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here indicate a coefficient between 3 and 1, at the reduced to a fraction somewhere between 1 and 23 of the
present there is no theoretical justi6cation for such a Slater free-electron approximation.
number.
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Size-eftect oscillations in the Hall resistivity have been studied in a monocrystal of highly pure cadmium
at liquid-helium temperatures. Samples ranging in thickness from 2.01 to 0.09 mm were prepared from a
single monocrystal by successively reducing the thickness using spark planing followed by electropolishing.
The probes were not removed during this process to ensure that the samples were representative of a com-
mon background of orientation, strain, purity, and surface condition. The magnetic Geld was applied parallel
to the hexagonal axis, and dependence on thickness parallel to this direction was studied in the period,
phase, and amplitude of the oscillations. The amplitude was observed to increase as thickness was reduced.
The oscillations are not strictly periodic, but the apparent period is proportional to the reciprocal thickness.
The phase of the oscillations is determined to be zero, although existing theory predicts a phase of x/2.
It is concluded that the lens-shaped pocket of electrons in the third Brillouin zone is responsible for the
oscillations. The radius of curvature of the lens apex in the hexagonal direction is determined to be k~
=1.37 & '. A study of the temperature dependence of the amplitude of the oscillations implies that the
mean free path is in the millimeter range at liquid-helium temperatures. A careful search for short-period
oscillations observed by other researchers was fruitless. Data from an electropolished sample were compared
to those from a spark-planed sample of the same dimensions; the amplitude of the oscillations was found
to be twice as large in the spark-planed sample data as in the electropolished sample data. A slight increase
in amplitude was effected by abrading an electropolished sample with No. 600 SiC paper. This enhancement
in amplitude implies that an appreciable number of electrons scatter specularly at the electropolished sur-
faces. It is suggested that a very thin distorted layer at the crystal surface may be necessary to observation
of the short-period oscillations.

INTRODUCTION
' 'N thin metal plates or wires where the mean free path
~ ~ is comparable to or greater than the dimensions of
the sample, one must consider the effects of boundary
scattering in problems of electron transport. The phe-
nomena introduced by boundary scattering are known
as size or morphic effects. The problem of increased re-
sistivity in thin 61ms was first considered as early as
1901 by Tholnson. ' Following that initial attempt. ,
several contributions to the theory have appeared' '

' J. J. Thomson, Proc. Cambridge Phil. Soc. 11, 20 (1901).' A. C. B. Lovell, Proc. Roy. Soc. (London) A157, 311 (1963).' K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).
4 L. Nordheim, Act. Sci. Ind. No. 131, (1934).

and, in recent years, various experiments related to the
size-effect phenomena have been reported. Much of this
work relates to the case of either longitudinal magnetic
6elds or zero magnetic 6eld. ' Sondheimer has treated
the case of conductivity in thin samples with a trans-
verse Diagnetic field. In particular, he predicted oscil-
lations in the Hall effect and transverse magnetoresist-
ance as a function of magnetic 6eld with the magnetic
6eld applied perpendicular to the plane of a thin con-

'D. K. C. MacDonald and K. Sarginson, Nature 164, 921
(1949).' See Ref. 19 for an extensive bibliography.

r E. H. Sondheimer, Phys. Rev. 80, 401 (1950); Advan. Phys.
1, 1 (1952).
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ducting plate. A limited number of experiments have
been reported confirming these oscillatory eRects both
in single crystals and in polycrystalline materials. ' '
Blatt has extended the Sondheimer theory to include
magnetothermal eRects. '8 Recently, magnetomorphic
oscillations have been observed in transport eRects
other than the electrical conducitivity. "

In this paper we report observations on size-effect
oscillations in the Hall eRect in an oriented single crystal
of highly pure cadmium at liquid-helium temperatures.
All measurements were made in a transverse magnetic
field (see Fig. 1).Size-effect data for different thicknesses
of the same crystal were obtained in order to gain an
absolute indication of the effect of this parameter on the
amplitude, phase, period, and damping of the oscilla-
tions. The eRect of surface damage is examined, and a
case is made for the existence of specular reflection from
a surface with irregularities many times larger than the
de Broglie wavelength of the impinging electrons. The
variation of mean free path with temperature is exam-
ined for temperatures in the liquid-helium range.
Finally, the results are analyzed in terms of a previously
proposed model for the portion of the Fermi surface
responsible for the eRect."

