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Griineisen Gamma from Elastic Data
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The Griineisen parameter y is commonly used to describe anharmonic properties of solids. It can be
determined from thermal data by y=n/~c, where n, N:, and c are the thermal expansivity, compressibility,
and heat capacity; or it can be approximated by means of continuum models from elastic data. A scalar
parameter y and tensorial p, 7.-'s are expressed here in terms of second- and third-order elastic coefficients for
arbitrary crystal symmetry, and the relations are specialized for isotropic, cubic, and rhombohedral mate-
rials. Curves of y versus temperature for a variety of substances have been calculated on a digital computer
on the basis of the nondispersive (Debye) and a dispersive (Born-von Karman) continuum model, and they
are compared with curves obtained from thermal data.

1. IjNTRODUCTIOÃ

ANHARMONIC properties of solids are customarily
described in terms of the Gruneisen parameter y,

familiar from the relation'

p =Q/KTC v = (x/ICscz,

with n the thermal volume expansivity, zT and ~& the
isothermal and isentropic compressibilities, and cy and
c~ the isochoric and isobaric heat capacities. In the
quasiharmonic approximation, gamma can also be
expressed' as the weighted average of generalized
parameters y;

y= P y'c' P c'

where y; expresses the volume dependence of the lattice
vibrational frequency for a mode i, and where c; repre-
sents the Einstein heat capacity associated with that
mode.

The comparison of experimental gamma values, de-
termined from Eq. (1), with values computed from
Eq. (2) would require, in principle, a detailed knowledge
of the dispersion curves along many directions in the
stressed and unstressed crystal, a wealth of information
clearly beyond present means. For a number of solids,
on the other hand, the sound speeds and their stress
derivatives are known, and for these, Eq. (2) can be
evaluated in a continuum model. Sheard' and Collins'
investigated many cubic materials in the nondispersive
model. Their approach is here extended to include
dispersion and arbitrary crystal symmetry.

The scalar parameter y and a tensorial gamma are
derived in Sec. 2 in the nondispersive and a dispersive
continuum model, and the general formulas are special-
ized for crystals with cubic and trigonal symmetry as
well as for the isotropic case. Section 3 describes brieQy
the numerical calculations. Gamma-versus-temperature
curves are computed for several substances and com-
pared with their experimental counterparts in Sec. 4.

* Present address: Ciba Limited, Basel, Switzerland.
' J. C. Slater, Introduction to Chemica/ Physics (McGraw-Hill

Book Company, Inc. , New York, 1939).' F. W. Sheard, Phil. Mag. 3, 1381 (1958);J. G. Collins, ibid. 8,
323 (1963).

with n(P, zl) =0, 1, 2, and where k is Planck's constant
divided by 2x. The partition function is

g= c @I g Q c (y, q)/sT

pq n(y, q)

and the free energy F= —kT lnZ, or

F=4++ f—,'t'zoz(P, tl)+kT 1n/1 —e ""&& q& js~$}. (5)

The components of the thermal expansivity tensor n
are given in the continuum theory of solids' by the
temperature derivatives of the Lagrangian strains,
taken at constant thermodynamic tension t:

aj~= [&gj~/&T]z. (6)

In terms of the free energy

c)zF/V
CLjk= —S jkrjt

t9T87/r8

where the s~ are the isothermal elastic compliance
coefficients and V is the crystal volume.

In the quaszharmonic approximation, ' where C and
the ~(p, q) are considered to depend on temperature only
through the lattice dimensions, Eq. (7) becomes

czjk= p p s jkra'yrs(p~zl)c(ppzl) y

rs pq

3 J. M. Ziman, Electrons and Phonons (Clarendon Press,
Oxford, England, 1962).

4 R. N. Thurston, in Physica/ Acoustics, edited by W. P. Mason
(Academic Press Inc. , New York, 1964), Vol. 1A.

G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1961),
Vol. 12.

