
PHYSICAL REVIEW VOLUME 157, NUMBER 3 15 MA Y 1967

Electronic Spectrum of Crystalline Copper*
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(Received 26 September 1966)

The optical spectrum of Cu is calculated in the random-phase approximation. Energy levels and model
wave functions are obtained from Mueller's combined interpolation scheme. It is shown how oscillator
strengths can be obtained throughout the Brillouin zone to an accuracy of about 20%. The optical energy
di6erences and oscillator strengths have been computed from a Monte Carlo sample of 2716 independent
points distributed throughout the Brillouin zone. The smoothed spectrum is in good agreement with the
experimental spectrum above 4 eV. The second peak in the interband spectrum near 5 eV is assigned to
conduction-band (Ls ) ~ conduction-band (L~) transitions, in agreement with the suggestion of Beaglehole.
It is proposed that the large peak near 2 eV should be regarded as a virtual exciton resonance induced by
final-state vertex corrections.

I. INTRODUCTION

'HE electronic structures of the noble metals at
and near the Fermi energy E~ have been deter-

mined with great precision by Fermi-surface studies of
extrernal areas A (de Hass —van Alphen effect' ') and
extremal cyclotron masses (dH —vA and Azbel-Kaner
effects'). These studies show that in this energy region
the one-electron band structure calculated either by
the augmented-plane-wave (APW) method' or the
Green's-function method' is in extremely good agree-
ment with experiment; in fact, the one-electron Fermi
radii ks agree to within 1%, which is the limit of error
imposed by conversion7 of areas to radii. After allow-
ance for electron-phonon enhancement, satisfactory
agreement is also obtained for the effective masses,
which represent (c)A/ctE) evaluated at E=Et .

In systems such as the noble metals (and also transi-
tion metals) where d-electron interactions are expected
to be larger than the calculated width of the one-electron
d bands, such agreement would surprise us had not
Landau pointed out that because of phase-space con-
siderations one-electron concepts are still valid sufh-

ciently close to Ep. Thus Migdal shoved' that the
Fermi surface itself is still a well-de6ned quantity even
in strongly interacting systems.

The purpose of this paper is to investigate the validity
of the single-particle model well away from E~ by
studying the optical absorption spectrum. This consists
of two parts: That arising from intraband (Drude) cur-
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rents, and the interband current. We focus our atten-
tion on the latter; its contribution to the dielectric
response of the crystal can be computed in the random-
phase approximation if we assume that the dominant
term arises from direct interband transitions, i.e., those
transitions which conserve crystal momentum, when
the momentum of the absorbed photon may be neg-
lected. The imaginary part e2 of the dielectric response
is then given by'

4x'e'h'

3fg2Q)2 mi
dk]P „i'. (2sr)s

X8(E —E +hco), (1.1)

where m labels occupied states, rs labels unoccupied
states, and the interband oscillator strength is

It
p „=— +t,„*V@t,„dr (1.2)

integrated over the unit cell of volume Q.
As we have remarked above, the one-electron band

structure calculated for Cu by Burdick is in excellent
quantitative agreement with Fermi-surface measure-
ments. We can therefore test the validity of the single-
particle model by calculating (1.1) from energy levels
and wave functions obtained from Burdick's crystal po-
tential. However, the completion of this program, which
is simple in principle, is complicated in practice by two
factors. The phase-space sum over frequencies cannot
be performed analytically for the entire Brillouin zone
(B.z.) even if the assumption (which is often made) that
the oscillator strengths (1.2) are constant were to be
correct. Partial evaluation of (1.1) by graphical tech-
niques in neighborhoods of the zone, or replacement of
the actual energies by analytic approximations, cannot
provide a valid test of the model.

The phase-space sums can. be evaluated in general by
a Monte Carlo method based on the combined inter-
polation scheme developed earlier" with a view to solv-
ing problems of this type. Our interpolation scheme uses

s H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
F. M. Mueller, Phys. Rev. (to be published).
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9&&9 matrices to give an abstract representation of both
the d bands and the low-lying conduction bands. The
matrix elements are simple analytic functions of k; E
appears explicitly in the matrix and only along. the
diagonal. Burdick's eigenvalues, calculated on a coarse
mesh of 89 points in 1/48 of the Brillouin zone, are re-
produced with an rms error of less than 0.1 eV (i.e., less
than lifetime broadening in the energy range of interest,
and probably also less than the uncertainties in several
levels based on unknown limitations in the determina-
tion of the crystal potential).