THEORY

The Sondheimer Model

Sondheimer' has calculated the conductivity tensor
for the case of an infinite, isotropic, crystalline film with
a magnetic field perpendicular to the plane of the film.
Assuming a spherical Fermi surface, diffuse reflection at
the crystal boundaries, and the existence of a relaxation
time, the Boltzmann equation is solved for the pertur-
bation to the equilibrium Fermi distribution. The pres-
ence of the limiting surfaces, s=0, u, is taken into ac-

s Actually Sondheuner's final analytical result is our Eq. (4),
and he has demonstrated the oscillations in 011 by numerical in-
tegration of this equation. However, the integration was not
carried out for large enough values of p in the case of 0.1~, and the
oscillations were not exhibited. See Ref. 13, Fig. 1, for the results
of an extended integration of Eq. {4).' D. K. C. MacDonald, Nature 163, 637 (1949)."E.R. Andrew, Proc. Phys. Soc. (London) 62, 77 (1949)."J.Babiskin and P. H. Siebenmann, Phys. Rev. 107, 1249
(1957).

'«M. Yaqub and J. F. Cochran, Phys. Rev. Letters 10, 390
(1963); Phys. Rev. 13?, AI182 (1965).

"N. H. Zebouni, R. E. Hamburg, and H. J. Mackey, Phys.
Rev. Letters 11, 260 (1963).

'4 J. M. Reyonlds, K. R. Emerson, C. G. Grenier, and ¹ H.
Zebouni, in Proceedings of Eznth International Conference on Loto
Temperature Physics, Ohio State Uni7fersity, 1964 (Plenum Press,
Inc., New York, 1965), p. 808."J.A. Munarin and J. A. Marcus, in Proceedings of Ninth
International Conference on I.om Temperature Physics, Ohio State
University, 1964 (Plenum Press, Inc. , New York, 1965), p. 743.' K. R. EA'erson, C. G. Grenier, and J. M. Reynolds, Bull. Am.
Phys. Soc. 10, 126 (1965).

'r K. Fttrsvall and I. Holwech, Phys. Letters 3, 66 (1962)."F.J. Blatt, Phys. Rev. 95, 13 (1954)."C. G. Grenier, K. R. Efferson, and J.M. Reynolds, Phys. Rev.
143, 406 (1966).

"M. R. Daniel and L. MacKinnon, Phil. Mag. 8, 537 (1963).

FxG. 1. Crystal orientation with
respect to applied magnetic Geld
H and crystal symmetry axes. The
hexagonal axis is along the s axis
and parallel to H, with the binary
axis in the x-y plane tilted 20
from the x axis. Electric current is
in the positive x direction, and the
Hall probes sample the electric
Beld in the y direction.
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count by requiring the perturbation fi to go to zero at
a=0, a. The results of this calculation are summarized
below in order to compare the resulting expressions with
those one may derive from a very naive kinetic picture
of the mean electronic motion. Sondheimer finds

(Ia)f= fo+ fi= fo+ (deci+&ocs) t)fo/r)& ~

ci icz—erE——/ms[I+ (i eHr)/mc j
)& [I+h(v) exp( —(1+ieHr/mc) s/v, r)], (1b)

where

h(v) = —1 for s,)0. (ic)

&11+ztr12 s&b=3 (l
—'—l—')

X(1+(st) '[exp( —st) —lj)dt, (4)

where the bulk conductivity is

crs nec(H, iH)/(H'——+H ),—
and the saturation field is

H;= mc/er. (5b)

Grenier" has shown that if one picks out the oscil-
latory term in Eq. (4) and expands by integration by
parts, the first term gives a good approximation for the

It(v) = —exp([1+(ieHr)/mc$(tz/n, r)) for w, (0. (id)

The complex electric field is E=E, iE„, and H-

=(O,O,H) is the magnetic field. Defining a complex
current density, J=J —iJ„, one obtains

dJ(.)=d ( *)(' '/m)

X(1+[..r'/aj[exp( —aj..r') —ij}E, (2)

where dJ(s,) is the average, over the thickness of the
crystal, of the contribution of the electrons dn(e, ) be-
longing to a slice of the Fermi sphere bounded by the
planes s., e,+ds, .

