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A form of electron-phonon matrix element is presented and justified. The integrals in the matrix element
are then reduced to sums of quantities appearing in existing augmented-plane-wave computer programs.
The method holds special promise for the practical numerical evaluation of the electron-phonon inter-
action for the transition metals.

INTRODUCTION

A FIRST—PRINCIPLES calculation of the electron-
phonon interaction has long been a major problem

of solid-state theory. There are two questions which
must be answered. In principle, what should one con-
sider as the electron-phonon matrix elementP Then,
once the basic form has been agreed upon, how can
one calculate the matrix element in practiceP The
entire problem is especially di%cult for the transition
metals where one must consider both highly mobile
s-like electrons and semimobile d-like electrons. (In
this paper we shall loosely refer to both s and d electrons
as conduction electrons. )

We give here an answer to these questions based on
the augmented plane-wave (APW) method of energy-
band calculation. Our 6rst concern is the presentation
and justi6cation of the basic electron-phonon matrix
element which is to be calculated. We then proceed to
reduce this matrix element to a form in which all quanti-
ties are those generated in the APW computer calcula-
tions of energy bands and wave functions for the periodic
lattice.

Thus, our method is a direct extension of already
existing APW programs to the calculation of the elec-
tron-phonon interaction. Since present APW work has
achieved considerable accuracy and reliability and in-
cluded studies of many transition elements, its applica-
tion to the electron-phonon interaction is very attractive.

THE INTERACTIOÃ MATRIX ELEMENT

The appropriate form of the electron-phonon matrix
element has been extensively studied. General reviews
have been given by Ziman, ' Sham and Ziman, ' and
SchrieRer. ' Here we take the matrix element to be
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where the integration is taken over the entire crystal
(considered to be of unit volume in this paper). %„a is
the APW' wave function of crystal momentum k and
band index m for the ions in their equilibrium positions,
R; is the ionic coordinate and R; is the equilibrium
position. We consider only elements with one atom per
unit cell for which 8R;, the deviation from the equilib-
rium position, is related to phonon coordinates by'

1/s

ao, ~ exp(ta Rto)(~-s~'+as~) (2)
s x kÃ3II2co, ,x

M is the ionic mass, co,), is the phonon frequency of mo-
mentum q and polarization X, N is the number of atoms
in unit volume, and e~), is a unit polarization vector.
Alternatively, we may express 8R; in terms of the
normal-mode amphtude

q, ), = (&/, 2~, x) "'(tt,,x+ tt-, ~')

For the sake of convenient adaptation to already
existing APW programs, we take U to be the conven-
tional APT potential. It consists of spherically sym-
metric "muon tin" potentials around each atomic site.
The method by which the APW potential is constructed4
accounts for the average screening of the ionic potential
by the conduction electrons. A more accurate description
of true dynamical screening eRects could be accom-
plished in a number of ways. One could restrict the
potential to be used in (1) to that of the bare ions. Later,
the resulting bare electron-phonon interaction could be
altered by explicitly considering true many-body inter-
actions among conduction electrons. Alternatively, one
could calculate BR(rt', k'; rt,k) by using a bare ion poten-
tial reduced by the conduction electron dielectric
constant.

Our basic assumption in this calculation is that the
lattice perturbed by phonons may be adequately de-
scribed by an appropriate displacement of the "muQin
tin" potentials. One could then readily deduce (1) by
considering the scattering of conduction electrons
(described by wave functions for the unperturbed lat-
tice) resulting from the change in potential. Such an
approach would violate the Pauli principle. The APW

4 J. C. Slater, Solid State and Molecular Theory Group, M.I.T.,
Quarterly Progress Report No. 51, 1964 (unpublished). This
article is a general review of the APW method and references all
but the most recent work.
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potential is essentially a Hartree-Fock 6eld describing
the inQuence of the core and conduction electrons
through the exclusion principle as well as the true
Coulomb potentials. The effect of the core electrons re-
quired by the Pauli principle is further accounted for in
the very construction of the APW basis functions. Cal-
culation of a matrix element of the displaced potential
with respect to wave functions for the undisplaced cores
is inconsistent. The proper procedure is to consider the
conduction wave functions for the perturbed lattice
based on a set of displaced APW functions; that is, one
must solve the unperiodic lattice problem. The deriva-
tion of (1) by this approach is presented in detail in the
Appendix.

The APW wave function is given by

+et=Z ~ egg'g ~

g

For one atom per unit cell, the APW basis function
within the primary cell is

YP*(8g, (pg)

(pg(r) =Q 47ri'j ((gR,) — u&(r) Y&"(O,q) r(R,
Ni(R, )

=exp(gg r) r)R, (10)

(Outside the primary cell qg is obtained simply by
multiplying by the factor g'g "~.) Yi is a spherical
harmonic, 0 and y are the coordinates of r and og

and &pg are the coordinates of g, R, is the radius of the
APW sphere, g=k+K, k is a wave vector in the 6rst
Brillouin zone, and K is a reciprocal lattice vector. gg~(r)

is the solution of the radial Schrodinger equation

EVALUATION OF THE MATRIX ELEMENT I
We Grst evaluate the matrix, element using simple

APW basis functions. This will clearly illustrate the
essentials of the calculation. Then in the following sec-
tion lattice-symmetry considerations will be introduced.

The form of the APW potential, namely,
i'g' 1 d dN~) h' i(1+1)

+U(r) u, =au~, (11)
2m r'dr dr I 2m rg

U(ir —R;i) inside the jth muon tin
U(r) =

elsewhere,constant
leads to

(4)
which is regular at the origin. Substituting the wave
function into (8), we obtain

BU
&U(r) — — = —VU inside the jth muon tin

Br

an(e', k'; n, k) =—
j,p, g,g', l, l', m, m'

(—1)&SR;,„A .g.*A
g

0 elsewhere.

In cases of interest, the electron-phonon scattering
occurs between states near the Fermi surface. The initial
and Gnal states of course differ in energy by the amount
of the emitted phonon energy. Since phonon energies are
small compared to the Fermi energy we will make the
approximation that both states have the Fermi energy.
%„i, is an implicit function of energy which for the
remainder of this paper will be fixed at the Fermi
energy. For reasons to become clear it is convenient to
use the spherical components of a vector deGned by

Y~"'9'g ~g)
X4-(-') j (g R.) 4-()'j (gR.)

~,,*(R,)

Yi"*(~g,v g)
X

u((R,) phere

&& (V' „U)NiY~"dr (12).

N).*Yi."'*(V'„U)eg Y("dr.

Thus the problem immediately reduces to the evalua-
tion of the integrals,

V,&= ~(1/V2)(V.~iV„) Vp= V, . sphere

The scalar product is given by

V V'= g+'( —1)~V V '. (7)

on(N', k'; e,k)

With these additional facts taken into account, the
matrix element is written

We note and emphasize the important fact that these
integrals do not depend on the choice of initial and
final states in the matrix element and consequently
they need be calculated only once. let us now pro-
ceed to the crucial step of reducing these integrals
to a sum of constants which are found in standard
APW calculations.

The function Nl Fl satisfies the Schrodinger equation

= —P (—1) SR, „e*„,, (V „U)e„,dr, (8) $—(A'/2m) V'+ U]N( YP =Erl( Yg, (13)

where the integration includes the volume of only the
jth muffin tin. 4 & is of course the equilibrium lattice
wave function.

where E~ is the Fermi energy. We differentiate this and
rearrange to obtain

(V'„U)Ni Yp = LEr+ (A'V'/2m) —U)V„(Ni YP) . (14)



I BF R$U( HDAVI D C.534

an be re-expressed aslt the integralcan e r-Using this resu,

sphere

*Y ~ '*(V' U)u(Yt drQl~ lI

V2ut *Yt "'*)
~
V„u~ Yg dr)— *Y '*)V' u(Y p]dr+

~

V2ut.*Y."'*V(V„u(Yg — *Y "" —(Vup* Y)."
2m

V. Ql.

*Y ~ '*(E —U) V„u(Y mdr (15)+ ut' l' f

b the diver-e ral can be transfornie y13). The first integral canvirtue ofte rais is zero yof the last two in eg
gence theorem to yie

sphere

ut. *Yt. '*(V„U)uiI t dr

2m

" —Vu(. 'Yt. '™)V„u)Y) ],~Y "'*V(V„u(Yg")—Vu(. t.up l'

O2R, 2

2m

d dQl. *
~Y "'*—(V„u(Yt"—

drdr
I'l."'*V„QlI'l (16)

O2R, 2 O'R,' dQl. *

2m dr r R,

nly for the

(—1)'+ A + ~d

[2(2l+3)(2l+1)5'i' d
(17)

where

dQ Yls
dr

'ht e e inerEck ar'h t e e i - h t theorem. Non-

2m

'
h the help of the Wighave been ev aluated' with t e erais J dQ Yp"'*V„uiYi

cases where m =m+p
"g

vanis inh' z results are o a

2)J~' Ae [

[2(2l+1)(2l—1)5'~2 dr

A,+[(l—m+1)(l—my2)]+= —2(i+m+1)(l—m+1)]'", A r —m — 2A r+= [(i+m+1)(l+m

(18)

where
A = [(l+m —1)(l+m)]"'.

liniinating the secoto (16) and ehmina

l(l+2) ut' (l+2)2m
*u [U(&,) &g]+-Ql+1 Ql

2m [2(2l+3)(2l+1)]'"

O'R,'
m+P+g Q P' md~ Ql+1 l+1

1+/Q
Ql+1

* R Ql+1Ql+1 e

l—m)5'" Ao ——[2(l+mm l—m)]

11, we finally obtain

A,—=[(l—m —1)(l—m, 0 =

nd deriva ivSubstituting (17) anand 18) in

+~*V' Q I™-dQQl 1
E.2

gg l 1 tg Iu, '(l—1) u( t'*(l+1 ut t

Ql R Ql 1

(l+1)(l—1)«(~)-~,5+
2m [2(2l+1)(2l—1)]"'

(20)

(R ) and u~ = (dut/dt')
~ =n, .where Ql=Ql R.

Quu n New Jersey, 19,p.57 . 80.rsit Press, Princeton, ew
'

s (Princeton Universttyntum Mechanics rin ulur Momentum zn n um' A. R. Edmonds, lingu u&
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EVALUATION OF THE MATRIX ELEMENT II The wave function %„l, is given by

mt(p', n', k', p,n, k)

jth sphere

@,.& "*(V„U)V,j,"dr

Actual calculations with the APW method rely
heavily on the lattice symmetry. ~ Instead of labeling

by a band index e, the wave functions are labeled as
4'~s~ which transforms irreducibly as the pth partner in
the eth representation of the group of the wave vector.
In addition, the wave functions developed by the com-
puter calculations are not normalized, and we must
account for this.

The matrix element is now written as

+~"=Z ~gg (V g)sg (22)

(q s)„, is a symmetrized augmented plane wave

(,)„-=g r„,-*(R)R,. (23)

Here the summation is over all the operators of the
group of the wave vector and r„, (R) is the pth row,
qth column element of the matrix I' (R) which gives
the transformation properties of the 0.th representation.

Evaluation of the integral in the numerator of (21)
is straightforward. We first substitute (22), (23), and
(10) into the integral. Next we eliminate the rotation op-
erators R with the help of the matrices G'(R) defined by

RY1 =Q G ~ '(R) Y(" . (24)
ml

(+sq, '(+„~ ')'"(4„~
) +„g )'". (21) Immediately we obtain our result.

eg wg~, , "*~„.r. , "(R)r„-*(R)4-(-')'j«g R.)
I&.'(R,)

4, , "'(V„U)%„&dr=
g,g, Q, Q', R,R',
l,l',m, m', m",m"'

Ymca
X — -G - '*(R')Gm" ~'(R) I( *Y& '"*(V„U)N)Y& "dr (25.)

N)(R,)

The integrals t'up*Y~ "'*(V„U)N~Y+dr were evaluated
in terms of quantities in the computer calculation in
the last section. The only quantities appearing in (25)
which are not already in the programs'are the standard
rotation matrices G'(R).

Finally it is necessary to evaluate the normalization
integral. By group-theoretical arguments this integral

(e„,-ie„.)=
gg re
x(E r„"*R'~'I Z r-.*R~.) (26)

is reduced to

cell

d'& &-i(g'-Rg) r Qg& (30)

where 0 is the volume of the unit cell. From this we
subtract the integral of the plane-wave product over the
APW sphere. Expanding the plane wave in spherical
harmonics one easily finds

Here E is the number of atoms in unit volume of the
crystal and we have used the fact that Rg and g' differ
by a reciprocal lattice vector.

The integral of the plane-wave product over the entire
cell is given by

agg
x(~"IRps& (27)

j (IRg-g'IR. )
e s(g zg) rdr=4r—rR~s (31)

phere fRg —g'
f

where 6 is the order of the group and e is the dimension
of the ath representation. The APW functions have the
translational property

i g(r+R, )=e"n qg(r), (28)

We again use the rotation properties of the spherical
harmonics (24) as well as their orthogonality properties
to reduce the integral over the sphere of the non-plane-
wave part of the APW function

which allows us to reduce the integral over the entire
crystal to one over a unit cell.

phere

yg.R(pgdr= P 47r( —i)'j&(g'R, )

(p iRq )=1V
unit cell

dl pg&R pg ~ (29)

Y~ '(eg gg), Y~"'(eg, sg)x — —4~(g)'j, (gR.)-
N~'(R, ) u&(R,)

' J. H. Wood, Phys. Rev. 126, 517 (1962).
7 W. E. Rudge, Solid State and Molecular Theory Group,

M.I.T., Quarterly Progress Report No. 59, 1966 (unpublished).
XG~ ~'(R)

~
Ng~ 'rsdr. (32)
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TABLE I. The electron-phonon matrix element in terms of quantities generated in APW programs.

+p k' (VsU)+pk dr=

Jjth sphere+p'k' (V—pU)+pk d&

DR(p' n' k' p n k) =- —p (—.1)phR.
(rfrp k

'
Irrrp k ') (re k lsfrpke)h

Yl"'(Sg, vg) Yl"*(&g,eg)
A&'"*A«1'p'"'(R')1'- *(R)4~(—l)'jl (g'R.) 4~(')'jl(gR. )

geg'rqlq'lReR', ill. *(R.} Nl(R, )
l, lr, mr, m, m«, m'r r

(34)

XGm"'m' '
(R )Gm, "m (R) jllr Yl' '" (VpU)ljlYP' dr (35)

jll*Yl,"*(v'sU) jll Yl"dr
( 1)l+mA +

Qt+1 Qt
2m L2 (2l+3) (2l+1)j'"

2m l(l+2) &r' (l+2) «+l'* l jjl~l'*jll'—LU(R.)—Rj]+ —— +
A' Ra Q) Rs Q)+], Rg Q)+1 Q)

if l' =l+1,m'= m+jl; (36)

$2R 2 ( 1)l+mA

Q~ 1 Q~

2m L2(21+1)(21—1)g"'

2m (l+1)(l—1) Nl' (l—1) Nl l'* (l+1) jjl l'*ll'—I:U(R.) —&jj+ +-
k' Rs Q~ Rs Q) 1 R& Q~ 1 Q~

if P=l—f,m'=m+p, .

vrhere
=0 otherwise;

A l+=
I (1+m+1)(1+m+2)g»'

A e+= —L2 (i+m+ 1)(l—m+1)g'l '
A l+=L(l —m+1)(l —m+2)$'l'

Al =L(l—m —1)(1—m)g'"
A p ——L2(1+m) (l—m)]'",

A 1 =
I (1+m—1)(l+m) j'".

G
(4', k I+,k )=-

g g' qeq' Ra

j (IRa-a'IR. ) Yl"'(ea Vg )
8 jig, g

—4lr1VRs' +ill Q 4lr( —i)'j l (g'R, )
IRa-a'I lr m. m' ill*(R,)

Yl"*(eg,V g)
X4ll(j)'j l(gRs) — G ~ '(R)

ul (R.)
I
jll

I
'r'dr . (37)

Adding the contributions from (30) and (32) and subtracting the contribution given by (31), multiplying by
X, and substituting the sum into (27), we obtain for the normalization integral

G ,j (IRa—a'IR.)
(@„k I%pk )=— Q Ag, . *&g, ~1', , * lijlg, g. —4mlVR, ' +E Q 4m( —i)'jl(g'R, )

~~ q,q', q, q', 8 IRa-a'I

I'l"'(eg, V s), I'l"*(ea, V g)
4lr(i) 'jl(gR,) G„.„'(R)

ul*(R,) ul(R, )

Rs

Iu, I2r2dr . (33)

The radial integrals need be evaluated only once since
the ui's for all matrix elements in our restricted calcula-
tion are the solutions of (11) with 8=Ej. In Table I we

present a convenient summary of our results in a form
suitable for programming.

DrSCUSsrom

Let us briefly consider the practical numerical evalua-
tion of the matrix element. Again we note that the
integrals t'ul *I'l "'*(V'„U)ulFl dr given by (36) are
independent of initial and final states and need be evalu-
ated only once. The same is true of the radial integrals
Jp'I ul I 'r'dr. The only quantity appearing in (35) and

(37) which does not also appear in the APW energy
band and wave-function program is the standard rota-
tion matrix G'(R). The sum over q in (35) and (37) is
inconsequential since this parameter usually takes only

one value and at most two or three. On examination of
Rudge's' published values of Ag, , for Na, it appears
that approximately four terms in the sum over g will
be sufficient for 1%%u~ accuracy. The sum over / in (35)
and (37) will be rapidly cut off by the decrease of the
spherical Bessel functions with increasing order for
fixed argument.

The major diQiculty in the method proposed here is
the calculation of the eigenvector components A« . As
a result of the considerable amount of calculation re-
quired, a general evaluation of the interaction over the
entire Fermi surface appears prohibitive at this time.
However, a careful choice of a limited number of matrix
elements should give an accurate picture of the strength
of the interaction.

It is hoped that the method will And application for
the many transition elements for which AP% programs
have already been written. One autstan@ng problem
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which could be resolved is the extent of phonon renor-
malization of the density of states in palladium.

APPENDIX

In this appendix we present the derivation of the
matrix element. Consider the lattice in which the ions
have been displaced from their equilibrium positions.
We assume that the potential seen by the electrons in
this situation can be described simply by displacing the
original "muQin tin" potentials. The conduction wave
function for the distorted lattice is given approximately
by

(A1)e„,=e.,'+ P M(~', k'; ~,1)e.., o,
n'k'

where the summation here is over all states including
both conduction and core electrons. We demand that M
be a linear function of the ionic displacements as ap-
propriate to the phonon approximation. (Throughout
this Appendix a superscript 0 will refer to the un-
perturbed lattice, a prime will refer to the difference
between the perturbed and unperturbed states to first
order, and the absence of a superscript will refer to the
distorted lattice. )
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y
T(e' k' e k)+ a=4 go+ P '0 g, (A2)

n'R' E, ~k~ —tiki +j$

where T is the appropriate transition matrix. We now
define the electron-phonon matrix element as

mr(N', k', e,k) = (E„,'—E„.g')M(e', k',e,k) . (A3)

This is seen to be just that part of the T matrix linear in
phonon coordinates.

The unperturbed conduction-electron wave function
is written as

@„g'——Q 2 '(k,k+K) qg~K', (A4)

where q k is the APW basis function for the unperturbed
lattice and K is a reciprocal lattice vector. 4 ~ is a
periodic function and thus only APW basis functions
differing by a reciprocal lattice vector are included in
the sum. In the perturbed case we have

&.(k,k+K) yg+I+ P A.(k,k') pg, (A5)

where yk is the APW basis function for the distorted
lattice. Expanding all factors in powers of the ion
displacements and retaining only linear terms, we
obtain

We visualize the problem from a scattering point of
view. It is known that the outgoing scattered wave is
given b

+„~—p A „'(k,k+K) y~+I'+Q A „'(k,k+K) q 'g~x+Q A „'(k,k+K) (pg+K'

A„'(kk') yg'=e„g'+ P A„'(k,k') q g'+P A„'(k,k+K) y'g+K. (A6)
ailkI

For convenience we de6ne

8„g= Q A '(k, k') q j,'
and

I „g——p A„'(k,k+K)(p'g~K.

(A7)

(AS)

examine the equation relating Grst-order quantities,
namely,

K (0 ~+I.~)+ U e '= E.d(g. +I. ). (A11)

We see that the effect of allowing the APW basis func-
tions to follow the cores is incorporated in I „q.

Our problem now is to calculate 8„~and I „~ which are
related to M(N', k'; e,k) by

M(e', k';e, k)=(+ g'~0 g)+(+ g'~I g). (A9)

3!0=—(A'/2m) V'+ Uo

+&k +nk +nk p:

U'=2 ~Ra (~U/~R, )IR;=R;.

(A12)

(A13)

Consider the one-electron Schrodinger equation

—(A'/2m) V'0'„g+ U%'„g=E„g%'„g, (A10)

& ~=+ b(e', k'; n, k)@„,~,',
nk'

(A15)

where the sum includes only conduction-electron states.
where U is the modifi. ed APW potential in which the
muon tin potentials have been displaced. We expand
all quantities in powers, of the lattice displaceloents and M(e', k'; I,k) =b(m', k'; ~,k)+(@„,„, )I.„,)
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and we proceed to find b(st', k', rt, k). From (A11) we have

(K E s )t) g= (8 Q 3C )f 's —U'%„g'. (A17)

Taking the scalar product with 0"„l,. gives

(8 t, —8 t, )b(n', k'; st,k)

=(z„,—z„,o)(e„, lt-.,)—(e„,oIU'le„,o), (AIs)

or
(~-"IU'l~ )

b(rt', k', tt&k) = —(4'„s'I f~t,)+ - . (A19)
jv ~o jv,~,o

Substituting the expression into (A16) and using
(A3), we have

~(n'k' n, k) =&+-"IU'I+-"). (A20)

The ef'feet of the core motion is identically cancelled
out. This is seen to be consequence of the first-order
perturbation nature of the argument which in turn is a
consequence of the phonon approximation. There is no
communication among the two scattered states and the
other states as would occur in higher order.
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Evidence for Interstitial Cobalt in Indium by Mossbauer Spectroscopy

P. A. FLINN, * U. GONSER, R. W. GRANT, AND R. M. HOUSELY

North American Aviation Science Center, Thousand Oaks, California
(Received 20 December 1966)

The Mossbauer effect for Fe" in indium was measured from helium temperature to near the melting point.
Contrary to a previous report, we found no evidence for large anharmonic effects. The high Debye-Wailer
factor indicates interstitial solution of Co" in indium metal.
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FIG. i. Mossbauer absorption spectrum of a Cos7 in In source
at 80'K, and an absorber of NavFe(CN)vNO 2HsO at room
temperature.
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'
[N the early period of Mossbauer investigations, the

~ i resonance effect for Fe" believed to be dissolved in
indium was investigated" and an anomalous result
reported: The Debye-Wailer factor was quite small
(=0.5) at low temperature, and showed very little
temperature dependence over the temperature range
from near absolute zero to the melting point of indium.
Since this result has been widely accepted and quoted
as evidence for extreme anharmonic behavior, ' we felt
it desirable to reinvestigate the question. Our results,
in contrast to the original ones, show a normal tempera-

ture dependence for the Debye-Wailer factor, and
hence no indications of large anharmonicity. The large
Debye-Wailer factor at elevated temperature is con-
sistent with the assumption that the cobalt (and its
daughter iron) are in interstitial positions in indium.

Since the solid solubility of iron and cobalt4 in indium
is extremely small (not measurable by conventional
methods), the Mossbauer eRect can be studied only by
a "source" experiment, i.e., by dissolving carrier-free
Co' in indium and studying the p rays of the Fe'
arising from the decay of the Co". To ensure that the
Co" was indeed in solution, we used a method of
preparation diGerent from that of the original investiga-
tors. Co'7 was electroplated onto an indium foil, which
was then compacted and heated to 900'C in hydrogen
to ensure reduction of any oxide and the formation of a
homogeneous liquid solution. ' The sample was then
cooled quickly, and again converted to foil by com-
pression between steel plates followed by cold rolling.
The ratio of 14-keV p rays to Fe E x rays was consistent
with the assumption that the cobalt was indeed
homogeneously distributed through the material.

The Mossbauer spectrum observed for this source
(Co'7 in indium at 80'K) versus a quadrupole-split
absorber of NasFe(CN) vNO 2HsO at room temperature
is shown in Fig. 1. From the spectrum the following
values can be deduced: isomer shift 6= —0.91~0.01
mm/sec and quadrupole splitting (peak separation) for

4A. N. Khlapova, Khim. Redkikh Elementov, Akad. Nauk
SSSR Inst. Obshch. i Neorgan. Khim. 1, 115 (1954).

'The Co"-In source was prepared by Nuclear Science and
Engineering Corporation, Pittsburgh, Pennsylvania.