An intrinsic feature of the combined interpolation
scheme which is essential to the success of the present
calculations is that the parameters and form factors
there introduced have real physical significance; no
unphysical quantities appear in the scheme to compen-
sate for, e.g. , excessively large hybridization parameters.
This feature is essential when we come to evaluate (1.2)
throughout the Brillouin zone. At 6rst sight our abstract
interpolation scheme yields eigenfunctions in terms of
linear combinations of model functions with no means
available to obtain the actual Bloch functions which
would emerge from an APW calculation. However, by
accepting an uncertainty in

~
E

~

' of about 10%,we find
that the situation is just the reverse of this. If APW
eigenfunctions were available throughout the Brillouin
zone, they would still make the determination of (1.2)
difBcult in practice. This is because plane waves in the
muQin-tin region outside the inscribed spheres do not
constitute an orthonormal basis set, nor are they eigen-
functions of P. On the other hand, by making use of
certain identities based on Phillips's modification of
k p perturbation theory (his partial-sum rules" ), we
have found that P„„can be determined both for con-
duction-band —& conduction-band and d-band —+ con-
duction-band transitions, both accurately and simply,
directly from the model eigenfunctions without adjust-
ment of parameters and in a way subject to internal
verification. This permits an absolute calculation of the
optical absorption, within the framework of the one-
electron random-phase approximation.

In Sec. II we describe the most subtle aspect of our
calculations, the determination of P „ throughout the
Brillouin zone. In Sec. III we present the results for
the composite es(ro) based on all pairs of bands. Struc-
ture in the spectrum is analyzed by decomposing not
into pairs of band (as Brust did" for diatomic Si and

Ge), but according to the change in the quantum num-
ber mI, discussed in a preceding paper. "In Sec. IV the
results of the present work are compared with approxi-
mate graphical treatments by other workers. '4 " It is
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F&G. 1. The orthogonality form factors b3, and b» in Cu as cal-
culated from atomic wave functions (Ref. 18) are plotted as func-
tions of ku, where g is the lattice constant.

shown that due to the inherent limitations of the
graphical approach much of the preceding work has only
qualitative significance. Our results are summarized in
Sec. V.

II. DETERMINATION OF OSCILLATOR
STRENGTHS

Consider 6rst the determination of oscillator strengths
at points of high symmetry such as I and L We expand
the Bloch functions in (1.2) in terms of model basis func-
tions Qk

+kn Q +kn 4'km ) (2.1)

where a~ represents the eigenvector derived from the
solution of the secular equation involving the model
Hamiltonian at the point k. Because the model Hamil-
tonian reproduces in a simple and natural way Burdick's
band structure for Cu with high accuracy, we believe
that a~ is obtained accurately. We verify this point by
checking below the internal consistency of our oscillator
strengths.

To calculate momentum matrix elements, we retain
the assumption that the d states can be represented as
products of cubic harmonics with a common radial func-
tion (ansatz of spherical isotropy). The conduction
basis functions are treated as single plane waves im-
plicitly orthogonalized to 3s and 3p core states. Cor-
rection terms associated with more tightly bound core
states were found' to be small in Si.

Both d states and conduction states can be classified
using the quantum number mI, discussed in a preceding
paper. "When p is parallel to k we excite transitions
with hmk ——0 whereas when p is perpendicular to k we
excite transitions with ~hmk~ =1. The simplest case,
where ml, is a good quantum number, is X. There the
lowest conduction-band state has the form

1
~X4)=— Lexp(iX r) —exp( —iX r)

v2 Cg —2(plX)lp)], (22)

where C~ is a normalizing factor involving the orthog-
onality form factor (p~X) between the 3p core state
and the plane-wave

~
X). The 3s and 3p core states lie

"L.Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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Fio. 2. The interband momentum matrix elements I',P scaled
by 2/m are shown in Ry plotted against Ir around the outside of
the Srillouin zone from X to W to L. Here i ranges over the erst
5 d bands, while j is fixed to be the lowest conduction band. Thus
the oscillator strengths at X correspond to X5 —+ X4 and X5 —+ X1
transitions. The upper L3 state is denoted by L3& ). The heavy-
mass band responsible for the 2-eV absorption edge corresponds
to X5Z2 W1 Q+L3&').

well inside the atom and hence functions such as

(pl k) and (sl k) are readily computed in terms of free-

atom wave functions, "and are shown in Fig. 1.
The state

I
X4 ) has m~ ——0. The d states with

I
ms

I

= 0
or 1 are X~ and X5, respectively. "Consider the latter
transitions

(Xsl p~lx4)= —2Cx-'(plX&(dl p~l3p& (23)

The right-hand side involves known functions as well

as the matrix element (dl p, l3p) which we seek to
determine.