The quantity r' is defined by 1/r'= (1/r)+i (eH)/mc).
Defining

I=vs/'oe, X='osr, Hp=mvec/ctz,

s= (a/) )+z(H/H, )=.+zP,
Je—zJ„=(aii+ztris)(Ee —zE„) )

and integrating (2) over the Fermi sphere, one obtains
the result
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-eE

the origin. Consider electrons belonging to a slice of the
sphere bounded by planes v„v,+dv„ for v,)0. On ar-
riving at an element of crystal in the range s, s+ds,
these electrons have been on their spiraling paths for
time t=z/v, since scattering from the lower surface.
Then from Eq. (8) their gain in momentum is

hp+ eEr——')exp( z/v,—r') 1j.— (9)

Fxo. 2. The transient motion of the Fermi sphere in a viscous
medium under the inQuence of crossed electric and magnetic Gods.
The electric Geld is along the x direction, and the magnetic field is
along the s direction. The curved arrow labeled II indicates the
motion of the steady-state momentum p along the dashed semi-
circle as H is increased. The radius of the Fermi sphere is many
orders of magnitude larger than eEr, but has been reduced for
clarity. The dotted spiral indicates the transient motion of the
center of the Fermi sphere.

high lnagnetic-6eld oscillatory phenomena. One 6nds

Giving the same consideration to the conjugate slice of
sphere for v,(0, one obtains

ap = eEr'(expt (z a)/v,—r'] 1) . — (10)

dJ(s,v,)= dN(v, )eh—p+/rw,

where dl(s, v,) is the number of electrons per unit volume
belonging to both slices. Substitution of Eq. (9) into
Eq. (11) gives

The contribution of these slices to the current density at
s is essentially

&11+&012 (~3 ( &12 ( p e )
X)cosP+2 cos(P+2r/2) j, (6)

dJ(zp, )= )de(v, ) e2r/m)$1 —exp( —s/v, r'))E. (12)

where the upper sign refers to a sphere of electrons, and
the lower sign refers to a sphere of holes.

A. Kinetic Model

where

'and

p = eEr'/exp( t/r') 1g, — —

P P&+ Pv)

1/r'= 1/r 2(eH /mc) . — '

(Sa)

(Sb)

(Sc)

Figure 2 indicates that the trajectory in momentum space
is a decaying spiral to the point p= —eE~ which lies on
a semicircle passing through the origin and centered at
the point eEr/2. Note that —the Hall angle approaches—2r/2 for H))H;. Solution for electrons possessing ini-
tial momentum shows similar decay to the same point
p; however, the exclusion principle forces the sphere to
move rigidly and center on p. Then Eq. (8) gives the gain
in momentum for every electron in the sphere.

Now assume the crystal is limited in the s direction
by the planes a= 0, c. Disuse scattering at these planes
implies:that on collision the average electron reverts to
its initial position in the equilibrium sphere centered on

It is interesting to note that one may derive precisely
the foregoing results from a simple kinetic model which
gives physical insight into the nature of the ocsillations.

Consider an electron at rest in a viscous medium. At
3=0, switch on crossed electric and magnetic 6elds,
E= (E,O,O), H= (O,O,H). The equation of motion is

dp/dt= —eR—(e/rlc)y x H —p/r. (7)

The solution to Eq. (7), written in complex notation, is

One may now average Eq. (12) over the thickness to
obtain

dJ(v,)= Ld21(v, )e'r'/mf(1+ ( vr'/a)

XLexp( —a/ rv') —1])E. (13)

Taking the complex conjugate of Eq. (13) yields the
Sondheimer result, Eq. (2), by virtue of the definitions
given in Eqs. (3) and (8). The similarity between the
exponentials appearing in Eq. (1) and those in Eqs. (9)
and (10) is obvious.