2. THEORY

2.1 General Relations

A crystal can be represented' by an array of atoms at
rest at their mean positions with a potential energy C,
amd an assembly of lattice vibrations with branch index

P, wave vector zl, frequency ro(P, q)/2zr, and energies
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where also the generalized Gruneisen gammas'

v-(p, q) =— 1 -So)(p,q)-

o)(ppq) - r)'grd r
(9)

do not depend directly on temperature.
4 MAX

with
c(p,q) =kxse'/(e —1)',

x= i'so)(P, q)/kT,

is the contribution of the mode p, q to the heat capacity
of the crystal. The volume expansivity, cd=+ (2;;,

becomes
o(= p( P V(p q)c(p q) (12)

with I(, the isothermal compressibility.

(P,q)
v(P, q) =—

~(p, q)—

is related to the tensorial v„,(p, q) by

rs

(13)

FIG. 1. Linear (Debye) and sinusoidal (Born—von Karman)
dispersion relations.

LThe volume of the Debye sphere equals that of the
first Brillouin zone, and it is (22r) 2 times the inverse of
V(), the volume of the primitive unit cell.7; (iv) The
acoustic modes are either nondispersive (Debye model),
or they obey the sinusoidal dispersion relation

With

v=2 v(P, q)c(p, q) Z c(P,q) (15)
)ppr q )
&2 q~i

(21)

v, i=+ P s;s„,v„.(p, q) N g c(p, q).
rs pq

This yjI, is not to be confused with the

(16)

v =Z v;.(P,q) (P,q) (17)

of Collins and White. ' They are related by

and c=p„,c(p,q), Eq. (12) becomes Eq. (1) and Eq.
(15) is Eq. (2). Similarly V;2=n;&/(dc with

of the Born sorp Earrnaps rpsodel—s (see Fig. 1); (v) The
generalized Griineisen parameters of Eqs. (9) and (13)
are independent of wave number in both models. They
are given by their long wave limits.

It should be emphasized that the choice of dispersion
relations does not affect the generalized gammas
but only their weight. In particular, the Born—von
Karman model attributes at intermediate temperatures
(T 0/20) a much larger weight to the low-lying
branches than does the Debye model.

With these assumptions Eqs. (15) and (16) become

T.
&Vj& ~ ~ jkrs Yrs ~

g(p, q)dqdQ= (1/ s)qsd2rqdo, ; (19)

The coetielum mode/ is now introduced by the fol-
lowing assumptions'. (i) The excitation of optic modes
can be neglected; i.e., the branch index p takes only the
values 1, 2, 3; (ii) The acoustic modes obey the Debye
distribution function (per unit volume)

v=2 f
doer(pN)r(pN)

+ado e(p N) (22)

and

v '=Z d(2 Z 2'p".v-(p, &)
Sl rs

x r(p, N) r, fdQ r(p, N), (23)

(q 2 i $2Q2eo
( (P,N)=i — d,"

(2pr () (e@—1)'qr) = (6pr2/Vs)"' (2o)

(iii) The maximum value of q along any direction equals respectively, with
the Debye radius

' K. Brugger, Phys. Rev. 137, A1826 (1965).
7 J. G. Collins and G. K. White, in Progress irl, I.om Temperature

PhYsics, edited by C. J. Gorter (North-Holland Publishing Com-
pany, Amsterdam, 1964), Vol. IV.

where in the Debye model

Qn.b"(p,N, E) = LO(P,N)/T7$ (25)
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and in the Born—von Karman model

In both,

2 e(p, N)
Qn...(p, N, h) =-

2' k2 pJ

(26)

Ci Cill+ 2C112 i

C2= C144+2Ci86,

C3 C128+2C112 ~

e(p, N) = (&vD/k)~(p, N) (27)

is the characteristic temperature of the pth mode along
the direction of q, specified by the unit vector N, and

5'(p, N) = L~~(p, q)/~R. - (2g)

is the elastic wave speed of that mode. In terms of the
0(p, N), the Debye temperature 0~ is given by

1 dQ

0' 122r & 0'(p, N)
(29)

2.2 Isotroyic Materials

Expressions for the generalized gammas y(p, N) and
y„,(p, N) for these modes were given earlier' in terms of
second- and third-order elastic moduli.