Phillips has shown" how to obtain the left-hand side
of Eq. (2.3) directly from eigenvalues obtained in a
"first-principles" calculation. This is done by modifying
conventional k y perturbation theory to take account
of the resonant character of the d states. He 6nds that
the transverse masses of X~ and X4 should be repre-
sented as

2 I(Xsl p~lX4)l'—(Xs)= —S+-
mg m E(Xs) E(X4)—(2.4)

2 I(Xslp~IX4 &I'—(X4.) = 1+E+—
m, m E(X4 )—E(Xs)

(2.5)

and extrapolating to 8k&= 0. This gives the results shown
in Table I. It is seen that the off-diagonal hybridization
terms involving

I (Xs
I p~ I

X4 ) I

' contribute roughly half
of the effective masses. Thus on the basis of this factor
the oscillator strength is roughly half as great at X as
previously estimated. '

When we consider Am= 0 "longitudinal" transitions,
we encounter matrix elements between the d states and
plane-wave states of the form k(d

I
k). These are easily

evaluated in terms of the orthogonality form factors
Mq(k) introduced into the model Hamiltonian. "Also
required are matrix elements between orthogonalized
plane waves (OPW's). In this case because p is parallel
to k, plane-wave matrix elements of the form (kl pl k)
are nonzero [in contrast to the lhml =1 case of Eq.
(2.3)j. Previous calculations" have shown that such
terms dominate, and the s and p core orthogonality
corrections can be neglected. In our case we also have
d orthogonality corrections. These can be quite large;
for example, at X they increase the oscillator strength
for the (unphysical) transition X4.~ Xr from a free-
ej.ectron value of 46 to 64 eV; the corresponding correc-
tion for the (physical) transition Ls. —+ Lr is only from
35 to 43 eV. To allow for the possibility of such
corrections we have retained the orthogonality correc-
tions to conduction-band —+ conduction-band matrix
elements.

The situation at L is somewhat more complex. The
conduction-band state 1.2 still corresponds to nsA, ——0,
as does the d state I.~. From a preceding paper" we see
that the upper Ls state is 92%%uo I

m~
I

= 1, while the lower
Ls state is S%%uq I

ms I
= 1.The appropriate decomposition

of the effective masses is indicated in Table II. In order
to account for the transverse effective masses of the
lower 1.3&') state it is necessary to invoke interactions
with 1.3 states which lie approximately 2.0 Ry above
the d bands. These interactions —which are of no direct
interest —modify the oscillator strength

I
(Ls&"

I p, I

Ls ) I

' by only about 2%%uo.

We are now in a position to check internally the con-
sistency of our procedure for avoiding explicit deter-
mination of the d states. From the matrix elements
I(Xsl p~lX4 &I' and I(Ls"'I p~ Ls ) I' we obtain tw»n-
dependent expressions for (d p, l3p) as in Eq. (2.3).
Eliminating normalization and orthogonality factors in
Eq. (2.3), we obtain from the effective masses at X

where S is a term arising from the finite (tight-binding)
width of the d bands alone, while E represents a cor-
rection arising from the orthogonality terms in our
model Hamiltonian. He makes the ansatz 8=S (partial-
sum rule), which is consistent with the results of Bur-
dick's calculation. '

We have determined the transverse effective masses
from Burdick's eigenvalues by plotting

[E(X+8k,)—E(X)]/(bk,)'-A+8(Q,)'+ (2.6)

18 F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

Burdick
Kinetic energy
Hydbridization
d-band width (S)
Orthogonalization (R)

X4

+2.53
+1.00
+0.86

+0.67

X51

—1.53

—0.86
—0.67

X52

0.0

0.0
0.0

TABLE I. Decomposition of m/m& for the levels of p and d
(m=&1) character (X4 and X5) at X. The results of Burdick's
APW calculation (Ref. 5) are listed in row 1. The nomenclature
for the remaining rows is that used by Phillips (Ref. 11).
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shown in Table I the result

2—l(3d ~~=&lp~l3p ~~=»l'=3«V (27)

8.0—

7.0—

TAuLE II. Decomposition of m/m~ for the levels of p and d
(m=0) character at I. The values in the row labeled Burdick
are taken from a graphical fit to the results of Ref. 5. The nomen-
clature for the remaining rows follows that of Phillips (Ref. 11),
with the exception of the last row. Here the discrepancy between
the magnitude of the hybridization term obtained from Mueller's
interpolation scheme (Ref. 10) and that required to 6t the APW
masses is attributed to the nearby I.& sts, tes (of p symmetry)
which are omitted from the interpolation scheme. Fortunately the
Ls(') states contribute little to the optical spectrum in any case,
so that this discrepancy is of little importance.