This viscous-medium model shows that the average
motion of an electron is a rapid, decaying spiral super-
imposed on a small constant drift in the x-y plane, plus
a rapid constant motion in the s direction. As the mag-
netic field is increased, the pitch of the helix decreases.
Maxima in Oii should occur whenever the pitch is such
that an integral number of turns are executed during the
transit between surfaces. Maxima in Oi~ should occur
for (n —41) turns, where 22 is an integer. (The symbols
0-i2 and O.i~ denote the oscillatory components of the
Hall conductivity 0-i2 and the magnetoconductivity ~ii,
respectively. )

Consider a sample which has a distorted or strained
layer of depth d at one surface. Then when the associ-
ated integer rises to e= a/d, such that one or more turns
of the helix spans the distorted layer, it may be expected
that a signi6cant proportion of the electrons act as if
the thickness were reduced by d, and the resulting super-
position of maxima and minima will lead to damping of
the observed oscillations. A similar argument applies to
the case of surfaces which are somewhat rounded, i.e.,
damping will occur when the pitch of the helix is of the
order of the deviation from perfect geometry.
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Grenier" has extended the Sondheimer theory to the
case of Fermi surfaces which are axially symmetric
about the z axis. In particular a lens-shaped pocket of
the form which occurs in the third Qrillouin zone in
cadmium has been considered. The essential diGerences
in the results of these calculations as compared to Eq.
(6) are a reduction in the predicted amplitude of the
oscillations by a factor of 0.58 and. the substitution of
the radius of curvature of the lens apex for the radius of
the Fermi sphere which reduces the expected period by
a factor of 0.97. No change in phase is found. The fol-
lowing discussion is based on Grenier s formula, Eq.
(6), but the kinetic-model terminology will be conven-
ient. It should be pointed out that Gurevich" has con-
sidered very general Fermi surfaces, and the essential
result is that the Gaussian curvature of the surface is
introduced.

The oscillations 0.~2 are attributed the following prop-
erties by Eq. (6):

(1) period=E2=22rH2=22r222vr c/ea,
(2) maxima should occur when H =H„= (22 —5/22r) Ps,

with 8=2r/2 and I an integer,
(3) the amplitude should decay as H 4 at high 6eld,
(4) at constant H, the amplitude should vary with

temperature as e

It is more convenient to consider these properties in
terms of the oscillatory component of the Hall resistivity
pz&. Since the magnetoresistance p» is two orders of
magnitude greater than p2~ in cadmium and increases
quadratically with magneiic field, one finds for large
magnetic 6elds

p» =0,'H (14a)

p21= (pll) o 12=rr H 0'12. (14b)

The oscillatory part of p~~ is of the same order as p2~ and
is entirely negligible compared to the gross p». Equa-
tion (14) implies that p21 has the same properties as o 12

except that it should have constant amplitude at high
magnetic 6eld.

EXPEMMENTAL PROCEDURE

In order to test the Sondheimer theory in detail, it
was considered important to measure the oscillatory
phenomena in a group of single crystals representing a
range in dimensions from matchbox geometry to thin-
fijm geometry, and to obtain samples identical with
respect to impurity content, strain, orientation, surface
condition, and probe placement. This was accomplished
by the successive thinning of a single sample without
removing the probes.

The initial single crystal was spark machined from
an ingot of 69-grade cadmium obtained from Cominco
Products, Inc. , Spokane, Washington. It was x-ray
oriented and spark. machined into parallelepiped geome-

2 V. L. Gurevich, Zh. Fksperirn. i Teor'. Fiz. 35, 668 (1958)
(English trans!. : Soviet Phys. —JETP g, 464 (1959)j.

/!! . l '. 2 Gd Grystal
~ ~ I I ~

f Cd Base
i; — u

Removable
Phenolic Base

Lucite Holder

Fxo. 3. The crystal assembly. The sample, cadmium base, and
phenolic base form a unit which is removed intact from the Lucite
holder for successive spark planing and electropolishing of the
exposed face of the cadmium sample.

try of dimensions 27.0&(6.5&4.2 DUn. The hexagonal
axis was perpendicular to the large faces to within 1',
with the binary axis 20 from the longitudinal axis of
the sample (see Fig. 1). The large faces were spark
planed parallel to within 1'. In order to obtain a surface
free of the polycrystalline layer produced by spark
planing, the large faces were electropolished until ap-
proximately 100p were removed from each surface.

The electropolishing solution consisted of 57 cc of
Hsp04 (specific gravity 1.689) in 43 cc of H20. A copper
cathode was used. Experiment showed cathode geome-
try and placement had negligible effect; however, it was
necessary to arrange the surface to be polished in the
horizontal facing the liquid surface to avoid Row lines on
the crystal produced by motion of the viscous film
created under polishing conditions. Miccroshield" was
used to isolate the other surfaces from the electrolyte.
Polishing was carried out in a 250-ml beaker with a
rectangular cathode set vertically at one side of the
beaker. The cell was operated in the range 1.8 to 2.0 V
with a current density of 42 mA/cm' establishing a re-
moveal rate of 80 p/h. Mirror fmishes were easily
obtained.

