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Rigid-Band Model of Alloys
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The electronic structure of normal alloys is considered. This structure is divided into two categories,
geometric and density of states. The geometric structure is the shape of constant-energy surfaces in re-
ciprocal space. Under three conditions, the geometric structure of the alloys is the same as that of the pure
solvent, but the density of states is different. These conditions are that: (a) the excess charge of the solute
localizes around it; (b) the mean free path of the electrons is many interatomic spacings; (c) the electron
states of interest in the pure solvent are in one band and are greatly separated in energy from the other
bands. Under these same conditions, even when the electronic speci6c heat of dilute alloys is found experi-
mentally to depend on only the electron per atom ratio and the change in volume produced by alloying
as predicted by the rigid-band model, the value of the specific heat in the alloy still differs from the value
given by the rigid-band model because the density of states of the alloy is different from that of the pure
solvent. As a sideline of this investigation, it is pointed out that an expansion of the electronic structure of
the alloy in terms of the concentration of the solute is not valid for concentrated alloys and only has validity
in the dilute limit.

I. INTRODUCTIOÃ
' 'X a pure metal, because of the periodicity of the
~ ~ lattice, the features of its electronic structure are
well known. The single-particle states can be described
in terms of Bloch states, the energy structure is charac-
terized by Brillouin zone boundaries, energy gaps,
energy bands, etc. In a disordered alloy, because of the
destruction of the periodicity, none of these features
are rigorously valid. However, it is known from both
experimental and theoretical evidence' that these
features of a perfectly periodic solid have approximate
validity. At present, how approximate these ideas are
has not been put on a completely quantitative basis
and one has no good rule to decide how accurate it is
to carry over ideas from pure metals to alloys and other
disordered structures. The tendency has been to carry
these ideas over without change till one runs into

difhculty, and then to stop and scratch one's head. The
most striking example of this is the use of the rigid-
band model of alloys. ' In the most elementary form of
this model, it is assumed that the constant energy
surfaces and density-of-states curve of the solvent
metal remain unchanged on alloying, the only effect
of the addition of the solute metal being, if its valency is
greater than that of the solvent, to add electrons to the
band, thus swelling the Fermi surface and filling the
density-of-states curve to a higher energy. As an
example, in this model, the electronic structure for e
brass consisting of say 10%% zinc dissolved in copper, is
obtained from that of pure copper with the 6rst
Brillouin zone 6lled to 1.1 electrons per atom instead
of 1.The density of states of the alloy, proportional to
its electronic speci6c heat, would be given by the density

'In reality even the purest obtainable materials are not per-
fectly periodic structures because of dislocations, point imperfec-
tions, impurities, etc. Yet, of course, their properties can be well
described by the theory of perfectly periodic structures.' N. F. Mott and H. Jones, The Theory of the Properties of
Metals artd Alloys (Dover Publications, Inc. , New York, 1958),
pp. 170—174; H. Jones, Proc. Roy. Soc. (London) A147, 400
(1934); Phil. Mag. 41, 633 (1950).

of states of pure copper at a Fermi energy corresponding
to 1.1 electrons per atom. The shape of the Fermi
surface of the alloy would be exactly the same as that
of pure copper at a Fermi energy corresponding to 1.1
electrons per atom. Recent modifications of the rigid-
band modeP have suggested that the electronic struc-
ture is given instead by a periodic potential equal to the
average of that of the two constituents weighted by
their respective concentrations, all other features of
the rigid-band model remaining the same.

In this paper the discussion of the rigid-band model
is mainly directed toward the case of "normal" alloys
where none of the constituents are transition metals.
The applicability of the rigid-band. model for transition
metal alloys has been discussed in several papers4 and
there appears to be a qualitative understanding of
when it is valid. However, such is not the case for the
normal alloys. On one hand it seems to be fairly
successful in explaining the Hume —Rothery rules, ' and
the changes in axial ratios in alloys of hexagonal crystal
structure. ' On the other hand, it is unsuccessful in
explaining the value of the speci6c heats of normal
alloys of the noble metals where the Hume —Rothery
rules work. ' ' In addition, the rigid-band model
explanations of the Hume-Rothery rules" and the
changes in axial ratios' have been questioned.

' M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958).
4 J. L. Beeby, Phys. Rev. 135, A130 (1964); E. A. Stern,

Physics 1, 255 (1965).
~T. B. Massalski and H. W. King, Progr. Mat. Sci. 10, 1

(1961).' L. C. Clune and B.A. Green, Jr., Phys. Rev. 144, 525 (1966).
7 T. A. Will and B.A. Green, Jr., Phys. Rev. 150, 519 (1966).
e B. A. Green, Jr., Phys. Rev. 144, 528 (1966).' B.W. Veal and J. A. Rayne, Phys. Rev. 130, 2156 (1963).I J. M. Ziman, Advan. Phys. 10, 1 (1961).
»The explanation given in Ref. 2 assumes that the Fermi

surface of the noble metals is free electronlike and the phase
transformation occurs soon after contact of the Fermi surface
with the zone boundaries. This argument, if unmodi6ed, is no
longer valid since we now know that in the pure noble metals,
contact with the zone boundaries has already occurred."J.W, McClure, Phys. Rev. 98, 449 (1955).
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The specilc heats of normal alloys of the noble
metals have received much attention. ~9 For the alloys
such as the O.-phase alloys of silver with Cd and Sn,
where the volume change versus electron per atom
ratio" (R) is approximately the same, the initial
percentage change in electronic speci6c heat is a
function only of R, in spite of the greatly varying
valency of the solutes. This agrees with the prediction
of the rigid-band model. But the puzzling result which
disagrees with the rigid-band model is that the elec-
tronic specific heat increases with R. It is generally
agreed that because of the contact of the Fermi surface
with the Brillouin zone boundaries in the noble metals,
the density of states, and thus the electronic specific
heat, should decrease with increasing R. Ziman' has
made a detailed calculation for a simple model of the
noble metals and shows that the peak in the density
of states occurs at the energy whose surface in reciprocal
space just touches the zone boundary. Below this energy
the density of states increases with R, and above the
energy, as per the situation for the noble metals, it
decreases with R.

In this pa,per it is shown that under the right condi-
tions —namely: (a) the excess charge of the solute
localized around it; (b) the mean free path of the
electrons is many interatomic spacings; (c) the electron
states of the pure metal in the vicinity of the Fermi
energy are in one band and are greatly separated in
energy from other bands —all of the features of the
rigid-band model are valid except that the deussty of
states iu the a/toy divers frorrl, that of the pure soleerlt.

The noble metals satisfy the above conditions and thus
one can understand why the rigid, -band model is so
successful in explaining all of the properties of their
normal alloys except their specific heats and other
properties that depend on the density of states.

It is convenient to divide the predictions of the rigid-
band model into two categories, geometric and density
of states. The geometric predictions are those that use
only the geometric properties of the constant energy
surfaces such as the Hume —Rothery rules. The density-
of-states predictions are related to those properties
which depend on the density of states at the Fermi
energy such as the electronic speci6c heat. The next
section discusses the geometric aspects of the rigid-band.
model while Sec. III discusses the density of states of
alloys when there is no volume change on alloying.
The volume change on alloying case is discussed in
Sec. IV. In Sec. V the experimental results on the
normal alloys with the noble metals are discussed in
light of the results of this paper. Section VI consists of
a summary and discussion.

GEOMETMC STRUCTURE

In a pure metal the eigenstates are Bloch wave
functions @& with energies e&. When the periodicity of

'3 In this paper R is calculated by assuming that each constituent
contributes to the conduction band all of its valence electrons.

the pure metal is destroyed by alloying, these Bloch
states are no longer eigenstates. This manifests itself

by the energy of the Bloch states becoming complex,

e~ ~ &s+sl's.

We can visualize the alloying process occurring by a
number of atoms of the solvent picked at random
having their potentials changed to that of the solute
in a continuous fashion. Then the needed number of
electrons can be added or subtracted to maintain
charge neutrality. In this process the Bloch states P&

change continuously to f& and e& -+ E&+il'&. The
imaginary part FI, shows that the Bloch state in the
alloy fs is no longer an eigenstate but scatters into
other states with a lifetime of the order of (21's) '. If
the solute has a valency different from that of the
solvent, perturbation theory is not valid" and the
change from es ~ 8&+iI'& must be calculated by
nonperturbative methods such as the Green's function
method. 's In any case, if

~

I'z
~
&&6, where 6 is the width

of the band, then the Bloch states are approximately
eigenstates and they can be used to calculate the
properties of the alloys. For instance, the density of
states of the alloy calculated by assuming I'1,=0 is in
error of order

~

I'I,/6
~

' and. thus is negligible if
~

I's ~((A.
For dilute alloys, I'I, is proportional to the fractional
amount of solute m, and the density of states is then in
error of order of n'. Thus for very dilute alloys the error
introduced by setting I'I, ——0 is negligible. The criterion

~

I's/6 ~((1 is equivalent to a long mean free path of the
electrons at the Fermi energy of metals.

In what follows, we assume that
~

I's/& ~&&1 and set
FI,=0. Consider the change in the energy of a Bloch
state with alloying,

(2)

Let us assume that ~BI, depends only on eI, and not on k:

Then for the aOoy a plot of E& versus k will have the
same shape of constant energy surfaces as for the plot
of eI, versus k for the pure solvent. A given energy
surface of the alloy will correspond to a different energy
value from that of the same shaped surface of the pure
solvent, but the shapes remain exactly the same. As

the R of the alloy is varied, the k states in the alloy
become 6lled up exactly in the same manner as those
in the pure solvent. The Fermi surface would touch
the zone boundaries at the same R in both cases and
the peak in the density of states would occur at the
same R in both cases. Since, in general, AEI, is not
a constant, the ealle of the density of states in the two
cases would not be the same, but its sharp structure,
such as the maximum produced when the Fermi surface
just touches the zone boundaries, would be the same.

"E. A. Stern, Phys. Rev. 144, 545 (1966).
"A. Seeger, Metallic Solid Solutions, edited by J. I'riedel and

A. Guinier (W. A. Benjamin Inc. , 1963), paper VII.
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Thus in such an alloy the rigid. -band. arguments of
Jones' can be applied to explain the Hume —Rothery
rules and the variation of the axial ratio in hexagonal
alloys, both of which depend on only the geometric
structure.

The question naturally arises under what conditions
is the assumption in Eq. (3) valid. According to calcu-
lations using the Green's function method, " Eq. (3)
appears to be valid when the perturbation is fairly
localized about the solute site. Such is expected to be
the usual case of the shielding by the conduction
electrons of the solvent.

In the above discussion it has been implicitly as-
sumed that the perturbation of the solute does not mix
in states from other bands so that the number of
states in the band below a constant-shaped energy
surface remains the same. This will be the case if the
states under consideration are well separated in energy
from other bands. This is true even if bound states are
formed below the band, . As discussed by Friedel, "
these bound states come from states at the bottom of the
band and do not change the total number of states
below a constant energy surface. Bound states cannot
be approximated by P&, i.e., I'& cannot be neglected,
and they cannot be represented as a point in reciprocal
space. If the bound states come from states at the
bottom of the band, a possible case when the valency
of the solute is greater than that of the solute, they
will be occupied and the alloy states in k space are
filled to the same energy surface since the number of
states enclosed remains the same, bound state or not.
If bound states are formed at the top of the band, a
possibility if the valency of the solute is less than that
of the solvent, they won't enter in as long as the Fermi
energy is below their energy.

It is interesting to note that the alloy state P& does
not have the same wave number k as the corresponding
state Pl, has, i.e., as the potential is varied from the

pure solvent to that of the alloy the wave number of

p& changes as it turns into PI, . This can be seen by
remembering that the perturbations of the solute are
localized. Thus there are regions where the potential
is exactly the same as in the pure solvent, and in those
regions the E~ versus k relations is the same as in the
pure solvent. Since EI,/eI„ the wave number of PA,. in

these regions is no longer k but some different value k'

where cJ, ——E~. However, it is important to note that
the plot of E& versus k employed in the previous
arguments is a plot of E~ versus the k that the corre-
sponding state has in the pure solvent, and not versus k'.

III. DENSITY OF STATES

If AEI, is a constant, the density of states of the
alloy would have the same shape as that of the pure
solvent but displaced in energy by DEI, and the rigid-
band model would apply. " We will show that when

"J.Friedel, Advsn. Phys. 3, 446 (1954).

where pp(E) is the density of states of the pure solvent
and the derivative is taken at constant n. Our problem
for determining p(E) reduces to a determination of
BHEq(eq)/Beq, since we assume that pp(E) is known.

We can determine a great deal about AE& by use of
very general arguments. First consider the case where
addition of the solute does not change the lattice
constant of the metal. Then the Fermi energy of a very
dilute alloy is the same as that of the pure solvent
even when the valence of the solute divers from that of
the solvent. " This is because the perturbation of the
solute is shielded within a short distance by a build-up
of charge around it, and then outside of this distance
the potential and density of electrons are the same as
in the pure solvent. In fact, Friedel has shown that the
Fermi energy change is proportional to exp( —E/n')
for small n where E is some constant. "Thus for small o, ,
the Fermi energy is constant. The exponential varia-
tion of the Fermi energy is related to the exponential
shielding of the perturbations of the solute. The Fermi
energy changes appreciably when there is appreciable
overlap of the shielding electron clouds around neighbor-
ing impurities. This is expected only for concentrated
alloys.

When a certain fractional concentration n of solute
is added to a solvent of valency one, the R is I+nZ
where Z is the excess valency of solute over that of the
solvent. The first Brillouin zone, as per the arguments
of Sec. II, becomes filled to the constant energy surface
e~(nZ) of the solvent where

eI, (aZ)

pp(E)dE (5)

and E is the number of atoms in the solid. However,
in the alloy this constant energy surface is now the
Fermi surface with energy EI,=Er +H(n) where H(n)
is the term proportional to exp( —E/n&). Thus DEI, has
the value from (2) of

AEI (ea,nZ) =Ep+H (n) eq (nZ), (6)—
where eq(nZ) is given by (5), and E& is the Fermi
energy of both the solvent and the alloy. In (6) we have
written DE& as a function of el, and nZ, yet in general
we expect that AE~ would be a function of the four

the valency of the solute differs from that of the solvent,
AE& is not, in general, a constant and thus the density
of states of the alloy will be different from that of the
pure solvent, contrary to the rigid-band model. Before
doing that we will present the expression of the density
of states of the alloy in terms of AEI, .

When the concentration of the solute n is small,
DEI, is also small and we find for the density of states of
the alloy p(E)

Bpp (ek) ~Ek (ek)
p(E) =po(E)—

Beg
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variables es, n, U(r), and M, where U(r) is the pertur-
bation introduced by the solute and M is the mass of
the solute. The mass could enter via the electron-
phonon interaction. We show'" that in reality AEI, is a
function of only the two variable t.l, and nZ. For very
dilute alloys AEI, can be expanded in a power series in o.,

AEs(es, n, U,M) =nF (es, U,M)+n'G(eg, U,M). (7)

For the values of e&(«) given by (5), hE& has the
value given by (6). When n is small enough, H(n) can
be neglected and we obtain

fixed. The only way the equality in (7') can hold is if
F and G are not functions of such variations of U(r)
and M. Finally, since the left side of (7') is only a
function of aZ, the right side also must be functions
of only «.Thus we can write (7') as

Es —eI, («)=«f/es(«)7+ («)'gt ep(«) j, (8)

where f(ek) =F(eo,,U)/Z, and. g(es) = G(es, U)/Z' lf w. e
now permit eI, and Q,Z to be independent variables by
not requiring (5) to hold and using the relations in (8),
Eq. (7) can be written

Er es(«—) =nF jeI, (nZ), U,Mj
+n'Gt e(s«), U,M) (7')

DEs (es,nZ) =«f(es)+ («)'g (es), (9)

The left-hand side of (7') is only a function of «while
the right-hand side appears to be a function of o,,
«, U(r), and M. It is possible to vary both M and
U(r) an infinite number of ways, keeping Z and n

" Pote added iN proof: It was recently pointed out to the author
by Hugh Montgomery and Ben Green, Jr. , that the argument in
Sec. III leading to the conclusion that the electron specific heat
of dilute alloys is dependent on only R, the electron-per-atom
ratio, is incorrect. This can be seen from Eq. (7') by expanding

F( o, oU, M)about os=Ex to first order, obtaining

Er = oo(uZ) =uF (Er, U M)+uF'(Er, U M) (oI (uZ) Er)—
+u'G(Eo) U,M), (7")

where
F' = SF/Bc&.

The left side of (7") is correctly expanded to order u'. From
Eq. (5) we find to first order in u,

oo(uZ) Erp =N~Z/po (Er—). (5'

Substituting (5') into (7") we find to second order in u,

Es —oo(uZ) =uZ/(Eo, U, M)

+ (uZ)' f'(Es, U,M) +g (Es, U,M)
po(Ex)

where /=F/Z and g=G/Z' as in Eq. (g). The fact that the left
side of Eq. (7") is a function of only uZ assures that the coeificients
of the uZ and (uZ)' terms are independent of U and M. This
means that

f(Ex, U, M) =f(Ey)
and

/'(EF, UM)N/po(Erp)+g(Ex, UM) =P(Eo), (29)

where both f(Ex) and P(Ex) are independent of U and M in
agreement with their explicit forms given in Eqs. (13) and (15).
The second equation in {29)does not in general imply that f' and
g are separately independent of U and M as incorrectly stated in
the paper. The most general dependence implied by {29) is

/, (E UM) po(Eo)P(Ez) po(Er) (E UM) (3())

and thus f' can also be a function of U and M. This means from
Eq. (11) that d in'/dE can also depend on U and M. How im-
portant is the dependence on U and M cannot be determined
from the reasoning used in this paper. A more detailed model-
dependent calculation is required. However, the important result is
still true that even if experimentally it is found that d in'/dE is
dependent on only R, its value is still not expected to agree with
the rigid-band model. In other words, a dependence of the electron
specific heat on only R is not evidence that the rigid-band model
is valid. To summarize, the error made in the paper can be cor-
rected by adding to every f'{EJ) in the paper another term
h(E~, U,M) which depends on the detailed shape of the potential
and the mass of the impurity. d lnp/dR can have some explicit
dependence on the mass and the detailed shape of the potential
of the impurity. All other statements in the paper remain
unaGected.

where both f and g are only functions of e&, and AE& is
only a function of eI, and nZ. In surrunary, using the
result that in dilute alloys the Fermi energy remains
Axed, we have shown'" that AE~ is only a function of
&I, and o,Z, instead of the possible four variables of
es, a, U(r) and M. In other words, the effect of U(r)
enters only through Z and in the combination nZ while
the mass and thus all electron-phonon effects do not
contribute at all.'"This is the case for constant volume.
The effects of U(r) and M can enter indirectly by
changing the volume as discussed in the next section.

By combining (9) with (4) we see that for dilute
alloys

p(E~) =pp(E~) «bp'(E—~)f(E~)
+p p(E~)f'(Es') 3, (1o)

where

po'(E) = ~ps(E)/~E; f'(E) = ~f(E)/~E

and the derivative is taken at constant o.. Since the
coeKcient of the linear term in temperature of the
electronic specific heat 7 is proportional to p(Er), we
can, from (10), write for dilute alloys,

ps'(E~)
f(Er ) f'(Es), —

pp(Ez)

a result independent of the type of solute in agreement
with the rigid-band model, but with a value different
from that given by the rigid-band model. Using (5)
and. expanding pp(E) to 6rst order in E Er, we find—
that

X«=pp(Es) (es(«) —Ep)
+s pp'(E~) ("(«)—»)'. (12)

We can combine (12) with (8) and solve for f obtaining

f(E~)= L&lpp(E~)3—
and (11) becomes

d ln7 Epp'(E p) f'(E~)—
dR pp'(E p)
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and from (14)

d 1ny Nps'(Ep) pp(Ep)g(Ep)+
dR 2pp'(Ep) N

(16)

If the properties of po for the solvent are known, then
a measurement of d in'/dR can determine, using (15)
and (16), g(Ep) and f'(Ep). This in turn determines
the variation of AE&(e&,nZ) in the vicinity of Ep to
Grst order in ~~—E~ and to second ord.er in o.Z. This
can be seen by expanding f(es) to first order in eq Ep-
in (9) and using (13) to obtain

o.ZS
BEs(ss,nZ) =-

ps(Ep)

+«f (Ep)(.s Ep)+(«-)'g(Ep). (9')

The rigid-band model predicts only the 6rst term in
(14). For the noble metals, "ps'(Ep) (0 and thus the
rigid-band model predicts a negative value for d lny/dR
in disagreement with experiments. The expression in
(14) shows that there is an additional contribution
which is proportional to BAEs/8ej„ the derivative being
taken at constant 0., and physically represents the
change in the shape of the density-of-state curve
produced by alloying.

We can obtain a relation between f'(Ep) and g(Ep)
by using (8) and (12), and expanding both f and g
about Ep in a power series of (es(«) —Ep), retaining
terms to second order in (e~(«) —Ep). In this manner
we And that

Nps'(Ep) po(Ep)
f'(Ep) =, — g(Ep)

2pp'(E p) N

o.=0. From (6) we see that 2E also has an essential
singularity at m=0. It, in addition, has an analytic
part and, in the vicinity of a=0 the analytic part will
dominate H (n). This can be verified by differentiating
with respect to n both sides of (6) as many times as
desired and setting n=0. Such a procedure gives
relationships between only the analytic parts of both
sides of (6), the essential singularity contribution being
always zero.

IV. VOLUME CHA5'GES

Khen alloying changes the volume in addition to
the R, the situation is more complicated. The pertur-
bation effect of the solute is no longer localized. Its
excess charge is localized by screening but the strain
perturbation that it introduces locally has a long-range
effect which contributes to the change in volume. As
discussed. by Eshelby, " about one third. of the total
volume change produced by a solute in a metal comes
from a uniform change in volume of the solvent matrix
and the rest of the volume change occurs in the im-
mediate vicinity of the solute atom. In addition to the
uniform volume change, the solvent matrix is distorted.
by a long-ranged, shearing strain. Kith a random
distribution of solute atoms, the shearing strain cancels
out on the average and a cubic lattice remains cubic.
However, microscopically, even far away from any
solute atoms, the solvent matrix is distorted from a cubic
lattice. This distortion and change in volume invali-
dates the arguments given previously in this section
since the Fermi energy in the surrounding matrix will
be different from that of the pure solvent and the
Friedel sum rule is no longer valid, . Call this new Fermi
energy Ep'. For e&(«) given by (5) one now has

The condition (6) which states that the Fermi energy
remains 6xed for dilute alloys is equivalent to Friedel's
sum rule over phase shifts. " This condition of self-
consistency, as we have shown, "' greatly restricts the
possible dependence of hE on the type of solute. In
fact it implies for 6xed volume that AE depends only
on the Z of the solute and not on the details of its
potential or the value of its mass. Thus the effective
potential seen by such electrons, which consists of the
potential of the solute plus the added potential of the
screening electrons, produces the same Friedel sum
of phase shifts for a given Z and is not dependent on
the detailed variation of the potential of the solut- a
rather strong restriction. The screening of the potential
clearly has an important contribution to the total
effective potential and. both quantitatively and. quali-
tatively wrong results occur if this screening contri-
bution is neglected.

In the above discussion the H(o.) term in Eq. (6)
has been neglected. This can be justi6ed in the limit
that o.~ 0 because then H(n) and all of its derivations
go to zero, i.e., H(o.) has an essential singularity at

AEs Ep' es («) . —— —(17)

Imagine that one has a dilute alloy with a solute which
produces a certain volume change per solute atom t".
Further imagine that the U(r) and M of the solute
are varied but maintaining the Z and the volume
change per atom C the same. Then outside of the region
where the excess Z is shielded, the electron density and.

the electron potential are exactly the same as before
because the strain remains exactly the same. " Thus
using similar arguments as before"' the Fermi energy
remains at Ep and, (17) indicates the AEs is still not
an explicit function of U (r) and M. One concludes"' that
DEI, is a function of only e&, 0., Z, and C. Volume changes
can also be produced by changing the external pressure
in addition to alloying. Volume changes by alloying
affect the Fermi energy differently in two ways from
that of pressure. Firstly, of the total volume change
produced by alloying, only about one third of it is
effective in changing the volume of the solvent matrix,

"J.D. Kshelby, Phys. R.ev. 25, 255 (1954)."H. Jones, Phys. Rev. 134, A958 (1964).
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It is important to reiterate that the solvent matrix
volume change is not the same as obtained from
macroscopic measurements or from x-ray di6raction.
The volume change in the solvent matrix ~V' is given
for an elasticaHy isotropic solid by'

(19)

where p=o(1—2o)/(1 —o), d, v is the total volume
change, and 0. is Poisson's ratio.

If C is very small, its effects on the solvent matrix
can be treated by 6rst-ord. er perturbation which is
equivalent to the virtual crystal model. " In the case
considered here, the virtual crystal model, which

employs a periodic potential equal to the average
potential, is simply the pure solvent expanded by AV'.
The change in the density of states of the dilute alloy
produced by the expansion ~U to first order in 0, is then
simply given by the change in properties of the pure
solvent after an expansion ~V'. The total change in
p(E) with alloying becomes

p(Es', V) po(Er, Vo)—
Bpo, +po (Erd)

AV'+nZ —po(Ep) f'(Ep), (20)
~so — po(Ez)

where Vp and V are the initial and final volumes of
the alloy, respectively, and the last term of (20)
proportional to nZ is the same as in (10).

From the d,e6nition of C we can write

and, then from (19)
&V'=PnC.

We next calculate d 1ny/dR from (20) obtaining

where

d in' PC= bo +&o,
dR VpZ

8 lnpp Epo'(EF)
de= — Bad Eo= —J'(Op)) .

(g lnUp po'(E~)

Using (21) we can write

(2~)

(22)

(23)

(24)

while all of the volume change by pressure is trans-
mitted to the matrix, and secondly, alloying introduces
long-ranged, shearing strains which are not present
und. er pressure changes.

The above discussion can be summarized'" by saying
that

AEI, ——EEg, (oo,n, Z,C) .

d lny d lnU
=A (C) — +B(C),

dE. dR
(26)

where A (0) =Pro and B(0)=Co. Prom (24) we see that
C is dependent on both Z and d lnU/dR. Thus a plot
of d lny/dR versus d lnV/dR will not give a single-
valued. curve for large C. Only for C around. zero will
the plot be single-valued.

For comparison we give the rigid-band model
expression for d 1ny/dR. The rigid-band model would
replace (20) byo

and then

po'(Es)
d, V+HZ

po(Ep)

BPp
~Pr.b.=

BUp
(27)

r.b.

d lnV Epo'(E p)
=&o—+

po'(Es)
(28)

The rigid-band model predicts a single-valued and.
linear plot of d 1ny/dR versus d lnU/dR

V. COMPAMSON WITH EXPERIMENTS

The success of the geometric aspects of the rigid-band
model in explaining changes in axial ratio in hexagonal
alloys and the Hume —Rothery rules for phase changes
is well known. Such a procedure is justi6ed in Sec. II.
Though the density of states differs from that of the
pure solvent because AEI, is a function of e~, the Fermi
surface of the alloy touches the zone boundaries at
the same R as expected by the rigid-band model. This
produces a peak in the density of states of the alloy
at the same R as the rigid-band model. The explanation
of the Hume —Rothery rules requires only the maximum
in the d.ensity of states and not that the density of
states be the same as that of the pure solvent. The
explanation of the change in axial ratio of hexagonal
alloys requires overlap of electrons across Brillouin
zone energy gaps. The use of such concepts for alloys
has been justified in Sec. II. The successes of the
geometric aspects of the rigid-band model are most
notable for the noble metal-based alloys, in agreement
with the three criterion stated in this paper. The noble

and thus (23) becomes

d 1ny d lnV
=p~o +&o,

dR dR

a linear relationship between d lny/dR and d lnV/dR.
%hen C is not small, its effects on the solvent matrix

cannot be treated by first-order perturbation theory
even when n is very small. Because of the long-ranged
properties of the elastic strain, when the 6rst-order
effects of C are of order O.C, the second-order e6ects
are of order o.C'. In this case the properties of the matrix
are a function of C. This means that both bp and. Ep in
(25) became functions of C and one expects in general
that
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Fro. 1. The points are a plot of the experimental electronic
specific-heat data of silver alloys. Curves A and B are two of
many possible plots which satisfy the theoretically predicted
slope at d lnV/dR=O. Curve A is double-valued consistent with
the theory which predicts that d in'/dR depends on both Z and
d ln V/dE. The values of Z for Sn and Cd are 3 and 1, respectively.

TABLE I. Some noble metal alloys and their lattice dilatation
and electronic speci6c-heat changes in the dilute limit. Errors
shown in the specific-heat measurements are 95/o confidence
limits. Also shown for the pure noble metals are the values of
Poisson's ratio a, the quantity AS calculated by (19) and pSO, which
is the slope of d in'/dR versus d ln V/dR at d ln V/dR =0, assuming
that bp has the free-electron value of -', .

Metal

Ag
Ag-Cd
Ag-Cd
Ag —Sn
Ag—Mg
Ag-Ge
Ag-Ga
Ag-Zn
Au
Au —Sn
Au —Ge
Au-Ga
Au —Al
Au —Zn
Cu
Cu—Sn
Cu-Zn
Cu—Al
Cu—Si
Cu-Be

d lnV

dR

~ ~ ~

0.17~
0.17
0.11
0.081
0.007—0.03—0.14
~ ~ ~

0.10
0.024—0.02—0.05—0.15
0 ~ ~

0.28
0.19
0.10
0.02—0.28

d lny

~ ~ ~

0.29a0.07~
0.22+0.08'
0.22+0.06"

~ ~ ~

0 65+0 17c
~ ~ ~

0.82+0.14'

~ ~ ~

0.24+0.06'
0.33a0.10f

PBp

0.37h 0.28 0.19

0.42 0.18 0.12

0.36 0.29 0.19

a From B. A. Green, Jr., and H. V. Culbert, Phys. Rev. 137, A1168,
(1965) using data of H. Montgomery and G. P. Pells, in Proceedings of the
Conference on the Electronic Structure of Alloys, University of Shef6eld,
1963 (unpublished).

~ B.A. Green, Jr. , and H. V. Culbert, Phys. Rev. 137, A1168 (1965).
o Reference 8.
& Reference 7.
o Reference 6.
& Reference 9 as analyzed in Ref. 8.
g W. B.Pearson, Handbook of Lattice Spacings and Structure of Metals and

Alloys (Pergamon Press, Inc. , New York, 1958).
h American Institute of Physics Handbook (McGraw-Hill Book Company,

Inc. , New York, 1957), pp. 2-62 to 2-66.

metals best satisfy these conditions, in particular, the
one requiring a large energy separation between the
Fermi energy and states in other bands and. the long-
mean free path of the electrons.

The outstanding failing of the rigid. -band mod. el is in
explaining the electronic specific heat of dilute alloys
of the noble metals. The experiments' show that the

electronic specific heat has an initial increase with an
increase of E. The rigid-band model predicts, instead, a
decrease because the Fermi surfaces of the noble metals
are in contact with the Brillouin zone boundaries. Even
a proposed modification of the rigid-band model, '
wherein the shape of the constant energy surfaces
changes with alloying, cannot explain the experi-
ments. " Another striking feature of the experimental
results shown in Fig. 1 is that if the rigid band. is
assumed to explain the variation of the specific heat
with volume changes in alloying, then 8s in (28) is
approximately equal to —1. For a free-electron gas'
'50 3 As pointed out by Green, ' the sign of 50 is the
same sign as expected for the electronic contribution
to the thermal expansion. Copper has been measured
to have a positive electronic thermal expansion and
since the silver Fermi surface is more free electronlike
than that of copper, one would also expect that Ag
would have a positive value for bo. Gold's Fermi surface
is quite similar to that of copper and one would expect
that Au also would have a positive value of 50. The
rigid-band model should then predict a positive slope
when ding/dR is plotted against dlnV/dE for the
noble metals, yet the experiments indicate a negative
slope.

These failings of the rigid-band mod, el are explained
by the theory proposed here. Alloying modifies the
shape of the density-of-states curve and thus one expects
a different variation of the electronic specific heat from
that predicted by the rigid-band model. The increase of
the electronic specific heat with alloying is a direct
consequence of the presence of the j'(EF) term in
(14). The experiments indicate that this term is
negative producing a positive increase in y which
overcomes the negative increase contributed by the
first term on the right side of (14), which is the rigid-
band term. The variation of y with d in V/dR as plotted
in Fig. 1 is more complicated. The rigid-band model
predicts a linear variation but the theory presented
here predicts a more complicated variation. Only for
small values of C=Z(d 1nV/dE) is a linear variation
expected with slope Pbs. Using the free-electron value
of be=-,sand the value of P listed in Table I we expect
a positive slope near d In V/dR= 0 of magnitude
approximately 0.2. For larger values of C we no longer
expect a linear variation. It is clear from Fig. 1 that
the experimental points do not uniquely d.etermine the
dependence of d in'/dR. For instance one could plot
many curves through the data which satisfy the theory
presented. here. Two such possible curves are plotted
in Fig. 1 with the slope near d lnV/dR equal to 0.19 as
predicted in this paper. Curve A is double-valued as
permitted theoretically while curve 8 is single-valued
which may also be the case if the curve is linear as
shown. It is clear that the experiments are not definitive
enough to verify the details of the theory presented
here.
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VI. SUMMARY AND DISCUSSION

When a pure solvent is alloyed with a given solute,
Bloch states are no longer rigorously valid eigenstates.
However, if the mean free path of the electrons is
many interatomic spacings, which will always occur
for dilute alloys and may occur for more concentrated.
ones, Bloch states are good approximate eigenstates.
The energy of these states will change with alloying
and if this change is a constant independent of the
state, the rigid-band model applies. There is no change
in the constant energy surfaces in k space and the
shape of the density of states remains the same. Such

may be the case if first-order perturbation theory
applies. "However, if the solute has a different valency
from the solvent, first-ord. er perturbation theory is no
longer sufficient and the rigid-band model cannot be
entirely correct." Second-order perturbation theory"
has been applied to calculate the change in the density
of states of alloys but such an analysis gives accurate
results only when the constituents have the same
valency. " This has been successfully applied to the
Ag—Au alloy system. '4

In the case where the valency of the solute differs
from that of the solvent all of the features of the rigid, -

band model remain except that the shape of the density-
of-states curve changes in the alloy. Under usual
circumstances the change in the energy levels of Bloch
states, AE&, is a function only of the original energy
and not its position in k space. Thus, constant energy
surfaces of the pure solvent remain so in the alloy when
plotted in the k space of the pure solvent. Of course,
the energy value corresponding to a given surface
changes with alloying. If the lifetime of the Bloch
states is long, the density of states of the alloy is given
to good approximation by the same integral over k
space as for the pure solvent and, characteristic struc-
ture in both it and the pure solvent occur at the same R.
An example of such structure is the maximum in the
density of states when the Fermi surface just touches
the zone boundary.

The shape of the density-of-states curve in the alloy
changes with alloying because the spacing between
energy levels changes. It is shown, '" however, that for
a given solvent, the density of states near the Fermi
energy and thus the electronic specific heat of dilute
alloys is a function of only R, the volume change per
atom, and, n the fractional atomic concentration of the
solute. This is shown by use of an argument which is a
generalization of the one that leads to the Fried. el sum
rule. Such an argument includes all many-body effects
such as electron-electron and electron-phonon inter-
action. These many-body effects and differences in the
solute potentials for a given Z can manifest themselves
only by causing a strain in the solvent matrix. ' In order
to produce different effects they must prod. uce different

strains. The only possible way for this argument to
break down is if AE~ is not simply a function of e~ but
also depends on k, i.e., the constant energy surfaces
change shape with alloying. Such a situation appears
highly unlikely based on model calculations. "

In studying the electronic structure of alloys, it is
common to expand in powers of the concentration and
to assume that such an expansion converges. From the
fact that with no matrix strain the Fermi energy
changes with concentration, as e "I ', and the relation-
ship of this with AE~ as discussed in Sec. III, one
concludes that DEI, also has a term of the form e "~ '.
Such a term cannot be described by a power series
expansion about n=0, and. when it becomes important,
such a power series is no longer valid. . This occurs when
there is appreciable overlap between the screening
clouds of electrons around the iInpurities, i.e., for
concentrated alloys. We therefore conclude that
expanding the electronic structure in powers of the
concentration has validity only for dilute alloys and.
breaks down for concentrated alloys.

The analysis of the experiments in Sec. V makes it
abundantly clear that there are insuKcient experiments
to prove or disprove the theory presented here. The
most definitive test would be to determine the slope of
a plot of d luau/dR versus d lnV/dR at d lnV/dR= 0.
Theoretical estimates of this slope for the noble metals
are listed in Table I. This could. be done for Ag alloys
by measuring the specific heats of Ag—Ge, and Ag—Ga
as listed in Table I.The theory presented here predicts
this slope to be 0.19 for Ag.

It has been proposed that the y of alloys may d,epend
explicitly on the ratio of the solvent to solute masses.
The theory presented here' ' says that d luau/dR is a
function of only d lnV/dR and Z. It would be possible
to determine the correct parameters by measurement
on a sufhcient number of alloys.

Although the discussion in this paper has been
limited, to binary alloys, a straightforward extension of
the same reasoning to ternary alloys indicates that p
would be a function of the variables (R—1), n, Cq
and C2, where C~ and C2 are the volume changes
prod. uced per atom of each of the two solutes, respec-
tively. In this case it is possible to keep the volume
constant but vary the other variables. For example,
assuming, as one expects for dilute alloys, that the
volume of ternary alloys can be found by linear extrapo-
lation between the binary alloys, adding Zn and Cd
atoms to silver in the proportion of 17 to 14, respec-
tively, should produce an alloy with no volume change.
Also, adding Zn and. Sn atoms to silver in the proportion
of 11 to 14/3, respectively, should also produce an
alloy with no volume change. Yet, in both cases it is
predicted by the theory presented here that d in'/dR
will differ from the value found. in Ag—Ge alloys which
also have no volume change.