L2 (2A) L (2l) L (lh) L3(ll)

Parity
Surdick
Kinetic energy
Hybridization
d-band width (S)
Orthogonalization (R)
Missing term

(L3 ™states)

(—)
+3.19

1.00
1~ 77

0.42

(+)—0.03

0.0
—0.03

(—)—2.11

—1.66
—0.42

—0.03

(+)
+0.30

0.0
+0.30

(—)—0.64

—0.11
—0.16

—0.37

The corresponding result at I.is 34 eV. The diRerence
of less than 10/0 provides an internal check on the con-
sistency of our procedures for using effective masses to
determine oscillator strengths.

Having verified the consistency of our procedure at X
and L, we can interpolate and obtain oscillator strengths
throughout the Brillouin zone between all the occupied
levels and all the unoccupied levels. This interpolation
is based on 3s and 3p orthogonality form factors for the
free atom, the 3d orthogonality form factor determined
by our interpolation scheme, as well as the model eigen-
vectors in Eq. (2.1). The new element is the 3d-3p
oscillator strength discussed in. Eq. (2.7); the assump-
tion of d isotropy plays an important role in determining
this matrix element for all k.

We can anticipate that the oscillator strengths so de-
termined will be complicated functions of m, ts, and k.
This is illustrated in Fig. 2 by plotting the values of
2P '(k)/et for transitions from the lowest five bands
to the sixth band around the edge XZWQI. of the Bril-
louin zone. It appears that the convenient assumption
that these quantities are constant over an appreciable
solid angle" (an assumption whose limitations were
recognized and discussed by CEP") is not bad for the
smaller square faces (XZW) of the Brillouin zone, but
that it is quite poor for the larger hexagonal faces
(I.QW) where nzs is not a good quantum number.

The oscillator strengths shown in Fig. 2 were obtained,
using the model parameters" appropriate to the band
structure of Cu calculated by Segall' from an l-depen-
dent potential. In order to test the sensitivity of these
oscillator strengths to small changes in potential we
repeated the calculation using the model parameters"
appropriate to the /-independent Chodorow potential. "

6.0—

3
'lP

5.0—

4.0—

3.0—

I.O—

2.0 6.0

Energy (in eV)

8.0 IO.O

Fio. 3. A plot of the interband contribution to e2(u&) in the range
1.5&Ace&10 eV for Cu. The experimental data shown are those
of Refs. 14 and 19. The original Monte Carlo sample of 2716
nonequivalent points in 1/48th of the Brillouin zone yielded a
histogram with an rms statistical error in an energy interval of
0.01 Ry as indicated. This histogram was then smoothed, taking
into account the analytic singularities discussed in the text; the
smoothed curves should therefore be more accurate than the origi-
nal histogram. The theoretical curve. marked "total" includes all
d-band —+ conduction-band and conduction-band —+ conduction-
band transitions. The lower theoretical solid' curve is a composite
of the conduction-band —+ conduction-band transitions (which
are important mainly in the neck region near L2 —+ L&) and the
d-band (m=0) -+ conduction-band transitions shown in Fig. 4.
The dashed curve shows the contribution of only conduction-
band ~ conduction-band transitions.

Virtually identical results were obtained, except for the
branch involving Am=0 transitions from hybridized. d
states (such as Xi or Li) to p-like conduction states
(X4 or Ls). For these transitions the parameters
appropriate to the /-independent potential gave results
50% greater than those shown in Fig. 2.

The extraordinary sensitivity of the oscillator
strengths of these transitions to small changes in the
parameters of the model Harniltonian arises from the
fact that the amplitude for transitions between the
hybridized d-s states and p conduction states is a sum
of two interfering terms. The extent to which these
terms cancel greatly affects our calculated oscillator
strengths, and this degree of cancellation cannot be
determined. accurately within the framework of the
model Harniltonian. It should be decided by a careful
study of ab initio matrix elements, bearing in mind that
these, too, will be very sensitive to numerical approxi-
mations or to small changes in crystal potential.

Although the magnitude of these matrix elements has
not been determined accurately, comparison of the re-
sults for the two sets of model parameters suggests that
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FIG. 4. Here are decomposed the contributions to e2 of d-band ~
conduction-band transitions, with each initial state divided frac-
tionally into

i
m

i
=0, 1, and 2 states. It was anticipated that most

of the spectral structure would be found in the i m i
=0 and 1 sub-

bands, and this proves to be the case. Analytic singularities associ-
ated with critical points or osculation points at the Fermi surface
are specifically marked; the corresponding transitions are shown
in the band structure in Fig. S.

the relative k-depend, ence is given approximately cor-
rectly by our calculations. In the presentation of our
results, transitions from hybridized states to conduction
band states are labelled. m=0. It is understood that the
magnitude of the contribution of these transitions to f2

may be in error by as much as 50%%u&. We believe the
other types of transitions have been treated with an
accuracy of about 10'%%uo. Finally, to obtain all our
results we have used the parameters of the model po-
tential appropriate to the /-independent potential.

III. INTERBAND SPECTRUM

We show in Fig. 3 the complete smoothed spectrum
for es(o&) calculated in the Hartree approximation. The
original histogram with energy intervals of 0.01 Ry
was formed from 2716 points randomly distributed
throughout the Brillouin zone. By making the assump-
tion that all the conduction-band states correspond to
mA, =O, we can decompose this spectrum into contribu-
tions from d states, each of which has a certain fraction
of its probability density associated with

~
ms

~
=0, 1,

or 2. This decomposition is shown in Fig. 4. It is useful
for understanding structure in the complete spectrum.

At this point we pause to analyze analytic singulari-
ties that may arise in the interband spectrum of a metal.
These are of two kinds: firstly, critical points where

&~LEr(k) —E'(k)j=o

where i and f label initial and final states. The second
kind of singularity" arises from shells near the Fermi
surface, where the exclusion principle plays a decisive
role. These singularities, which produce a discontinuity
in slope of ss(o&), occur because there are points in k
space where the surface of constant interband energy
osculates the Fermi surface. Such points always occur
at the intersection of the L1001, L111j,and $110)sym-
metry axes with the Fermi surface. If the points are
closely spaced in energy (as they are here for the L100j
and L1101 directions), one may obtain a sharp rise in

absorption over a narrow energy range, corresponding
almost to an absorption edge.

From Fig. 4 we see that there is a sharp edge at 2.1
eV which is associated primarily with the m= 1 d bands.
This edge is followed by a second one at 2.9 eV, also
associated with nz=1 states. The first edge corresponds
to the "heavy mass" or nearly Qat highest d band, de-
noted by Xs&"&Q~Wt and Ls&'"& at the principal sym-
metry points. The second edge is associated with the
"light mass" mass Xs&'&Q Ws and Ls&"&. See Fig 5.for
the Q+-+ Q (Es) transitions denoted equivalently by
Ls""&—& Ep(Ls.) and Ls&"& —+ Ep(Ls.) in Fig. 4.

Further very weak structure is seen in the vs=1
band. Because of histogram scatter, this structure would
not have been resolved had we not expected it on analy-
tic grounds. This remark applies also to the X5 —+ X4
saddle-point edge at 4.1 eU, which was previously sup-
posed" to be responsible for the second peak in Cu. Our
calculations show conclusively that this is not the case.

If eel, were a good quantum number, the m=2 sub-
bands would contribute almost nothing to ss(o&). How-
ever, as we noted in a preceding paper, "the largeness
of the covalent d-d mixing makes ml, a poor quantum
number throughout much of the Brillouin zone. Never-
theless, the m= 2 states still should not contribute much
stricture to es(o&); and this is seen to be the case in Fig.
4, where the m= 2 contribution is broad and featureless
apart from weak edges associated with Ls«& -+ Er (Ls.)
transitions.

Transitions with d,mI, =0 are of two types. The d band
(ms ——0) ~ conduction-band transitions are shown in
Fig. 4. (As remarked at the end of Sec. A, the scale of
these transitions is not determined to better than 50%.)
These start, as shown in Fig. 5, from the lowest d
band XtZ&Q+Lt and go to the conduction band; the
shell near the Fermi surface produces a sharp edge
around 5.2 eU. The second type of transition is conduc-
tion band~conduction band. Although the phase
space of the necks associated with the L2 ~ Lj saddle-
point edge is small, the large oscillator strength (=40
eV) of these transitions gives rise to a strong edge at
the L&—L2 energy di6erence. The contribution of both
types of Ans= 0 transitions is shown separately in Fig. 3.

It is evident from Fig. 3 that the second peak in the
experimental spectrum" "near 4.8 eV arises from vs =0
transitions, and not from m=1 transitions near X~~
X4, as had previously been supposed. "If we suppose
that the lowest d band is strongly lifetime-broadened
(principally by Auger transitions of the final-state hole
to higher d states), then the experimental peak at 4.8
eV should be identified with the L2. —+ L~ peak, while
the second theoretical peak at 5.1 eV would be too
broad to be resolved. The observed energy difference
of 4.8 eV for L2. —+ L~ compares with Burdick's value
of 4.5 eV and Segall's value of 5.9 eV.

'9 D. Beaglehole, Proc. Phys. Soc. (London) 85, 1007 (1965);
87, 46' (i966).
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Al

FzG. 5. Direct transitions giving
rise to analytic singularities are
marked here in the energy bands
of Cu (after Burdick, Ref. 5). The
electron states are represented by
the tips of the arrows, the hole
states by the solid circles.

i5-
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Zp
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Kp

K~

Kg

K)
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The greatest difference between the theoretical spec-
trum and the experimental spectrum occurs just above
the interband absorption edge. We believe this differ-
ence arises because of many-body effects lying outside
the simple random-phase approximation for es(cv) given
in Eq. (1.1).We return to these effects in Sec. V.

IV. COMPARISON WITH OTHER WORK

In addition to the work of CEP, other studies of the
optical properties of the noble metals have been made
by Haga and Okamoto. " However, the last-named
authors, although they use the same graphical method"
for evaluating phase-space sums as CEP, and recognize,
as did CEP, that oscillator strengths are difFicult to de-
termine, cautiously take them as adjustable parameters.
By contrast, CEP carry out an absolute calculation of
Eq. (1.1) which can be compared directly to experiment.
We examine their calculation critically in this section.
The analysis reveals the limitations of simplified cal-
culations of the optical spectra of crystals.

CEP begin by assuming that the interband spectrum
is dominated by transitions from the highest d band
(which corresponds to the heavy-mass d band near Xq
and Ls"') to the lowest conduction band. In our nomen-
clature this is one of the two no=1 bands labeled by
Xs Zs Wi. Q+ Ls&'& in Fig. 2. If we neglect the effects
of s-d mixing and retain the well-founded approxirna-
tion of d isotropy, this transition should account for at
most one-third of the strength of the interband (mo-
mentum matrix element). ' This point may be verified
directly by reference to I'ig. 2, which shows that at X
the effect of s-d mixing as well as the orthogonality
contributions makes the no= 0 oscillator strength

'0 J. M. Ziman, Advan. Phys. 10, 1 (1961).

I (L
I PiILs ) I

'
= 1+2+—Q

m((Ls ) m ~'=&a E(Ls.)—E(Ls)
(41)

"J.C. Phillips and L. I'. Mattheiss, Phys. Rev. Letters 11,
556 (1963).

slightly smaller than that of the nz=1 states, while at
L the reverse is true. At S' there is strong mixing of the
ns states, but the total strength of I' „' is approxi-
mately conserved. Thus the absolute calculation of
CEP, although it covers the energy range 2.1—4.0 eV,
can be expected to yield accurate results only in the
range 2.1—2.5 eV, where the heavy-mass band genuinely
dominates. Already at 2.8 eV the "light-mass" band
represents half the oscillator strength; and near 4 eV,
half the oscillator strength comes from the m= 0 transi-
tions near L2 —+ I-~, which are also omitted by CEP.

Now consider specifically the energy range 2.1—2.5
eV, where the heavy-mass band does indeed dominate.
To estimate the strength of the edge absolutely, CEP
must erst determine the oscillator strengths in terms of
the matrix elements of p, between the Ls states and the
Ls. state. This they do by using k p perturbation theory,
following earlier work, "which, however, neglected the
orthogonality corrections to the effective mass of con-
duction-band states. (As we have noted, " these cor-
rections can in general lead to large changes in derived
values of IP „Is, e.g., by as much as a factor of 2 for
the X5 —+ X4. transitions. As discussed in Sec. II, these
corrections are included in the present calculations. )
In the present case the orthogonality correction to
m/m, (Ls)—1 is 0.42, compared to the hybridization
value 1.77, and thus represents a 20% effect.

When we know the off-diagonal hybridization contri-
bution to m/m, (Ls ), we can use the effective-mass"sum
rule
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FIG. 6. A sketch of some of the various terms in perturbation
theory contribution to optical absorption. The wiggly lines repre-
sent the incident photon. In the random-phase approximation
used here, the optical absorption is determined by (a), where the
electron and hole are treated as noninteracting (Hartree approxi-
mation). In (b), (c), and (d) some Coulomb and polarization terms
are shown, which taken altogether correspond to vertex correc-
tions associated with electron-hole interactions in the anal state.
It is suggested that these interactions produce a virtual exciton
resonance near 2 eV in Cu.

to determine the matrix elements

J'» =(Lslp~lLz & (4.2)

which are required to calculate oscillator strengths.
With two doubly degenerate L3 states there are four
matrix elements of the type Eq. (4.2) to be calculated.
Vsing group theory one can reduce these four elements
to two, one for each of the L3 states, and using the as-
sumption of d isotropy one can express the two elements
in terms of one, when the L3 model eigenvectors are
known from the tight-binding part of the model
Hamiltonian.

- First consider the reduction by group theory. "Orient

p, along the line Q= LW; the doubly degenerate Ls basis
states can be classified according to whether they have
even or odd parity with respect to the group of Q. Then
Ls and p, have odd parity, as do the light-mass Ls
states, while the heavy-mass state (which becomes Q+
along LW) has even parity. We immediately obtain

I(L, Ip, IL &'"i or L &'"'&I'=0 (4.3)

compared with the result of CEP Lsee their Eq. (13)j
which states

»I,. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 {j.936). See the discussion on p. 67 for the importance
of orienting EI, along Q=L8',

I(Ls I p. ILs'"'&I'= I(Ls I p ILs"') I' (44)

The difference between Eqs. (4.3) and (4.4) is one of
definition. By p, CEP mean both components of p
transverse to FL. This convention divers from the more
common one used here. Our convention is based on the
derivation of Eq. (4.1) by k p perturbation theory,
where k of course lies in a specific direction (e.g., along
Q). In order to account for all components of p, we
multiply our final result by 3; they multiply their result
by s. Thus apart from the 20% correction represented
by orthogonality terms, our results would agree at L if
CEP had carried out the second reduction (discussed
below) correctly. At X, however, because of orthog-

onality corrections their oscillator strength for X5—+ X4
is too large by a factor of 2.

The second reduction lies in making use of the model
eigenvectors to determine the constant C:

l(Ls""'lp ILs &I'=CI(Ls""'I p ILs &I' (45)
Here the quantum number m& is useful. It states" that
because the Lss state is 92%%u~ tnt= 1, while the Lst state
is only 8 jo mi ——1, the value of C is about 11.This con-
trasts with the ad hoc assumption of CEP that C=1.
The large value of C arises because of the trigonal axial
symmetry of L, which makes m& almost a good quan-
tum number.

We conclude this section with some remarks about
the appropriateness for this problem of the "eight
cone" model originally constructed by Ziman' for ap-
plication to transport problems. If all the d bands were
Rat, and all the oscillator strengths were constant over
the L cones, this model would yield statisfactory results
for the optical spectrum. Reference to Fig. 2 and to
Fig. 5 will show that these conditions are far from being
satisfied, which implies that a graphical approach to
this problem is not warranted.

V. CONCLUSIONS: MANY-BODY EFFECTS

We return now to Fig. 3. Two sets of experimental
data" "are compared with the theoretical curve. Above
4 eV there is generally good agreement between the
three curves; the second peak near 5 eV is identified
with conduction-band —+ conduction-band transitions
in the neck region near L2. —& L~, and there is evidence
near 7 eV that the faint structure resolved by Beagle-
hole" may be due to X» ~ X4 transitions. In general it
appears that Beaglehole's data, which show somewhat
sharper structure (especially near 2 eV), may be some-
what better, because of better surface preparation.

Our assignment of the second peak to L2 —+L~
transitions agrees with that proposed by Beaglehole. ""
Our calculations also explain the absence of a second
peak in Ag, although two peaks are seen in Au. The Ag
d bands are shifted downwards, below the Fermi energy,
by 2 eV relative to Cu and to Au. In the CEP model,
this would simply shift the entire interband spectrum
2 eV higher in energy. With our interpretation, however,
one would expect the Ls ~ Li peak (now much smaller,
because the neck in Ag is smaller) approximately to
coincide with the L~(') —& L2 edge near 4 eV. Thus in Ag
only one peak is expected, and only one is observed.

In view of the good absolute agreement at higher en-
ergies between our calculated spectrum and the observed
spectrum, we feel justified in suggesting that the strong
peak in the observed spectnnn near 2 eV should be
identified as a virtual exciton resonance. The Coulomb
interaction in the final state between the excited electron
in the conduction band and the hole in the d band is of

"C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030
(1964); 136, A1044 (1964).



ELECTRONIC SPECTRUM OF CRYSTALLINE Cu 607

course strongly screened by many-body correlations, so
that it is short-range in character. When the interaction
element U, ~ lies below a certain critical strength, no
bound exciton is formed, but a virtual (resonant) state
is found above the edge, which appears as a peak in the
spectrum. It appears that this is what is happening in
Cu; note that another mechanism would be required to
produce a weak peak below the absorption edge, and
below the virtual exciton peak. )We believe that the
weak peak which has been observed'4 just below the
edge in Ag and in Au is associated with surface states,
possibly induced by impurities (oxide) on the surface. ]

A general formalism for treating exciton effects in
metals has not appeared, ""but we will sketch here
how the calculation would proceed. In the language of
6eld theory, we are concerned with vertex corrections
to the process of direct absorption indicated in Fig.
6(a), which has been evaluated for Cu in this paper.
Some of the vertex corrections are sketched in Fig.
6(b)—6(d). If we describe the dynamical screened
Coulomb interaction in the final state by a single
"central-cell" parameter U,~an approximation which
is appropriate considering our limited ability to calcu-
late such parameters even in the much simpler situation
of a free-electron gas—then by using a resolvent formal-
ism" "we can obtain an effective interband density of
states by calculating

~

C (0) ~

', where 4 (R) is the Wannier
envelope function obtained by solving the resolvent
equations. Thus we obtain the optical spectrum in terms
of a single many-body parameter, U,s. (Calculations
along these lines have already been carried out for Xe
using a long-range Coulomb interaction. ")Adjustment

'4 M. Garfinkel, J. J. Tiemann, and W. E. Engeler, Phys. Rev.
148, 695 (1966)."Some modiacation of the usual Wannier functions (see Ref.
26) is required in metals to be consistent with the exclusion prin-
ciple. This modifies the interpretation of the meaning of U.q,
which now corresponds to a matrix element between spread-out
states which do not necessarily resemble atomic states."R.J. Elliott, Phys. Rev. 108, 1384 (1957).I J. C. Slater and G. F. Koster, Phys. Rev. 95, 1167 (1954).

ss J. Callaway, J. Math. Phys. 5. 783 (1964)."J;Hermanson (to be published).

of U,~ to produce the virtual exciton resonance deter-
mines this many-body parameter.

It is our view that proceeding in this manner, i.e.,
first calculating the spectrum accurately in the one-
electron, random-phase approximation, and then com-
paring to experiment, offers an interesting way to obtain
direct information concerning many-body interactions
that may not be obtainable from Fermi-surface studies
alone. We, therefore, hope to apply this technique to
other noble and transition metals when our knowledge
of the one-electron band structures warrants it.

We close with some remarks about the optical spec-
trum of Ni, which is as yet little understood. Because,
on going from Cu to Ni, the d bands are shifted upwards
relative to the s-p bands, one at first expects the inter-
band d ~ conduction-band spectrum to be similar to
Cu, but shifted to lower energies by about 1.5 eV. At
energies below 3 eV this seems to be the case, but the
peak at 4.8 eV in Cu is shifteds' only to 4.4 eV in Ni.
Note also that in Ni the occupied neck regions near
1.2 are much smaller than in Cu."

According to the present calculation, the 4.8-eV peak
in Cu may arise predominantly from 1.2 ~ I.j type
transitions, while the 4.4-eV peak in Ni could arise
primarily from I.i~ Ls, i.e., hybridized d~ Fermi-
surface transitions (of the m=0 type, see Fig. 4). The
two peaks are approximately of the same height, but
this could be due to the fact (discussed at the end of
Sec. II) that the oscillator strengths of the m=0 type
transitions are so sensitive to small changes in crystal
potential, and increase significantly from Cu to Ni.
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