Current, magnetoresistance, and Hall probes were
soldered to one polished face. To facilitate subsequent
spark planing and electropolishing, the crystal was
cemented rigidly to a cadmium base, probes side down.
A thin coat of Miccroshield and a single sheet of cigar-
ette paper were used to effect electrical isolation from
the base. The cadmium base was used as a precaution
against thermal strain associated with repeated cycling
between room temperature and. helium temperatures.
Finally, the cadmium base was cemented to a phenolic
base to form a rigid unit. Trenches were milled into the
phenolic to provide an exit for the twisted probe leads
(see Fig. 3). This unit could be conveniently mounted
in the spark machine for further planing, and was small
enough to fit in the electropolishing cell for further
polishing.

External leads were brought into the Dewar system
via an epoxy-sealed, thin-walled stainless-steel tube,

22 A polyvinyl chloride based blanking lacquer manufactured by
Michigan Chrome and Chemical Company, Detroit, Michigan.
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directly in microns, and s translation calibrated to 5 p.
The experimental data curves are labeled by crystal
thickness taking into account the 1.5% c-axis contrac-
tion at helium temperatures. "The values a=0.16 mm
and a= 0.09 Dam are mean thicknesses corresponding to
the lens-shaped cross section described above.

The potentials were measured by recording the oQ-
balance of a Honeywell Six-Dial Thermal-Free Poten-

-20

6tted mith a Lucite support table. The phenolic base
was attached to the Lucite, and the short probe leads
were soldered to the external leads prior to data runs.
Care was taken to ensure that the helium level remained
above all solder joins to prevent thermal emf's during
the experiments.

After each experiment the leads were unsoldered and
the phenolic detached from the Lucite table. Laue pic-
tures were taken to ensure absence of strain. The sample

20 a*.09 mm

FIG. 4. The Hall resistivity p» plotted as a function of magnetic
field H. The oscillations, roughly periodic in magnetic Geld, are
seen superimposed upon the nonoscillatory contribution. The
general behavior of p» with H for the thickest sample is typical of
data obtained for various thicknesses of the sample.

C
0
x 4
O
E

4
6 8
INTEGERS

FIG. 6. Magnetic Geld positions of the maxima and minima of
the oscillations in p» plotted against integers. This is a period and
phase plot for magnetomorphic oscillations corresponding to the
various thicknesses of the monocrystal. The maximum in a given
oscillation occurring nearest zero magnetic Geld is labeled n=1.
The periods determined from the slopes are shown in Fig. 7. The
oscillations are not strictly periodic, but a large number of maxima
have been observed in order to obtain an accurate value of the
average period.

0

g-20

-40
Qge

-60

—4 E
0
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tiometer, amplified by a Beckman Model 14 Breaker
Amplifier. Data mere taken for normal and reverse di-
rections of the magnetic 6eld, and the results were ap-
propriately averaged to eliminate the e8ects of probe
misalignment.

-80

Io
H (ke)

l5 20

FIG. 5. Transverse magnetoresistivity p» and Hall resistivity
p» for the 90-p plate thickness. The Hall resistivity p» shows the
size-effect oscillations on the monotonic effect. The transverse
magnetoresistance p» is approximately quadratic in H and is used
to relate psr to the Hall conductivity 0». See Eq. (14).

was then planed and electropolished to smaller thick-
ness. The final sample mas not spark machined but was
thinned by electropolishing only. This sequence pro-
duced surfaces which were quite plane-parallel except
in the two thinnest samples. %hen the sample became
quite thin, the current distribution about the edges
caused significant rounding, resulting in a lens-shaped
cross section.

The samples were examined mith a Unitron Depth-
scope equipped with x-y translation drums calibrated

00 20 40 60
/I (cm ')

80 IOO I 20

FIG. 7. Period of the size-effect oscillations in p» plotted against
reciprocal thickness for the various values of sample thickness.
The period Po is strictly proportional to 1/u for the thicker samples
with anomalous behavior for the very thin cases. The deviation
from strict proportionality to 1/u in the thin samples is due to
nonplanar surfaces.
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of slope Po. Figure 6 exhibits these data for the range of
samples studied. The data are well represented by
straight lines, and the slope is seen to increase with de-
creasing thickness. It should be noted that, with the
exception of the thinnest samples, all the lines intersect
the H =0 axis at e= 1. The anomalous behavior of the
thinnest samples will be discussed below.

Equation (6) implies that Ps versus I/u should be a
straight line through the origin whose slope is 2vrmtt pc/e.

I I

2 3
Period (kG)

FIG. 8. Intercept plotted against period P0 determined from the
data shown in Fig. 6. The slopes of the straight lines correspond to
three diferent values of the absolute phase b. Theory predicts
B=ar/2, but it is seen that the experimental data for the four
thickest cases indicate h=0 within O'Po. The deviations from the
line 8 =0 for the two points corresponding to the thinnest samples
is due to nonplanar geometry.
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RESULTS AND DjI:SCUSSION

Comyarison to Theory

The general behavior of p2~ as thickness is reduced is
indicated by the data for the thickest and thinnest sam-
ples shown in Figs. 4 and 5, respectively. The quadratic
nature of p~~ is to be noted in Fig. 5. An increase in

FIG. 10. Amplitude of the magnetomorphic oscillation in p2y
plotted as a function of temperature. The data points are obtained
in the vicinity of the third maxima (a =5) of the 0.16-mm sample.
A smooth curve is drawn through the points, and the extrapolated
value of A =6.92 &&10 ' 0-cm at T=O'K is used in the calculation
of the mean free path exhibited in Fig. 11.

A
a=.09 mm

-~6-V V

a =.I6 mm (a bra dad)6:Rrr,
-6-
8—

E 8 V
Es r RR ARABS.

~J V
0
=-'-~RRR/ RRRJ JVV

T=I.I K
This behavior is exhibited in Fig. 7. The data are seen
to be well represented by such a line, again with the two
thinnest samples anomalous. This line has slope 56.9 0
cm corresponding to ps ——1.45&&10 "cgs or ks ——psh '
=1.37 A '. These values are 2.8% smaller than those
given by free-electron theory (1.41 A ') for liquid-
helium temperature. The lens-shaped pocket of elec-
trons in the third zone is believed to be responsible for

Rj V
I

I 2
I I I I

3 4 5 6

, .~ VR U
RR nR n,

vV V
+0=2.01 mm

I I I I I I I I I I I I I I

7 8 9 10 II 12 13 14 15 I6 17 18 19 20
n=—+IH

P

a Grenier et al.

FIG. 9. A normalized plot of the oscillatory component p» of the
Hall resistivity as a function of magnetic held H. The abcissa for
each curve has been scaled using the values of Po corresponding to
the specihc thicknesses a. Since oscillation maxima occur for H an
integral multiple of Pp, each curve appears to have the same fre-
quency. Note that m=1 corresponds to a maximum for II=0.

3

2

period and amplitude is found as the thickness is
decreased.

Equations (6) and (14) show that the field values at
which p2»s a maximum should occur for

H = (n —8/2s. )Ps.
Thus a plot of H versus n should yield a straight line

OO
I. l

2 3
T ('K)

FrG. 11.Calculated values of electron mean free path as a func-
tion of temperature. The value of ) at T=O'K is obtained by
extrapolation of the data of Grenier ef al. (Ref. 18).The calculated
values exhibit similar temperature dependence to those of Grenier
et al. A scale for relaxation time v is constructed using the value
sr=1.58X10' cm/sec (Ref. 19).
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Fro. 12. Temperature dependence of the saturation field H; Lsee
Eq. (5)j for the lens-shaped pocket of electrons.

these oscillations. Using the principal axis radial values
found by Daniel and MacKinnan, "one finds the radius
of curvature of the lens apex is 1.36 A ', which is 3.5%
smaller than the radius of the Fermi sphere. "Thus the
experimentally determined radius of curvature agrees
with that expected from the lens geometry to within less
than 1.0%.