The S's and U's are the direction cosines for the
direction of propagation and the direction of polariza-
tion characterized by the index p.

2.4 Rhombohedral Crystals

The thermal expansion of rhombohedral crystals is
fully described by the diagonal elements of the ex-
pansivity tensor, or by p&= p»= p» and
Then also &=2&&+p„. It is convenient to rewrite Eqs.
(22) and (23) as

=Xfdo r(P, N)6(P, N) X fd06(P, N), (39)

„=Xgdn r, (p, W)

For isotropic materials, Eq. (22) simplifies to

with
7= (Vl&t+2ytt't)/(&1+2('t),

pi, t = (1/626)—lt) 53B+,22t)lt+ k ltj,, ,

~l &») 'Mg= C44 &

where B=1/t(T is the isothermal bulk modulus,

(30)

(32)

X6(PN) Xgd66(PN), (46)

,„=Xfd6 r„(p,w)

Xt(p, w) Xfdti 6(P,N). (41)

kl Clll+ 2C112 i kt 2(C111 C123) i (33)

and in which the weighting function 8 of Eq. (24) de-
pends on the polarization only. The c's are isentropic
stiBnesses of the second order, and the C's are the
thermodynamically de6ned third-order stiffnesses de-
termined from ultrasonic experiments. '

2.3 Cubic Crystals

The thermal expansion of cubic crystals is isotropic,
and only the scalar y of Eq. (22) is to be evaluated. For
crystals with a fourfold axis the 7(p,N) are given by'

y(p, N) = —(1/62(2)L3B+286)+kj, (34)

Here

I'(p, N) = —(B/2w)L1+286)p+r j, (42)

2I' (p, N) = —(B/2w) L1V12+1V2 +286)pi+ ri], (43)

r«(p, N) = —(B/2w) L1V82+2wp))+r()), (44)

where

26)(piN) C11R1+C66R2+C33R3

+C44R4+C18R5+C14R6 i (45)

p(p) = (sii+s12+s13) (Ui'+ U2')

+ (2s13+s33)U3', (46)
where

with

u (p,N) = ciiK1+c44K2+C12K3,

k(p, N) = C1K1+C2K2+ C3K'3,

(35)

(36)

pt(p) = ($11+$12)(U1+U2 )+2$18U3

p) ) (p) =$13(U1 +U2 )+$83U8

(47)

(48)

Ki(p, N) =N12U12+1V22U22+1V82U '

K2(p, N) = (1V2U3+1V3U2)'

+ (1V3U1+1V1U3) + (1V1U2+1V2U1) i (37)

K3(p, N) = 2(1V21V8U2U8+1V81V1U8U1+1V1.'V2U1U2),

'K. Brugger, Phys. Rev. 133, A1611 {1964);R. N. Thurston
and K. Brugger, ibid. 133, A1604 {1964).' K. Brugger, J. Appl. Phys. 36, 767 (1965).

p(p, N)=g r;R;,

6

ri(p, N) = Q (r;R, ,

6

r„(p,N) =P 2r,R;,

(49)

(50)

(51)
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with

R1(p,N) = (1V1U1+1V2U2)',

R,(p, N) = (1V,U2 —1V2U,),
R3(p, N) = 1V 32U82,

R4(p, N) = (1V 2U8+ N8U2) '+ (1V3U1+1V1U8) ',
R5(p, N) = 2(1V1U1+1V2U2)1V8U8,

Rs(p, N) = 2[(1V1'—1V2') U2U8+1V21V8(U1' —U2')

+21VIU1(1V2U3+ 1V8U2) $

Tj= (sll+$12+s13)Cc + (2$18+$83)Ct

trt= ($11+$12)Ct +2$18Cc

src $18Ct +$88Ct
and

(52)

(53)

(54)

Cl Cl11+C112 )

C2 2 ( C112+C222),

C3'= 2Cg33,

C4 C144+C155 i

C5 C118+C128 q

Ce =C115+C124&

Ci =C~~3)

C2 =
2 (C113 C123)

&

C3"——C333,

C4"——C344,.

C5"——Cg33,.

Co C134 ~

(56)

4. RESULTS

We now proceed to calculate the gamma curves of
most substances for which the necessary third-order
elastic coefficients are known and whose experimental
(i.e., thermal) g mrna curves are available. ""They

' W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958)."P.A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279
(1965).' W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965),

"W. B. Daniels, Phys. Rev. 119, 1246 (1960).
'4 R. A. Miller and C. S. Smith, J. Phys. Chem. Solids 25, 1279

(1964)."R. A. Bartels and D. E. Schuele, J. Phys. Chem. Solids 26,
537 (1965)."L.M. Roberts, Proc. Roy. Soc. (London) B70, 744 (1957).' E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).

"G. K. White and O. L. Anderson, J. Appl. Phys. 37, 430
(1966).' H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 3312
(1964).

3. COMPUTATION

For the evaluation on a digital computer, the integra-
tions in the previous section are transformed into
summations over discrete values. For this the eigen-
value equation for elastic waves is solved for chosen
directions (e.g., 45 directions or 135 modes in the half-
octant for cubic crystals), and the associated solid
angles, the mode gammas, the characteristic tempera-
tures, and the Debye 0 are calculated. After selecting a
sequence of reduced temperatures, the weighting func-
tions are obtained at each of these by numerical integra-
tion over a hundred intervals, and finally y is deter-
mined at each temperature point.

are listed in Table I, which also refers to the experi-
mental data. The thermal and elastic Debye tempera-
tures used in plotting the experimental and computed
curves of y versus TjO are given in Table II. The
thermal 0''s are from expansivity or heat capacity
measurements and apply to zero temperature, whereas
the elastic 0''s are calculated from room-temperature
values of the elastic coefficients. Close agreement is
therefore not expected. For the lack of sufficient data
on the temperature dependence of the second- and,
particularly, the third-order elastic coeKcients and
also to ease the computations, the curves were cal-

20 H. J. McSkimin and P. Andreatch, . J. Appl. Phys. 34, 651
(1963).

2' H. J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 2161
(1964)."H. J. McSkimin, P. Andreatch, and R. N. Thurston, J. Appl.
Phys. 36, 1624 (1965)."R.N. Thurston, H. J. McSkimin, and P. Anderatch, J. Appl.
Phys. 37, 267 (1966).

2' D. B. Fraser and A. C. Hollis Hallett, in Proceedings of the
Seventh International Conference on Low Temperature Physics,
1960 edited by G. M. Graham and A. C. Hollis (University of
Toronto Press, Toronto, 1961).

"G. K. White, in Proceedings of the Eighth International Con
ference on Lo2o Temperature Physics, edited by R. O. Davies
(Butterworths Scientil1c Publications Ltd. , London, 1962).

2'R. J. Corruccini and J. J. Gniewek, Natl. Bur. Stds. (U.S.),
Monograph 29, (1961);R. J. Corruccini and J. J. Gniewek, ihid. ,
Monograph 21, (1960).

"W. S. Corak et al. , Phys. Rev. 98, 1699 (1955}.
2' J. P. Franck, F. D. Manchester, and D. L. Martin, Proc.

Roy. Soc. (London) A263, 494 (1961)."D.L. Martin, Can. J. Phys. 38, 17 (1960).
3' C. E. Monfort and C. A. Swenson, J. Phys. Chem. Solids 26,

291 (1965)."R.H. Stokes, J. Phys. , Chem. Solids 27, 51 (1966).
32 S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938}."G. K. White, Proc. Roy. Soc. (London) A286, 204 (1965)."D.L. Martin, Phil. Mag. 46, 751 (1955).
3'K. Clusius, J. Goldman, and A. Perlick, Z.Naturforsch. 4a,

424 (1949)."C.V. Briscoe and C. F. Squire, Phys. Rev. 106, 117 (1957)."G. K. White, J. Australian Inst. Metals 8, 134 (1963)."P. P. M. Meincke and G. M. Graham, Can. J. Phys. 43, 1853
(1965)."J.A. Morrison and D. Patterson, Trans. Faraday Soc. 52, 764
(1956)."W. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951),

"W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London)
A242, 467 (1957).

4'M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45
(1958).

4' T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy.
Soc. (London) A250, 70 (1959).

44 R. D. McCammon and G. K. White, Phys. Rev. Letters 10,
234 (1963)."R.H. Carr, R. D. McCammon, and G. K. White, Phil. Mag.
12, 157 (1965)."P. Flubacher, A. J.Leadbetter, and J. A. Morrison, Phil. Mag.
4, 273 (1959)."H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

4' G. K. White, Cryogenics 4, 2 (1964).
5'R. B. Sosman, Phases of Silica (Rutgers University Press,

New Brunswick, New Jersey, 1965).
~' F. C. Nix and D. MacNair, Rev. Sci. Instr. 12, 66 (1941)."R.C. Lord and J. C. Morrow, J. Chem. Phys. 26, 230 (1957).
~'H. A. Leadbetter and J. A. Morrison, Phys. Chem. Glasses

4, 188 (1963)."P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P.
Stoiche8, J. Phys. Chem. Solids 12, 53 (1959).

54 H. J. McSkimin, cited by O. L. Anderson, in Progressin Very
High Pressure Research, edited by F. P. Bundy et al. Uohn Wiley
R Sons, Inc. , New York, 1961).
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$.25 TABLE II. Debye temperatures.

3e00-
Au

8 ~ ~ ~ ~ ~ ~ ~ ~ ~ socks ~ ~ 1 oat ~

Material
Debye temperature O~('K)

Elastic Thermal

2.50—

X
X 2.25-
V

2.00—

~ ~ ~ ~ ~ ~ ~

/
ef'

/
/

/l

Au
Ag
CU
K
Na
LiF
NaCl
Nap

Kgl
MgO(cryst. )
MgO(polycryst. )

Ge
Si

n-Si02
Vitr. Si02

155.6
216.1
330.9

77.4
133.4
698.0
304.6
475.1
224.3
939.3
933.0
369.9
645.5
586.4
499 5

180
215
315
89

158
737
322
~ ~ ~

238
950
~ ~ ~

375
650
600
490

1.75—

1.50—

1.25
0.01

Cu

r~r
//

II
I

e+l.

I I I I I I I I1
0.1

T/e

I I I I I II
1.0 3.0

FIG. 2. Elastic (solid curve) and thermal (dashed curve)
p-versus-T/0 curves for Au, Ag, and Cu. l and e+l label the p
curves of copper for the lattice alone, and for the electrons and the
lattice, respectively. (Dotted curve) after Collins in Ref. 2.

TABLE I. References.

culated from room-temperature data only. The effect
of this simplih. cation will be illustrated in Sec. 4.2 for
the case of potassium chloride. In the figures the labels
D and 8 designate the curves based on the Debye and on
the Born—von Karman dispersion relations, respectively.
The thermal curves are dashed. The dotted curves in
Figs. 2 and 4 are representative of Collins's results'
based in part on older elastic data. They diGer from our
computed curves mainly by a more gradual ascent
between 0.1 and 1.0 T/8, attributable to their integra-
tion procedure.

Continuum models allow the computation of thermo-
dynamic properties from only a few experimental
parameters, but they apply only to dielectric mon-

atomic, primitive crystals, which have not been pro-
vided by nature. In these applications, therefore, the
neglect of dispersion in the generalized gammas, of
conduction electrons in metals, and of optic modes,
where they occur, may become serious, shedding light
on their importance in real crystals.

4.1 Noble and Alkali Metals

The calculated and experimental curves for the noble
metals Au, Ag, Cu and for the alkali metals K, Na are
drawn in Figs. 2 and 3. Their agreement is fair except
at Iow temperatures where the experimental gammas
are affected by the conduction electrons. Separating
the electronic and the lattice contributions into the ex-
pansivity and the heat capacity, Eq. (1) becomes

rre+ ou
7—

ac a(c.+c))

The continuum model, on the other hand, gives the

Material

Au
Ag
Cu
K
Na
Lip
NaC1
NaF
KC1

MgO (cryst. )
MgO (polycryst. )

Ge
Si

a -SiOs
Vitr. SiOg

Elastic data&

2, 3(10)
2, 3(10)
2, 3(10)
2, 3(11),2 (12)
2, 3(13)
2, 3(14)
2, 3(15)
2, 3(14)
2, 3(15),2(16)
2, 3(17)
2, 3(18)
2, 3(19,20)
2, 3(19,21)
2, 3(22,23)
2, 3(15)

a(33,37,38), c (41),
a(16), c (43),

B(42)
B(16)

a(44,45), c(46), B(47)
(44,45), c (46), B(47)

a(48,49,50), c(51), B(22)
a(44), c(52,53}, B(54)

Thermal data&

a(24,26), c (26)
a(24, 25,26), c (26)
a (7,24), c (27,28,29)
a(30,31), c(30}, B(30)
a(26), c(26), B(32)
a(33), c (34,35), B(36)
a(33,37,38), c(39) B(17,40)

X
y 1.00—
Q

0.75—

0.50
0.01

Na

D g
/

/
/

/
/

,~'Na
r

I I I I III I I I I I I Ill
0,1 1.0

T/g
3.0

& 2 and 3 refer to second- and third-order elastic coefBcients, respectively.
& a, c, and B refer to data on expansivity, heat capacity, and the tempera-

ture dependence of the bulk modulus.
FIG. 3. Elastic (solid curve) and thermal (dashed curve)

y-versus-T/O~ curves for K and Na.
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TABLE IV. Low-gamma shear modes for NaCl-type structure.

2.00—

I.75—
LLF

~ ~ ~ ~ ~ ~ ~ ~ ~

B

Material

LiF
MgO
NaCl
NaF
KCl

2.27
2.18
1.90
1.43
1.36

Modcb
gamma

0.53
0.42
0.12—0.04—0.77

+0 PeO

(calculated)

0.26
0.11—0.28—0.31—0.76

i. 50—

2 $.25—

l.00—

0.75—

0,50—

0.25
O.OI

I I IIIIl
Q. i

I I I I I I IIt
1.0 3.0

Fto. 4. Elastic (solid curve) and thermal (dashed curve)
y-versus-T/0 curves for LiF, NaC1, and KCI. (Dotted curve)
after Collins in Ref. (2).

lattice gamma
'Ys =nt/«l, (58)

which one wishes to compare with the experimental
gamma for the lattice alone,

yg
——(n—n,)/s(c —c,) . (59)

This was illustrated for the case of copper by Collins
and White, 7 who measured the expansivity precisely
enough and to low enough temperatures to determine
n, (proportional to T) and n~ (proportional to T')
separately, with an electronic gamma,

a Ionic radii from Handbook of Chemistry and Physics, edited by C. D.
Hodgeman et al. , (Chemical Rubber Publishing Company, Cleveland,
Ohio, 1958), 40th ed.

b For c44 shear modes.

deviation of the thermal gamma from the computed
curves for T/8(0. 2. For sodium, matters are com-
plicated by the Martensitic transformation, " from
the close-packed cubic to hexagonal phase, centered
around T/0 0.3.

The computed curves have the general shape pre-
dicted by Barron" from lattice calculations. The dif-
ferences between high- and low-temperature limits of
gamma listed in Table III conform with his theory for a
fcc lattice, predicting a value of 0.3 for central nearest-
neighbor forces and a decrease of this value when more
distant neighbors also interact. For the bcc structure of
K and Na no lattice calculations have been made.

4.2 Alkali Halides and Magnesium Oxide

Figures 4 and 5 show gamma curves for LiF, NaCl,
NaF, and KCI. The computations reproduce the ex-
perimental data quite well, in particular the trend in
the magnitude of gamma with the anion overlap noted
by White" in the analysis of his expansivity data.
A decreasing overlap reduces the shear stiEnesses, par-
ticularly c44 (and finally the NaC1-type lattice trans-
forms to the CsC1 structure). The data of Table IV
show also the generalized gammas associated with the
c44 shear modes to decrease monotonically with de-
creasing ratio of anion to cation radii, a measure of this

Ve= ne/&ce p (60) &.7S

of 0.9, close to the free-electron value of ~~. Their curves
for the lattice and for the total gamma are labeled l and
e+f, respectively, in Fig. 2. For the other metals of
Figs. 2 and 3, values of n, are not available, and their
lattice gammas cannot be obtained separately. But it
seems likely that in gold and silver the conduction
electrons, rather than dispersion, cause the pronounced

TABLE III. y —'yp for noble metals and for alkali metals.

).50—

y ).25—

3.00—
I

NaCX (Exp)

van,

Material v —70 (calculated) 0.75
0.01

I I I I I II II
0.&

I I l I tlllt
1.0 3.0

Au
Ag
CU
K
Na

0.135
0.185
0.200
0.075
0.080

v/e

FIG. 5. Elastic (solid curve) and thermal (dashed curve) 7-versus-
T/0 curves for NaF and NaC1.

"D.L. Martin, Proc. Roy. Soc. (London) A254, 433 (1960)."T.H. K. Barron, Phil. Mag. 46, 720 (1955).
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after Bartels and Schuele, "y(T) to be proportional to
the specific volume. For KCl with its strongly
temperature-dependent y, this correction is quite
drastic, indicating the need for measurements of
third-order coeKcients in the liquid-helium range.

4.3 Germanium and Silicon

1.3
0.01

MgO

I I I I I IIII,
0.1

I I I I I III
1.0 3.0

FIG. 6. Elastic (solid curve) and thermal (dashed curve)
y-ver susT/0 curves for polycrystalline and a single crystal of
Mgo.

overlap. This then lowers the parameter p progressively
over the whole temperature range, but particularly at
low temperatures, as is illustrated in the last column
of this table by the difference between the low- and
high-temperature limits.

MgO, isomorphic with these alkali halides, fits the
same pattern and it is included in Table IV. Gamma
curves for a single crystal and a hot pressed poly-
crystalline specimen are shown in Fig. 6.

It has been mentioned above that only room
temperature values of the elastic coeKcients have been
used in the computation of all these gamma curves.
Such a curve labeled y~ for KCl in the Debye model is
repeated in Fig. 7. A second curve y' results when the
weight functions are computed from low-temperature
data at 4.2'K" while maintaining the room-temperature
generalized gammas, and a third curve y" is the result
of using the same low-temperature data for the weight
functions but with generalized gammas now determined
at an intermediate temperature (195'K)". The low-

temperature limit yo Anally is estimated assuming,

The thermal curves for both Ge and Si in Fig. 8 show
broad minima in the low-temperature region with the
thermal expansivity becoming negative over extended
intervals, but climbing again toward the calculated
low-temperature limits. This behavior is shared by
indium antimonide'7 and other solids with a diamond
or zinc-blende-type lattice, and has been discussed by
Carr et a/. 4' The relatively open structure favors low
lying, highly dispersive modes, "with negative gammas
near the zone edge" "becoming dominant in the low-
temperature region. Optic modes" cause the steep rise
above T/0 0.1 leading the elastic and thermal gammas
to agree near T O~. The dots in Fig. 8 represent
Bienenstock's" calculation for Ge based on a modihed
shell model with an adjustable parameter and including
optic modes in the Einstein approximation.

4.4 e-Quartz and Vitreous Silica

It may be noted, first of all, that for the determina-
tion of the scalar gamma, the third-order elastic co-
efFicients are required only in those combinations
which can be obtained from sound-speed measurements
under hydrostatic pressure. For tensorial gammas, how-
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Fxo. 7. Determination of y0 for KCl.

0.2

Fro. 8. Elastic (solid curve) and thermal (dashed curve)
y-vers T/u0scurves for Ge and Si. (y) after Bienenstock in
Ref. (59) for Ge.

'~ D. F. