x to the direct
collisional interaction ) V1.8 Here Py, exchanges the
alkali electron, 1, with the kth electron of the inert gas
outer shell, and Vy=ryt—riy~'— 7y~ 4 rya-, where
N and NV’ refer, respectively, to the positions of the inert
gas and alkali nuclei. Due to the nonorthogonality of
the atomic states on different centers, some additional
smaller exchange contributions occur. We will discuss
them below. The essential feature of this interaction is
its spin independence, and this should be appropriate
even during the parts of a collision when the actual state
is a considerably mixed set of atomic states. In the inter-
action representation, the probability amplitudes ., (¢)
of the states |mg) are given by

ihin(t)= (| V()gm|m'g)am(t)
il Y emieremat(mg| V(1) | pg)

t
X/ dt/eiwpqvnyt’<pql V(t’) Im’g>am,(,§’)+ cee, (1)
Here |mg) is a single product,
N
| Gm) I:C[;II (g9)k11),

of the #2Py)s »(t1) state of the alkali electron and the
ground-configuration single-electron states, g*(rzy1), of
the IV outer-shell electrons of the inert gas; p is another
alkali state, ¢ is one state of another configuration of the
inert gas, #wpq,ng=(Ep+Eqs)— (Es+E,), and V is the
sum of the direct and exchange interactions. We will
limit the discussion to the m'=—1%, m=% terms in (1).
The first-order interaction in (1) becomes?

(%g! V! —30=(G )1 I}} (gk')k'+1i Zk: (Vie—rie P |

X I G _%)113 (& )wrr >=§ #5108k

N
X | V1lc—7‘11c_1P11cl G —%)l(gk>k+1>EI§1 (G

X (F*m*)s| Vig—r1a Pra| G —3)1(f*m*)), (2)

8 E. U. Condon and G. H. Shortley, Tke Theory of Alomic S pec-
tra (Cambridge University Press, New York, 1959); see Sec. 7
except as noted.
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where the inert gas single-electron states have been
characterized by jm quantum numbers in the final ex-
pression. Using the definition of single-electron eigen-
functions in Egs. (14%1) and (452) of Ref. 8, ¥V,*
=(—1)"Y1—m from Sec. 43 of Ref. 8, and (ImSms| jm)
= (—1)"*59(l—mS—mg| j—m), it can be verified that
if the operator U satisfies

f / #*(Ds*(2) (Vgs(Da(2)}

=//{"Ud’l*(l)(ﬁz*(z)}¢3(1)¢4(2),
then
(@ 7'mY)1(125%m*)2| O] (B7°m?)1(17*m*)s)

={II (=)@ j° —m*)1(I* j* —m)2| V]

=1

Xt =m)a(P 7> —m?a).  (3)
Since Pis can exchange r; and r; of either pair of states
in the matrix elements of (2), Vis—r15"1P1, satisfies the
condition on VU and we define it as U below (note that
a general spin-dependent interaction would not satisfy
this condition on V). Since all the configurations of
single-electron states appear an even number of times in
all orders of (1), the various (—1)U+#+H*+2 that occur
when (3) is used in (1) will always reduce to inconse-
quential +1 factors. For brevity we will delete the I
quantum numbers in the following discussion. Since the
inert gas outer shell is filled, the sum over % in (2) will
include a jPm*= j —m state for every jm state. If we
apply (3) to such a pair from the % sum in (2), we obtain

5 (G D1 Em)al 0] G —Pi(j m)a= ¥ (—1)2iem
+ ES

X{(G )1 Fm)e| Ol G =31 Fm)2). (4)

Since j and m are half-integral, (—1)—2/~1=2n=—1 and
one side of (4) is the negative of the other. Thus both
sides must be zero, and (3g| V| —2g) in (1) is zero for all
collisions.

The second-order part of (1) reduces to®

1 pt
ih)
X0 (72m?)1(§om D) (7m?)1(j9m Dz | V) |

X (G —9i(fm?)2)a_1,2(t') .

di’ Z ei(t'—t)wpq.na<(—%—%— 1(jgmg)2

9.9,

)

The excitation energy #w,q,ny now depends on j7m?,
jume, and jom? (within each configuration), but the
signs of m?, m¢, and m? can be reversed without signif-
icantly changing wpq,ng. Consequently, the matrix ele-
ments in (5) that differ only by the signs of m?, m9, and
m? are summed with a common coefficient. Using (3), we
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find for such a pair of terms in (5):

£ (G D17 Sl 00| (7 (e )

X (7 m?)a(j2 =m0 V)| G —$a(jo mo)s)

Z ( —_ 1)—1—2j0—2j¢1—2jp=7=2mﬂ$2m11=1=2m11<(]'p :Fmp)l
+

X (7¢ FmYs |0 [ (G —$)1(50 Fm)s)
X{G 215 Fm)s| V@) (57 Fm?)1(§¢ FmDa). (6)

The exponent of the —1 will be an odd integer, and
because each intermediate state always appears an even
number of times this will be a general result for all orders
in (1). The final expression in (6) would thus be the
negative of the first one if V(f) were equal to V(¢'), and
since the entire sum of the type in (5) reduces to such
pairs of states, it will be zero if V() =0().

The smaller exchange terms that arise due to the
nonorthogonality of the atomic states on different cen-
ters add to (2) some matrix elements of the form
(G $)1(8)2(8")s| 71| (G —3)2(89)1(g")s). It is clear that
the extension of (3) and the succeeding steps to these
terms also leads to a null result. Similarly the extra
second-order terms sum to zero when V(f)=<0(¢). The
importance of this cancellation to these slow collisions
is best demonstrated by integrating the second-order
term in (1) by parts to obtain

—> Gl V()| pg)pal V(t)] —38)a_1/2(8)/ 1w pg,ne

+ g VO [ o

~3¢) [ Hopne: (1)

In the adiabatic approximation only the first sum, which
includes the Van der Waals interaction, would be used,
but the V are evaluated at the same time in that sum
so it is zero in the present case. The applicability of this
result to higher order terms in (1) is clear; the conclusion
reached is that repeated application of the adiabatic
approximation leads to a null result for % to ¥ —3%
mixing. This conclusion clearly applies to any JM to
J —M mixing when J is half-integral.?

We will now investigate the residual (nonadiabatic)
interaction in the second sum of (7). By inspection, or
another parts integration, it may be verified that the
$q term in the second sum of (7) is about (Wpg,ngTe) ™!
as large as the pq term in the first sum (dV/di~V/7,).
Because of the spherical symmetry of the inert-gas
ground state, matrix elements of the direct electrostatic
interaction between (pg| and |p’g) are zero. But if ¢ is

d
X ei"’”q'nytl<PqIEI;V(t')a—uz(l')

9 Since mgs — m, — —m, transitions will occur in the adiabatic
approximation to J >3 states, the average effect of strong colli-
sions should still be almost complete ., mixing when J > 3.
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an excited inert-gas configuration (wpq,.470)! is about
1074, whereas (7.wn?p;s9,02Py20) = (AE7./%)" ! is be-
tween 10! and 1072 It appears therefore that in the
second sum of (7), the matrix elements of the exchange
interaction to the intermediate |#2P3/s ng) state should
make the greater contribution to the depolarization. In
addition, the direct interaction can mix in |#2P3/2 mg)
as the second intermediate states in fourth-order per-
turbation theory. Using the adiabatic approximation
and closure for the first and third intermediate states
(but not for the second), one can obtain a modified (7)
to represent this fourth-order interaction with V2(¢)/
AE,, in place of V(f)(AE.~15 €V.) [The first sum in
the modified (7) will still be zero.] From order-of-
magnitude arguments, it can be established with rea-
sonable certainty that the fourth-order mixing of the
|2P3/2 mg) intermediate state will cause more depolari-
zation than the direct second-order interaction, which
cannot reach the | 2P3/» »g) intermediate state. Although
we are not at this time able to estimate the relative im-
portance of the fourth-order direct and second-order
exchange mixing of the |#2Pys »g) intermediate states,
it seems clear that they should dominate the depolariza-
tion. These |#2P1/s mg) to |#2P3je mg) matrix elements
are the same ones that determine collisional transfer
between the =% and  states of the alkali doublet. In
the transfer problem, the size of the Fourier components
of these matrix elements (at frequencies ~AE /%) de-
termines the cross section, whereas in (7) the magnitude
of the matrix element is more important. Thus these
J=% depolarization measurements impose independent
requirements on any theoretical solutions of the collisional
transfer problem. Since the 2Py depolarization is
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strongly dependent upon the magnitude of this matrix
element during the close parts of the collision, it is es-
sential that the straight-line path V(f) should be re-
placed by a V(¢) with magnitude and frequency compo-
nents limited by the repulsive potential. As a conse-
quence, no order-of-magnitude estimates of the cross
section will be offered, but it is clear from (7) that it
should decrease rapidly as AE; increases beyond 7/7..

IV. MEASURED LIFETIMES

In the course of the investigations, the natural life-
times of the Rb 5p 2Py/» and %P3, states and the Cs
6p %P1, state were obtained from the #=0 Hanle-
effect linewidths. The limit of zero optical depth was
obtained, but no attempt was made to check lamp pro-
file or other uncertainties, so the results have 5 to 109,
uncertainty. Nonetheless, our results, 7(Rb 5 2P1;s)
=3.0X1078 sec and 7(Rb 5 2P3/9)=2.7X 1078 sec, are in
excellent agreement with the more thorough Hanle-
effect measurements of Feichtner®: 7(Rb 5 2Pys)
=3.0£0.3X1078 sec and 7(Rb 5 2P3/5) =2.84-0.2X 10~8
sec. Also, these lifetimes and our Cs result, 7(Cs 6 2Pys)
=3.4X1078 sec, are in excellent agreement with Link.!?
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