Equation (15) shows that a plot of the intercept on the
H ~ axis I against I'

p should be a straight line through
the origin whose slope determines the phase b. The lines
in Fig. 6 were obtained by a least-squares fit of the data.
The intercepts thus obtained are plotted against I'p in
Fig. 8. It is seen that the data points fall well on the 8=0
line, again with the exception of the two thinnest sam-
ples. Thus, theory predicting 5=ir/2 appears to be in
error on this point. However, consider Fig. 9.This figure
presents the p2» directly, plotted in a normalized form.
For 5 strictly equal to zero, the maxima must all fall
precisely at the integers, but examination of the figure
shows the oscillations are not strictly periodic for any
sample. The intercepts determined by least squares rep-
resent an average value for 8. However, it would be ex-
tremely fortuitous to obtain the data of Fig. 8 if 5 devi-
ates substantially from zero.

Figure 9 shows that the amplitude of p2» is reasonably
constant except in the two thinnest samples. This con-
stancy validates the H 4 dependency of 0-»~ predicted by
Eq. (6).

The E6ect of Abrasion and Imperfect Geometry

It was considered important to compare data taken
on a single sample in the electropolished and in an
abraded condition. Unfortunately, this was done on the
0.16-mm sample before its departure from parallel
geometry was discovered. The exposed electropolished
surface was abraded with No. 600 SiC abrasive paper
held on a tuft of cotton to avoid pressure strains. The
results are indicated. in Fig. 9. A slight but definite in-
crease in amplitude was observed for the abraded sample
relative to the electropoIished sample. Note that the

abraded 0.16-min sample shows a more rapid damping
than the unabraded sample. This increase in d,amping is
believed associated with the distorted surface layer
introduced by abrasion. The damping already present in
the 0.16-mm unabraded sample and that shown in the
0.09-mm sample is due to the departure from plane
geometry. Note that the damping becomes appreciable
in this sample at m=5, implying the variation in thick-
ness is on the order of 20%. The 0.16-mm label repre-
sents the mean thickness as determined by optical
methods. It is signi6cant that a thickness of a= 0.20 rnm

is the effective thickness of the crystal needed to put its
associated, data point on the straight line in Fig. 7; i.e.,
the mean thickness is 20% less than the effective thick-
ness. Similarly, the effective thickness of the thinnest
sample is 0.12 rrnn implying signilcant damping for
m=3. This effect is seen clearly in Fig. 9.The anomalous
behavior of the thinnest samples with respect to phase
is to be expected due to the superposition of sinusoids
of different periods occurring because of the nonplanar
condition of the crystal faces.

Temyerature Dejpendence

Equations (6) and (14) show that pst is proportional
to exp) —a/X(T) j.The amplitude of the third maximum
of the 0.16-rron sample was measured as a function of
temperature. This dependence on temperature is shown
in Fig. 10. Making use of an extrapolated value for X at
T= 0 K, Xp=5 mm, "and using the extrapolated value
of the amplitude at T=O'K indicated in Fig. 10, X(2')

may be determined. The use of an extrapolated Xp was
necessary due to lack of complete p»» data. The result
of this manipulation is shown in Fig. 11.The variation
of ) with temperature over the liquid-helium range is in
close agreement with that found by Qrenier et al."The
computed values of A. in the 3—O'K range are rather in-
sensitive to the choice Xp=5 nUn. Thus it is clear that
X=1 mm even at 4 K.

Using r =X/ti», and the value eq ——1.58 && 10' cm/sec, "
a scale for the relaxation time has been constructed in

Fig. 11.It is seen that r =10 ' sec at liquid-helium tem-
peratures. Noting H;= aHs/X, where H; is the saturation
field for the lens pocket of electrons, the temperature
dependence of this quantity may be estimated. The data
are shown in Fig. 12. The value H, = 78 6 was found by
Zebouni et al." by a least-squares curve fit of 0-»» at
1.4 K. Note that Fig. 12 ind. icates H;=30 6 at 1.4 K..
This suggests P p

——5 mm may be an overestimate of the
mean free path at O'K. Better agreement is obtained for
Xp=2 mm. The implied weak temperature dependence
of X suggests that impurity scattering is already domi-
nant at 2' or 3'K.

Syark-Cut Surfaces and the Grenier Oscillationa

Grenier et al. »9 have reported the observation of a set
of short-period oscillations superimposed on the long-
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period oscillations due to the lens. These oscillations are
ascribed to the "hole arms" in the second Brillouin zone.
The ratio of the period of the lens oscillations to the
Grenier oscillations was 4.3, and the Grenier oscilla-
tions were found to be about ~'~ the amplitude of the
lens oscillations (see Ref. 19, Fig. 16). Both sets were
insensitive to 10 rotations away from the hexagonal
direction.

It had been hoped to Gnd multiple periods in the
present data, especially in the thinner samples where the
amplitude would be enhanced. However, examination of
Fig. 9 shows absolutely no indication of the Grenier os-
cillations. The small irregularity seen in Fig. 9 on the
trailing edge of the first minimum in the 0.09-rnm sample
is the only distortion observed. This distortion is be-
lieved due to the superposition of sinusoids of approxi-
mately the same period due to the bad geometry.

It was noticed that Grenier et al. used a "slight acid
polish" to remove damage produced by the spark
machining. It is considered very likely that the present
procedure of electropolishing a minimum of 100p of sur-
face produced a more perfect surface. Therefore, a sec-
ond single crystal was cut from the original ingot,
properly oriented, and planed to approximately 1.0 mm
in thickness. No chemical treatment at all was given
this surface. Data were taken on this sample using a
variety of magnetic Geld sweep rates and amplifier ad-
justments. The lens oscillations were identical to those
obtained in the 1.01-mrn electropolished sample shown
in Fig. 9 except that the amplitude was twice as large in
the spark-planed sample. Again, there was no hint of the
Grenier oscillations, though the noise level was only 1%
of the amplitude of the lens oscillations. The data were
insensitive to rotations of the magnetic 6eld up to 15'
away from the hexagonal direction.

It is suggested that two competing mechanisms aRect
the amplitude of the oscillations. The observation of a
slight increase in amplitude in. the 0.16-mm sample after
abrasion with No. 600 SiC paper and the increase in
alnplitude by a factor of two between the spark-cut and.
electropolished cases are strong evidence that an ap-
preciable proportion of the electrons are und, ergoing
specular reQection at the crystal surfaces, even though
the de Broglie wavelength at the Fermi surface is only
about 4.5 A. The abrasion and, more significantly, spark
planing convert an appreciable fraction of these reQec-
tions from a specular to a diffuse nature. Thus a some-
what damaged. surface may be preferable to a perfect
surface for observing size-effect oscillations. However, if
the period of the oscillations is short, a large value of e is
obtained quickly as H is increased, and the damping
eRect of the distorted layer becomes significant at rela-

tively low Geld. Referring to Fig. 9, a tendency is noted
in all normal cases for the amplitude of p~~ to grow at low
6eld and then become constant. It is suggested that
Grenier et al. hit upon that happy situation in which the
enhancement due to increased disuse scattering out-
weighs the damping factor.

CONCLUSIONS

The preceding experimental data and analyses sup-
port the following conclusions concerning the size-
eRect oscillatory phenomena in cadmium:

(1) The observed oscillations are quasiperiodic in the
magnetic field, with period proportional to the recipro-
cal thickness. This gives a measure of the radius of
curvature of the Fermi surface in the hexagonal direc-
tion of k~=1.37 A '. This value is 2.9% less than the
free electron value, and 0.7% greater than the lens
value. It is conclusive that the lens-shaped pocket of
electrons is responsible for the oscillations.

(2) The observed constancy of p2q at high magnetic
field is confirmation of the II 4 damping of 0 ~2 predicted
by the Sondheimer-Grenier theory.

(3) The experimental value of the mean phase is
8=0 whereas theory predicts 8=m j2. Thus the phase
may not be trusted to give an indication of the sign of
the carriers responsible for the oscillations.

(4) The mean free path is in the millimeter range at
liquid-helium temperatures. Complete p~~ data plus a
study of the temperature dependence of the amplitude
of p~~ give a direct measurement of the mean free path
as a function of temperature.

(5) In order to observe a number of periods of the
order of e, it is necessary that otherwise perfect surfaces
be planed parallel to approximately (I/I) times the
thickness.

(6) Perfect surfaces, i.e., cleaved. or electropolished
surfaces, may not be the best choice for the observation
of Sondeimer oscillations. In cadmium the scattering is
only partially diRuse, and the amplitude may be en-
hanced by introducing a thin distorted layer. However,
this eRect may be oRset by the damping thereby
introduced.
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