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Accurate Numerical Method of Calculating Frequency Distribution
Functions in Solids. IL Extension to hcp Crystals*
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In a recent article by the same authors, an accurate and rapid method for calculating frequency distribu-
tion functions has been described. This method is here extended to include hexagonal close-packed crystals
only, but it is shown that it can be used for crystals of any symmetry. This method is applied to beryllium,
magnesium, and zinc, for which there exist satisfactory force models derived from experiments of inelastic
coherent scattering of slow neutrons. These models have also been used to derive the phonon dispersion
relations along nine high-symmetry directions, which are used to identify critical points observed in the
frequency distribution functions. For each metal, there is at least one major critical point which could not be
correlated to the high-symmetry branches. The phonon frequency distribution function g (v) of beryllium in-
dicates that it should be a favorable case for studying e6ects associated with heavy-impurity modes. The
merits and also possible sources of error of this procedure are discussed. It is strongly recommended that the
method be applied to calculations of electronic density of states.

I. INTRODUCTION
' 'N a recent article by the present authors' (hereafter
~ ~ to be referred to as GRI) an accurate and relatively
rapid method for calculating phonon frequency distri-
bution functions g(v) in solids has been described. The
so-called extrapolation method, an extension of an
earlier version by Gilat and Dolling, ' has been developed
and applied in GRI to cubic crystals. In the present
article, the method is extended to include hexagonal
close-packed crystals in particular, but it will be
deduced that it can be generalized to include crystals of
any symmetry.

The extrapolation method, to describe it briefly,
consists of solving the secular equation associated with
the phonon dynamical matrix at a relatively small
number of mesh points in the irreducible section of the
first Brillouin zone (hereafter to be referred to as the
"irreducible zone"), and then by means of linear extrap-
olation, extracting "all" the other solutions (i.e.,
phonon eigenfrequencies) from within small cubes, each
centered at a mesh point. These cubes are so arranged
as to 611 the entire irreducible zone, and thus yield the
complete frequency distribution function of the crystal.
As a matter of principle, the detailed way in which the
irreducible zone is 6lled is immaterial, as long as this is
done properly, i.e., without overlaps or gaps. This
means that the mesh of points chosen need not be
uniform, and the shape of the volume surrounding each
point does not have to be cubic either. Moreover, the
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statistical weight of each mesh point, which is usually
associated with the point symmetry, now becomes
obsolete. This can easily be realized by comparing the
root-sampling method, which employs only a small
number of points in the irreducible zone, to the present
method which, in contrast, uses the entire volume of
this zone. In the sampling method, only selected points
are used to represent the entire irreducible zone. Some
of these points are of higher symmetry, and are equally
shared by two or more irreducible zones; hence they
have to be given correspondingly lower weights. If the
entire volume of this zone, rather than a finite number
of points, is utilized, these weights become redundant.
In GRI, however, it was still convenient to use weight-
ing factors, to correct for over-6lling of the irreducible
zone. For the hcp crystals to be treated in this article,
the irreducible zone is filled exactly by rectangular and
triangular prisms, and hence no use is made of weighting
factors. The mesh of points is relatively uniform, only
for the sake of simplicity, but this is by no means
obligatory. It is interesting, however, to point out that
the problem of finding a uniform mesh of points in
sampling methods can be intriguing for symmetries
lower than cubic. This problem and that of weighting
factors are avoided by using the extrapolation method,
and this can be regarded as another advantage, in
addition to the more important ones of high accuracy
and rapidity.

The method is outlined in Sec. II in a fairly extensive
manner, although some detailed analysis is included in
Appendix A. In Sec. III we discuss the existing force
models for three hcp metals, namely, beryllium,
magnesium, and zinc. We also derive their dispersion
curves along all nine high-symmetry directions in the
first Brillouin zone. Section IV describes the actual
computation of the distribution functions and possible
correlation of the Van Hove critical points to the dis-
persion curves. In Sec. V we summarize the results of
the computations and discuss merits and possible
sources of error.
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where U is the volume of the rectangular prism:

U =8Qi8283.

If (Xt—4—X3) is negative, the cross section is hexagonal
of area

S(w) (V/g~14l13) L2 (~14+~2l13+~3~1)
—(w2+X 12+X22+X32)$

for Xr&X2+Xs and 0&w&w1.

In the second range (wr, w2), we have a pentagon o
cross section

S(w) (V/g~14~3)[3l12l13+~1l12+~sl11
—w( —»+l,+Z,)—', (w2+ i~12+42+ X,2)j. (9)

For the third range (ws, w8), the shape is a quadrangle
of area

S(w) = (V/4X1X2Ã3)p, 3(X1+X2)—wX3$.

Finally for (ws, w4), the shape is triangular, with

S(w) = (V/16X14X3) p, t+4+X8—w)'.

(10)

M

Pro. 2. A simple way to 6ll the irreducible zone by rectangular
an riangd t. ular prisms. The mesh points q, are at the center of each

is at theof the rectangular prism. For the triangular prisms each q,
'

center of that surface which lies in the plane FJ BA.

The equation equivalent to Eq. (13) in GRI is

wt= iht —X2—Xsi,
ws =Xt—X2+Xs,

ws= At+As —'A3,

and

w4 ——»+4+As,

where m; are the distances of the four corners of the
rectangular prism from a plane having the same direc-
tion cosines and passing through q, .The shapes a e
cross-section area S(w) can take on are similar to those
of the cube. Again, as in GRI, for the first range (O,wr),
there are two possibilities depending on the sign o
(Xr—4—) 3). If the sign is positive, we have a parallelo-
gram of area

S(w) = V/2X1 for Xr&X2+X3, (0&w&w1), (6)

All th pressions should be even functions of m, soese ex
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~
w

~
. e typica

behavior of these functions is shown in GRI, Fig. 1.
SHghtly more complicated is the case of the triangu ar

prisms by which we 611 the irreducible zone along the
surface FEB'. For instance, the cross-section area is
no longer an even unc ifunction of m. The number of different

posslo e ways ln w'bl '
which a plane can sweep across the

prism ls apprecla preciably higher. We refer the rea er to a
detailed treatment of this case in Appendix A, but a
few things in this connection might be mentioned here.
A very helpful and general geometrical property o t e

plicated cases. This property is explained in the follow-

polyhedron, so that it is always perpendicular to a given
direction. If zv is the distance of P from any given point,
and $(w) is the cross-section area of the polyhedron

continuous functions of m whenever the plane passes
through a corner point of the polyhedron, as long as P
is not parallel to any of the polyhedron edges or sur-

faces. ' This fact was observed in GRI for the cubic
case, and has been applied here to the triangular prism
(see Appendix A). Another helpful feature is the sym-

metry property of the mesh points q, chosen to lie on
the surface rEHA of the irreducible zone. This surface,
being a mirror plane, implies that the gradient of v;(q.)

It is interesting to note that if this plane is parallel to one or
more edges, then whenever it sweeps across such an edge, dS/drs

d' t t Likewise if the plane is parallel to one or
e swee smore surfaces, S(m) itself is discontinuous when the plane sweep

across such a surface. On the other hand, if the plane happens to
swee simultaneously through more than one corner point, which

li h dge or surface no such discontinuity is
encountered.
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must lie in this surface, which considerably simplifies
treatment of the triangular prism.

Having obtained S(m) for the rectangular and the
triangular prism (Appendix A), g(v) is obtainable in a
straightforward manner, from Eq. (2), in which W», is
unity, and Eq. (1).

III. DISPERSION RELATIONS AND
FORCE MODELS

In the case of cubic lattices without a basis, it is
possible, in principle, to measure g(v) by incoherent
inelastic scattering of slow neutrons —a method which
cannot be employed for crystals possessing a non-
primitive translation. ~ In most cases, however, the only
way to obtain g(v) is by calculation. In order to calcu-
late g(v) of a crystal, it is necessary to have some force
model which adequately describes the phonon dis-
persion relations of the crystal. So far, the best source
for this information has been the measurement of
dispersion curves by inelastic coherent scattering of
slow neutrons.

In this section we present the dispersion relations of
phonons along nine high-symmetry directions: d, Z, T,
T', E, S, S', I', and U (Fig. 1). These dispersion rela-
tions were derived from force models for three hcp
crystals, namely Be, Mg, and Zn, for which there exist
relatively accurate experimental data. Dispersion
relations in Be were measured by Schmunk et al. , along
the 6(0001) and Z(0110) directions (Fig. 1), and more
recently by Schmunk' along some of the branches of the
T direction (1120). In these experiments the time-of-
Aight technique was employed. In Mg, the phonon
spectrum was measured along the 6 and Z directions by
Iyengar et al." using the triple-axis spectrometer, and
by Squires" along the T, T', and Z directions using the
chopper technique. In Zn it was observed for the 6 and
Z directions by Borgonovi et al. ,

"who used a three-axis
spectrometer. Unfortunately, the measured branches,
together with the elastic constants, allow the deter-
mination of only a limited number of independent force
constants. DeWames et cl.' made use of the data of
Be' and Zn" and derived a Born—von Karman force
model, the so-called "modified axially symmetric model"
(MAS), which fits the experimental data reasonably
well. The main feature of this model is that it describes
interactions between neighbors by at most three
independent force constants, rather than the possible

' G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).
8 R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.

Strong, Phys. Rev. 128, 562 (1962).
~ R. E. Schmunk, Phys. Rev. 149, 450 (1966).We are indebted

to the author for sending us a copy of his paper prior to
publication.' P. K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan, and
A. P. Roy, in Irielustic Scattering of Eeutronsin Solids and Liquids,
(International Atomic Energy Agency, Vienna, 1965), Vol. I,
p. 153."G. L. Squires, Proc. Phys. Soc. (London) 88, 919 (1966).' G. Borgonovi, G. Caglioti, and J. J. Antal, Phys. Rev. 132,
683 (1963).

V2 iI /

where I is a (3&&3) unit matrix, so that:

1 D"—ImD"
M(q) =U'D(q)U=-

2 Re9"

leo"
(13)D"+ImD"

where D" and D" are (3)&3) matrices defined by

D"(q) D"(q)

-D"(q)* D" (q)-

Before proceeding to derive the phonon dispersion
curves for each material, it should be mentioned that
the problem of deriving a Born—von Karman force
model for hcp lattices is far more complicated than it is
for cubic crystals. This is partly due to mathematical
difhculties associated with the lower syrnrnetry, but it
is mainly due to the presence of two sublattices in hcp
crystals. The two sublattices make it impossible to
express interatomic force constants as linear combina-
tions of interplanar force constants, the latter being the
natural Fourier components which describe the diQerent
modes of vibration along high-symmetry directions.
Because of this difficulty, it is expected that Born—von
Karman force models will not describe phonon dis-
persion relations in hcp crystals to as high accuracy as
in cubic metals. Moreover, the existing experimental
data for hcp metals are rather meager, in the sense that
only relatively few high-symmetry directions out of all
possible ones have actually been examined. This limits

six force constants allowed by the most general force
model. This permits more flexibility in fitting the MAS
model to the phonon dispersion curves as well as to the
elastic constants, compared to the restricted axially
symmetric model (AS) which allows only two such
force constants per neighbor. On the other hand, the
MAS model enabled DeWames et al. ' to extend the
range of interaction to include as many as six nearest
neighbors. This is obviously in accord with present-day
theories of phonon dispersion relations in metals which
indicate long-range interactions in metals. Iyengar
et al.' were able to fit their data to a four-neighbor
tensor-force model (TF), which includes only eleven
force constants out of a possible fourteen. Since eleven
is exactly the number of force constants required by the
four-neighbor MAS model, it is possible to establish a
one-to-one correspondence between the TF and MAS
models for this special case. In Appendix 8 we give the
relations between these two models. The MAS model
is used throughout this article. The appropriate ex-
pressions for the dynamical matrix elements are given
by DeWames et at. in their Appendix A. This Hermitian
(6&(6) dynamical matrix D(q) can be transformed into
a real symmetric matrix M(q) by applying the unitary
transformation. '

1 I iI
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the number of independent parameters for a given set
of neighbors that can be obtained from the data. In
addition, there exists the well-known phenomenon of
long-range interactions in metals, which may require
many more neighbors to fit adequately the phonon
dispersion curves in order to obtain a reliable inter-
polation formula for the purpose of calculating g(v). In
view of all these comments, it is not surprising that the
models calculated by DeWames et al.' for Be ' and Zn ~
and by Iyengar eI al.' for Mg are only barely adequate
to describe the measured phonon dispersion curves.
Furthermore, they might not be adequate at all for the
purpose of calculating dispersion relations along other
directions, and hence for calculating g(v). Nevertheless,
in the absence of better models, we use the given ones
to calculate the dispersion curves for all high-symmetry
directions, because it is desirable to find correlations

between Van Hove critical points in g (P) and the
behavior of the dispersion relations. In presenting the
dispersion curves along all high-symmetry directions,
namely Z, T, 1', E, S, 5', A, I', and U (Fig. 1), we

classify them according to the allowable irreducible
representations of the invariant subgroup of symmetry
operations, which is associated with each high-sym-
metry direction and point. We use the notation given
by Iyengar et a/. ,

' who obtained the irreducible repre-
sentations for some of these points and directions.
Similar notation is used for the rest of the points and
directions. The classification of Inodes by allowable
irreducible representation is described in Appendix C,
together with some compatibility relations, which join
points to curves in a consistent manner. If more than
one mode belongs to the same representation, they are
distinguished by the label A (acoustic) for the lowest
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Fzo. 3. phonon dispersion relations for berylIium, calculated from the MAS model of DeWames, Wolf™,and «™a(&«5).
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Fro. 4. Phonon dispersion relations for magnesium, calculated from a TF model by Iyengar et of. (Ref. 10).

mode and 0r, 0&, etc. (optic) for the higher modes, symmetry requirements and degeneracies can be found
starting from 0& for the highest. We now describe the jn Appendix (".
three individual cases.

Magnesium
Beryllium

The calculated phonon dispersion curves are shown
in Fig. 3. The force model used to obtain these curves is
a six-neighbor MAS model, given by DeWames et al. '
The scale for the q vector in all the basal directions
(Fig. 1) is the same, but a different scale, which does not
take into account the c/a ratio, has been used for the
vertical directions 6, I", and U. It is interesting to note
that symmetry requires six different bands for the basal
directions T, T', and Z, whereas only three, each doubly
degenerate, exist for the basal directions S, S', and R.
This simplification can be misleading, since the polari-
zations for the latter are considerably more complicated.
The vertical directions 6, I', and U consist of three,
four, and six bands, respectively. More details about

The phonon dispersion curves are shown in Fig. 4.
The force model used for the calculation of these curves
is a four-neighbor TF model given by Iyengar et al. , ' "
which has been transformed to the MAS model using
the relations of Appendix B. The frequencies of 3I3+
and M3 are very close, 3f3+ being slightly higher. It is
interesting to note that the highest frequency for the
spectrum according to this model occurs along the
branch Ur(0), which has not been studied experi-
mentally.

'3 P. K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan, and
A. P. Roy, Lattice Dynamics, in I'roceedings of the Internationa(t
Conference on Lattice Dynamics Copenhagen, 1963, edited by R; F.
Wallis (Pergamon Press, Inc. , New York, 1965), p. 223.
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Zinc

The dispersion curves are shown in Fig. 5. The model
used for the calculation is a six-neighbor MAS model
given by De%ames et, al.5 Comparison of Zn with Be
and Mg shows that Zn is a considerably more aniso-
tropic material. This fact is displayed by the appreciable
difference between the two acoustic transverse branches
Zs(TA4) and Z4(TA)() along Z, and Ts(TA)) and
Tr(Tri(() along T. In both Be and Mg those branches
are almost degenerate, whereas in Zn an appreciable
difference is observed. Another interesting feature is the
considerably higher frequencies at M2 and M&+ com-
pared to the optic ends at 4I=O (I's and I's+). The
almost Qat bands along the P and the U directions are

also of signi6cance. An interesting phenomenon occurs
along the S direction very close to the point H and again
along the R direction. The bands along S and R all
belong to the same irreducible representations, respec-
tively, and as such cannot intersect. '4 While a careful
analysis has shown that the bands along S are actually
split by a very small gap (in fact too small to be ob-

served in Fig. 5), the degeneracy along R does still

exist. Nevertheless, this accidental degeneracy is

spurious and model-dependent, and it arises because the
MAS model imposes some extra restrictions on the
force constants, which are not required by symmetry.
For instance, under these restrictions, the imaginary

part of the dynamical matrix element D)s" ((I) is zero,
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FxG. 5. Phonon dispersion relations for zinc, calculated from the MAS model of De%'ames et ul. ,
(Ref. 5). See text concerning accidental degeneracies.

'4I. von ¹nmann and E. P. Wigner, Z. Physik 30, 467 (1929l; see also a paper by C. Herring (Phys. Rev. 52, 365 (1937l1 on
accidental degeneracies.
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and so is the real part of Dss" (q); as a matter of fact, it
is possible to remove this degeneracy by "violating"
these MAS restrictions.

IV. COMPUTATIO1V OF g(v)

The method of calculating g(v) outlined' in GRI and
in Sec. II of the present article (see also Appendix A)
has been applied to the three hcp lattices discussed in
Sec. III.The irreducible zone (1/24 of the first Brillouin
zone) is divided into a mesh of points, none of which lies
on any of the high-symmetry points or directions. This
is in order to avoid degeneracies required by symmetry.
In GRI we referred to such a mesh' as a "shifted" mesh.
More technical details about the construction of the
mesh can be found in Appendix D. A few meshes with
different numbers of points have been tried for each
lattice in order to detect any systematic changes due to
the mesh fineness. Apart from minor changes, which
mainly tend to smooth the curves of g(v) as the mesh
becomes finer, no such systematic changes have been
observed. The number of mesh points was around 3000
in the cases described and the computing time was of
the order of 30 min. The computer program used was
very similar in its essentials to the one" described in
GRI. All the curves of g(v) to be presented are the
actual unsmoothed computer plots. All the computa-
tions described in this section were performed on the
CDC-1604A computer at the Oak Ridge National
I.aboratory.

Only in the case of Be do we proceed beyond the
computation of g(v) to draw thermodynamic conclu-
sions. The reason for this is that unless anharmonic
eRects are small, one cannot use g(v) derived from
inelastic scattering of neutrons to calculate the Debye
temperature O~' appropriate to the specific heat. 's We
have no reason to believe that this is the case for Mg and
Zn, since the O~' are of the order of 300'K, the tem-
perature at which the data were taken. For Be the case
is diRerent, since its O~' is considerably larger than
300'K. We are also hesitant to draw too far-reaching
conclusions because of the obvious discrepancies be-
tween the models and the experimental results, which
we consider quite significant. An .attempt to correlate
the expected critical points from the dispersion curves
to those observed in the diferent distribution functions
is summarized in Table I for all three crystals. In the
first column we give the group-theoretical assignment
of branches or points of the dispersion curves. For each
element we give the corresponding frequency and the
type of criticalness, where M represents maximum, nz

stands for minimum, and I for any other type of zero
gradient, such as saddle point. We also give the strength

"L. J. Raubenheimer and G. Gilat, Oak Ridge National
Laboratory Report No. ORNL TM-1425 1966 (unpublished)."T.H. K. Barron, in ProceeChngs of the International Conference
on lattice Dynamics, Copenhagen, 1063, edited by R. F. Wallis
(Pergamon Press, Inc. , New York, 1965), p. 24/.

of each point as it appears on the curves of g(v). We
classify the strength in a somewhat subjective way: s
represents a "strong" critical point, m a "weak" one,
and u stands for "abserit" points, i.e., for expected
critical points that do not appear on g (v). Also listed in

Table I are the conspicuous critical points that are not
predicted by the dispersion curves, and hence are
associated with oG-symmetry branches. Individual
cases of g(v) are discussed in the following sections.

T,(0)t
TI (A)]

C

3
O

Cl

rs' 2

tr, (A)

f P~(0)

0
0 IO

v ($0 cyclea/sec)

20

FIG. 6. Unsmoothed computer plot of)phonon frequency distri-
bution function for beryllium. Indicated critical points are pre-
dicted from dispersion curves in Fig. 3.

'r R. W. Hill and P. L. Smith, Phil. Mag. 44, 636 (1953).
» M. E. Gmelin, Compt. Rend. 259, 3459 (1964).
n G. Ahlers, Phys. Rev. 145, 419 (1966).

Beryllium

The number of mesh points chosen for the computa-
tion of the phonon frequency distribution function g(v)
was 2520. The histogram of g(v)dv is sorted into about
1000 channels of de=0.02)&10" cps, and is shown in

Fig. 6. A very striking feature of this spectrum is the
large frequency range of relatively low density of
phonon states. This makes Be a very suitable host for
heavy impurities in order to study their resonance-mode
frequencies. Unfortunately, the relatively complicated
hcp structure makes such an investigation a fairly
diKcult one. This low density is presumably also the
reason why low-temperature heat-capacity data for Be
are so sensitive to the purity of the crystal. '

Critical points expected from the dispersion curves
are indicated in Fig. 6. There are two critical points at
17.07 and 18.53 (in units of 10" cps) which cannot be
predicted from the dispersion relations. A full list of all
the critical points is given in Table I.

Since O~' for Be is considerably higher than 300'K,
the temperature at which the data were taken, an-
harmonic sects should not be very signi6cant. %'e

therefore calculated O~' as a function of temperature,
and obtained Q" '(0') = 1437W3'K and Q''(T ~ oo )
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TABLE I.List of the critical points in Be, Mg, and Zn. In the Grst column we identify the high-symmetry branch or point from which
the critical point is predicted. For each. element we list the frequency at the critical point, when its topological nature (where M is
maximum, m is minimum, and I encompasses all the other cases for which there exist a zero gradient, such as a saddle point). In the
last column for each case we specify the strength of the critical points as they show up in g (v) (s stands for "strong, " w for "weak, " and
a for "absent"). At the bottom of the table we give a few very pronounced critical points which cannot be predicted from the high-
symmetry dispersion curves.

Assign-
ment

Beryllium
Topological

v (10"cps) nature Strength

Magnesium
Topological

v (10"cps) nature Strength

Zinc
Topological

v (10"cps) nature Strength

ra+
F6
T, (0)
T1 (A)

T3

T4(0)

T4(A)
Eg
E2
T1'(A)
T4'(0)
T3'-
3II1+
M2
Ms+
M3
3f4+
M4-
s, (o,)
8 (A)
H2
B3
Rg (0)
Z&(A)
E3(A)
U (O)
U1 (A)
U2
U, (O)
U4
Not
predicted

20.20
13.64

14.67

14.66
14.28
11.20
17.14 . .

11.01
14.27

16.42
15.53
16.95
14.91
12.14
12.62
18.35

16.89
15.14
18.63

14.17

14.93
18.74

17,07
18.53

M
m
M
3f
m
m

I
I
I

3E
I
I

3II

S
s
s

z (a)

s

s
a

w(a)
s
s
a

w(a)
m(a)

7.28
3.90

6.34

7.35
4.95

6.265

6.96
6.59
6.08
6.07
3.77
4.25
731
2.89
7.17
4.08

2.89

7.71
3.73

7.23

I
I
I

jrr
I
I
M
m
I
I

S
s
s

S
s

a
Bf

s

4.61
2.23
5.54

1.79
1.93
5.83

5.07
5.58

1.80
6.10
6.33
2.49
3.32
3.58
2.04
5,70

5.39
1.37

2.44

1.86

6.33
3.58
4.04

m
M
M
I
I
I

M
M

m
m

R'

s
s

=904'K. The error indicates uncertainty originating
only from the computation and is not to be understood
as an experimental error. 0'(T) is a monotonically
decreasing function and has no minimum. The range
over which 0''(T) varies is unusually large, and can be
explained by the peculiar shape of g(v). It is interesting
to compare the above result of O~'(0') to earlier meas-
urements and calculations. As was indicated earlier,
O~'(0') is very sensitive to the purity of the crystal. Hill
and Smith" measured a value of 0''(0') = 1160'K for a
sample 99.5% pure. Grnelin" obtained 1390'K for a
sample of Be containing less than 100 ppm impurities.
Ahlers" used a still more pure specimen and obtained
1481&16'K. The value calculated by Alers and
Neighbours" from the O'K elastic constants measured
by Smith and Arbogast's is O'(0') = 1462'K. DeWames
et al.""calculated from their MAS model a few values
of O~'(T) which lead to a value of 1470'K at O'K. The
last value is a little surprising when compared to our
value of 1437'K, since they are both derived from the

"J.F. Smith and C. L. Arbogast, J.Appl. Phys. 31, 99 (1960).
"We obtained the value of 0~'(0') =1470'K by extrapolating

to O'K in Fig. 2 of Ref. 19.

same model and thus should be identical. We believe
that the value of 1437'K is probably correct, because
of the following reason. The values of the elastic con-
stants predicted' by the MAS model are somewhat
smaller than the values measured at 0'3. This is
especially true for c44 and —,'(c»—c»), which dominate
the Debye end of g(v). It is therefore inconceivable that
the MAS model would predict a value for 0''(O'K)
higher than 1462'K. A possible reason for this dis-
crepancy could be that DeWames et al. used the
ordinary root-sampling method, which leads to a
statistically inadequate g (v).

Magnesium

The g(v) for magnesium is shown in Fig. 7. The
number of mesh points was 3588 and the histogram was
sorted into about 1500 intervals of width of 0,005&(10"
cps. The critical points that can be predicted from the
dispersion curves of Mg (Fig. 4) are indicated in Fig. 7.
A full list of the critical points is given in Table I. A
strong critical point that is not predicted by the high-
symmetry branches appears at v=7 23X~O' cps No
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FIG. 7. Unsmoothed computer plot of phonon frequency
distribution function for magnesium. Indicated critical points are
predicted from dispersion curves in Fig. 4.

attempt has been made to calculate OH' as a function of
temperature, because anharmonic effects are bound to
be appreciable at room temperature.

Zinc

The g(v) for zinc is shown in Fig. 8. The number of
mesh points utilized for this computation was 3600, and
the histogram of g(v) was sorted into about 2500 fre-
quency intervals of dv=0.0025)&10" cps. The critical
points predicted from the dispersion curves are indicated
in Fig. 8, and a complete list is given in Table I. There
is a strong critical point at v=4.04)&10'~ cps, which
cannot be predicted from the high-symmetry branches.
Another critical point seems to exist at v=1.90&10"
cps, very near to the highest peak in g(v). It is interest-
ing to note that this frequency is equal to that of the
point Lt (A) on the dispersion curves (Fig. 5).Symmetry
does not require" a vanishing frequency gradient at
point L (Fig. 1), and hence we do not expect a critical
point associated with L. However, from observation of
the dispersion relations along Ut(A) and Us(A) very
near Lt(A), one can see that the s component of the
gradients of the frequencies should be small. " In the
vicinity of L, along any oR-symmetry direction, the
degeneracy at L has to be lifted. This implies small
values for the components of the frequency gradient
over some region around L, which might give rise to a
critical point. "The same situation occurs for Lr(0) at

"As a matter of fact, symmetry requires Bv/Bq =Bv/Bq„=0
at L, but there are no restrictions on Bv/Bq, ."In this connection it is interesting to mention the mild critical
point observed at v= 2.86)(10"cps in Na (see GRI). This critical
point is associated with the point (-,' —,'-,') where three frequency
branches intersect, as required by symmetry. (See also A. K.
Dixon, A. D. B. Woods, and B.N. Brockhouse, Proc. Phys. Soc.
(London) 81, 973 (1963).j Although none of the frequency
gradients of these branches is zero at this point, nevertheless it
gives rise to a "mild" critical point. This is presumably related to
the fact that these three bands must all be distinct in the vicinity

FIG. 8. Unsmoothed computer plot of phonon frequency
distribution function for zinc. Indicated critical points are pre-
dicted from dispersion curves in Fig. 5.

v=6.28&(10" cps, but if this caused a critical point, it
would be a very minor one.

A striking feature of the phonon density of states
g(v) for Zn is its very small Debye range of frequencies.
There is a strongly pronounced critical point associated
with point H3 at v=1.37&10" cps, beyond which the
shape of g(v) assumes considerable structure. This
structure wouM cause a strong temperature dependence
of O~', which can be demonstrated by the following
calculated values: O~'(0') = 297'K, O~'(~ )= 241'K,
with a deep minimum of O~'(20'K) =199'K. Because
of anharmonic effects these values should not be taken
seriously.

V. CONCLUSIONS

This is the 6rst attempt to apply the extrapolation
technique to any system other than cubic. For cubic
systems the advantage in using the present method lies
mainly in obtaining much higher resolution and
accuracy in g(v) together with a very substantial saving
in computing time. For the hcp system the advantage
is even more pronounced, because it is the first method
that permits g(v) to be obtained with high resolution
and accuracy within a reasonable computing time.
Moreover, the method can be extended in a perfectly
straightforward manner to any lattice symmetry, but
this might be a tedious task for lower symmetries. In
claiming that this method is one of high accuracy and
resolution, we mean that it is capable of producing Gne
features associated with any particular model. In other
words, no information is lost via the use of this method
and it would be capable of producing accurate pre-
dictions of physical properties if the model used were
adequate. Unfortunately, most force models are still
inadequate, and we would like to emphasize here the

of this point. The same behavior occurs for potassium at v=1.79
)&10" cps Lsee R. A. Cowley, A. D. B. Woods, and G. Dolling,
Phys. Rev. 150, 487 (1966)J
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importance of obtaining the best possible force model
which represents accurately the measured phonon
dispersion curves.

Possible sources of error in this method have been
discussed in GRI and we shall not repeat them unless
additional considerations are involved. It is important
to observe that most errors are eliminated by the
enormous averaging out process, which is inherent in
this method, but it is important to be aware of their
existence. One source of error, which is important for
the cubic case, is associated with twofold degeneracy for
the transverse branch along the A(qqg) direction (see
GRI). This requires some caution in determining the
Debye end of the spectrum. Such a degeneracy does not
occur in the hcp crystal, because of different symmetry
requirements, and hence one does not need a finer mesh
at the origin I' in order to increase the reliability of the
calculation. There might, however, be another in-
teresting source of error, which is not mentioned in
GRI. This source of error is quite general and could be
more important, the higher the order of the dynamical
matrix (or, for that matter, if applied to electron
density of states, the higher the order of the Hamil-
tonian matrix). This error originates from the fact that
different bands belonging to the same irreducible repre-
sentation cannot intersect. '4 It is apparent that for an
arbitrary q, (i.e., along some off-symmetry direction),
the representation of the group of g, cannot be reduced
by symmetry operations, and hence, accidental de-
generacies are not allowed for such a q, . This implies
that in the vicinity of a g vector, where two or more
bands are approaching each other, the respective
gradients of these bands may undergo strong changes
in order to avoid such an intersection. This might cast
some doubt on the extent to which it is correct to
approximate these gradients by constants inside
volumes of 6nite sizes. We are convinced, however, that
at least for the hcp lattices examined here, and even
more so for monatomic cubic systems described in
GRI that this error cannot be serious. A very efficient
check on any source of statistical error is to compare
g(v) calculated for different numbers of mesh points.
We have actually applied this test and found no signif-
icant changes~ in g(v) as a function of the number of
mesh points provided this number is sufi'. ciently large.
The following argument also leads to the same con-
clusion. If the changes in the gradients are very abrupt
as, for instance, in the vicinity of point Hq and 82 for
Zn (Fig. 5), then its statistical effect on g(v) would be
very small. This is because abrupt changes in the
gradient occur within a very small volume of the
reciprocal lattice and thus cannot affect g(v) appreci-
ably. On the other hand, if these changes are moderate,

24 The changes that usually occurred as the mesh number was
varied, were in small kinks which tended to change their location
as a function of v and also seemed to smooth out for an increasing
mesh number n. This was also observed in the cubic lattices
reported in GRI.

their e6ect on the linear extrapolation assumption
becomes less significant, but their inQuence occurs over
larger volumes. This should make them more detectable
when changing the mesh number, but, as stated
previously, no significant eBects were observed when
the mesh number~ was changed. In concluding this
discussion on possible sources of errors, it is important
to indicate that most of the considerations have been
empirical and qualitative and that it is desirable to have
a more quantitative analysis of this problem.

Before discussing the more physical conclusions that
can be drawn from this article, it is worthwhile to
emphasize a few points concerning the application of
the method. It has been customary in the root-sampling
method and also in the earlier version of the extrap-
olation method' to specify the number of frequencies
used for the sampling. This is meaningless for the
present method, ' but rather an important indication
should be the number of mesh points n used in the
computation of g(v). Naturally, g(v) becomes smoother
between critical points upon increasing this number n,
but the size of n should be determined mainly by the
purpose for which g(v) is needed. For instance, for
calculating thermodynamic properties, it is possible to
use a considerably smaller n than would be necessary
for very high resolution. On the other hand, it is
advisable to use a larger n, even for the calculation cf
thermodynamic properties, if g(v) is expected to have a
complex structure. We found that the mesh numbers n
quoted in this article were more than adequate for most
purposes with the possible exception of those used for
Mg. The channel width dv is of much less critical
importance. A too small dv might prove to be a burden
on the computer memory and it also increases com-
puting time. On the other hand, a too large du obscures
Qne details, especially near critical points and close
to v=o.

We hesitate to draw far-reaching conclusions on the
basis of the models utilized throughout this article.
These models describe in a more or less satisfactory
manner the existing data, but disagreements could show

up if experiments of coherent inelastic scattering of
neutrons were extended to include more high-symmetry
directions. Nevertheless, some general conclusions
which are not particularly model-dependent can be
drawn. It has been found that at least one strong
critical point for each of the three lattices investigated
originates from off-symmetry directions. The 0' of both
Be and Zn should show a strong temperature de-
pendence. Beryllium shouM be a suitable host for
studying sects of heavy impurities, because of the
large mass ratio of impurities over the host atoms, and
also because there is a very large range of frequencies
(about 50% of the entire range), for which g(v) is very
Qat and of very low phonon density. Although Mg can
also serve for such a purpose, because it shows no
structure over about 50% of its frequency range, it is
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probably not as good because of its larger mass. The
smaller mass ratio of impurity atoms to host atoms
would tend to shift resonance modes toward the more
populated region of g(H).

In conclusion we want to indicate that this method
could be extremely helpful for attempting accurate
calculations of electron density of states. No such
attempt has been made in the past, and to our best
knowledge customary techniques of computations of
electron density of states can be fairly crude and
ambiguous. It is possible that this method would help
to solve certain relevant problems.
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APPENDIX A

As explained in the text, we are interested in ending
the cross-section area of the wedge (triangular prism)
ABCDEF /Fig. 9(a)) as a function of the distance from
a given point. Surface ABCD, being a mirror plane
restricts the vector of the frequency gradient calculated
at any point on this plane to lie in this plane. Another
restriction imposed on the present calculation is that
all angles at point E LFig. 9(a)j are right angles. On the
other hand, the angle n is not restricted. In Fig. 9 (b) we
view the wedge in two dimensions. HG is the perpen-
dicular projection of the edge FE on ABCD. The lines

1, 2(1), 2(2), etc., represent the projections, on ABCD,
of planes cutting the wedge. We next examine the
behavior of the cross-section area of a plane, normal to
the frequency gradient, which, starting from A, moves
in the direction of its normal. In going from A to C the
plane passes, in some order, through four intermediate
corners (Fig. 9(b)$. This defines in total 6ve different
ranges through which I, the distance of the plane from
3, varies. For any given ze, we characterize a cut by
j(m), where j (equal to 1 through 5) is the number of

(c)

FIG. 9. (a) A right-angled triangular prism (wedge). (b) Two-
dimensional projection of a wedge. The different cuts j(m) are
shown schematically. (c) Schematic summary of all possible cuts
and sequences for a plane sweeping across the wedge. Use of the
diagram is explained in this Appendix.

corners on the left-hand side of the cut, according to
Fig 9(b). . The same j also gives the range number.
Whenever there are more than one possible cut for any
given j, we label them with the index (m). Under the
above conditions there are in total only eight distinct
cuts. Obviously, before the 6rst corner is reached, the
cut is of type 1.Then, depending on whether this corner
is D or 0, the subsequent cut is either of type 2(1) or
2(2), and so forth. There are in total only five possible
sequences in which the diGerent cuts can follow each
other. These sequences are labeled by Roman numerals

I, II&, II&, III, and IV and are distinguishable by
certain inequalities. The sequences together with these
inequalities are listed in Table II. Sequences II& and
II& are mutually exclusive, since II& requires n&45',
while for II&, n&45'. The cross-section area for any cut
j(m) is S,( &(w). In Fig. 9(c), we summarize the situ-
ation by a diagram. This 6gure correlates the sequences
to the different ranges and cuts, and it also indicates the
proper S;( i (Ic) to be used in each case. Use of Fig. 9(c)
as well as of Table II might best be illustrated by an

TABLE II. List of all possible sequences in which a plane can sweep across a triangular prism under the limitations described in the
text. In the second column the geometrical conditions for each sequence are listed. In the rest of the columns the appropriate cross-
section area S;( ) for each sequence and range are listed together with the respective range. t and c are tano. and cos, respectively.

Sequence
number

II& (in&1).

II& (t'&1)a

IV

Conditions

X3&'min {A.1,) 1t')

Z,P&) 3&),1

X1&P 3&) 1t'

max g4,X&is) X +&Ay/8cs
XI)XI/c'

S1
(OircAD)

SI
(O,m @L))

(O,egg)
S1

(O,m Ae)
S1

(O,rcAG)

S2(1)
(IBAD,ICAG)

S2(1)
(IBAD,~AG)

S~(g)
(wAe, rcAD)

S2(2)
(rcA e,rcA D)

S2(3)
(egg, m gg)

Range number
3

S3(2)
(7DAG)rcAH)

S3(2)
(IDAG, 7DAB)

S3(2)
(IBAD,AH)

S3(2)
(u'AD)wAB)

S3(1)
{2~~a,~~L )

S4(1)
(~ca,~ca)

S4(2)
(ICAB,ICAH)

S4
(ICAH prCAB)

S4(2)
(ICABgrCAH)s()
(VDA D yrCAH)

S5
(~AB)WAC)

S5
(IBAH prcAc)

S(;
(w AB)w Ac)

Sg
(rcAH, IBAc)

$5
(~AH, 7DAC)

a Sequences II& and II& are mutually exclusive for geometric reasons (see text).
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TABLE III. List of all possible cross sections S;( ) together with
the analytical expressions for E';( ), L ( ), and R;( ).The following
abbreviations are~used in the table: A =u~a2oa/2X&) 2) I, c'—=cos'a
=xl/(~1+x2l& $2—sin~el= x2/(xl+x2l& )2 =taunt =Kg/xg.

Sj(sr')

S1
S2(1)
S2(2)
SB(1)
SB(2)
S4(1)
S4(2)
S5

As'
0—Ac'
0—A
0—As'
Ac'

0
4AXBs2
4AX1

0
4A (X +X s')—4AXBc'
+P BS'—2A () 1+),Bc')

R j (st)

0—4A) B2s'
—4AX,2

4A~12t'
4A () 12+) 's')
4A&B(2&1+)Bc2)

4At2(g1 —pL c )
(4A /c') (x,+).,c'l'

example. Suppose Xt and )(s, as defined by Eq. (3) in the
text, satisfy the inequality conditions in Table II, so
that a sequence is determined to be number III.Starting
from A, the cut is of type 1 as long as we are in the first
range, i.e., m &x~g, and therefore the cross-section area
is St(t(&). After passing corner G the cut is in range 2(2)
with cross-section area S2(2), which is true as long as
m~g&m &zv~~. Then, at the corner D, the cut goes over
into type 3(2), implying the use of Ss(», and so forth.

The distances zv~D, zv~g, etc., which are used to
determine the different ranges j(t)s), are as follows:

The
coefficients

';( &, Q, ( &, and R;( ) depend one(, and
are tabulated in Table III.Use is made of the restriction
that the normal to all cuts must lie in the mirror plane
ABCD; this yields the condition

I(s/I(t ——tan'(r. (A3):

The property mentioned in the text about the smooth
behavior of S(w) and dS/dt(&, as a corner is passed,
facilitates the task of calculating the various expressions
for S;( )(r(&). The volume between any two parallel
planes at distances m~ and m 2, respectively, is simply the
integral of the appropriate S;(„)(w) between these
limits. The partial distribution g(j,q.,)) can now be
calculated with Eq. (2) in the text, where Wq, is unity
and m 4, in the expression for the range of variation of v,

has to be replaced by W~,/2 because of the different

geometric situation.
An equivalent choice of origin could be C rather than

A, which amounts to choosing new axes x', y', and s',
corresponding to (2as —y), (2()t—x) and (2as —s),
respectively. The cross-section area S,( ) in the old

system is identical to S&,.( ) in the new frame and

satisfies:

Ã~~= 2X3,

'Mgg = 2Xy,

t(&~pg ——2 (I()+I(s),

t(&As = 2)(t/cos (r,

(A1)

S, ;(~) (I(s,I(t,I(s,' {2 (I()+I(s+I(s) —to) )
=S,( )(Xt,Xs,I(s,. t(&). (A4)

APPENDIX 8
and

w~c= 2Xs+2ht/cos a.'.

Si(~) (tt') = Ii (m)t(& +Q&'(~)tr&+~&'(~) ~ (A2)

The eight functions S;( &
(t(&) are at most second-order

polynomials in x, and hence can all be written as

We give the relations between the MAS model and

the four-neighbor tensor force model (TF). We adopt
the notation of DeWames et al.' for the MAS model,

and of Iyengar et al.""for the TF model so that the
parameters appropriate to the MAS model are on the
left-hand side of the equations. The abbreviation po is

TAnrE IV. List of the allowable irreducible representations for all the high-symmetry directions and points of hcp lattices (see Fig.
1).In the third column are listed the point group associated with each point or direction. The last column lists the degenerate repre-
sentations.

Point or
direction

F
A
K
H
MI

T
T'
R
S
S'
I'
U

Allowable
irreducible representation

F2 +FB++F6++F6
A1+A B

K1+K2+K6+K6
H1+H2+HB
iV1++M B++M4++M2-+ MB-+M4-
2L1 +L2
~1+~2+~5+~6
2Z1+2ZB+2Z4
2T1+T2+ TB+2T4
2T1'+Tg'+ TB'+2T4'
2R1
2S1
2S1'
281+2EB
2U1+ U2+2UB+ U4

Little
group

Doh
D6h
DBh
DBh
D2h
D2h
C6v
C2v
C~v
C2v
C2v
C2
C2v
Csv
C2v

Degeneracies

Fh+ and F6 (twofold)'
A1 (2-fold), AB (fourfold)
E~ and K6 (twofold)
H1, H2 and HB (twofold)

L1 and L2 (twofold)
65 and 66 (twofold)

R1 (twofold)
S1 (twofold)
S1' (twofold)
I'B (twofold)

ss Additional degeneracy between I'p and I'I+ is required by time reversal.
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used for the c/a ratio (not to be confused with the force for point E and directions T, T, and I', these relations
constant y). are

8y= —p )

og =)+2Is,
&rs 37o Is+ &,

Ps*=~ 2P—

Tl)Ts Er+Es)
T2)T2 ~E6 )

T3)T3 + E6 )

Ts,T4' ~Es+Es,
Ps~ Es+Es,
I's +Es+—Es,.

os, f+——2',
os.= sV o'n+I,
cs4+P4z =Q,

Ps =8.

APPENDIX C

In this section we describe briefly the classification of
the normal modes by the irreducible representations of
the space groups for the high-symmetry directions and
points (Fig. 1). The irreducible representations of the
point groups were obtained by Roster. ' Iyengar et al."
worked out the character tables for some of the points
and directions (namely, I', A, E, M, 6, Z, and T in
Fig. 1). We summarize the classification of the modes
by irreducible representations in Table IV. In addition
we give a few compatibility relations which facilitate
the correct identification of points with branches.

For point M and directions Z, T', and U, these
relations are

Zg —+ Ms++Ms,
Zs ~Ms++M4,
Z4 ~M4++Ms,

Ts' ~Ms++Ms,
T2' —+ M3+,

T3'~ M4-,
T4'~ Ms +M4+,

Us -+ Ms++M4,
U2~ M3,
Us -+ Ms++Ms—,

U4 —+ M4+;

for point L and direction U

I-r~ Us.+Us,
Ls~ Us+U4,

and finally for point H and direction P

Pj —+ Hg,

&s ~ &s+&s

q„= (2sr/V3aX. ) (n,——,'),
q,„=(2sr/3ulV. ) (n„——',),
q„= (m/cd, ) (n, ——',). n, (X,

(D1)

This choice ensures that all mesh points are inside the
irreducible zone except for some points on the plane
I'EHA. Although no restriction is required for the ratio
N, /X„ it has been chosen to be as close as possible to
(2c/V3a). The number n of mesh points chosen in this
manner is given by

n=-,'X,X (N +1). (D2)

APPENDIX D

Here we describe the way in which a typical mesh has
been constructed to perform the computation of g(v)
described in this article. I et E and X, be the number
of mesh points along the x and s axes, respectively. The
integers m, n„, and m, satisfy e„&n,&E and n, &3l,.
If we restrict ourselves to the irreducible zone shown in
Fig. 1 of the text, then a general mesh point q, inside
this zone, or possibly on the surface FEHA, will have
the following components:


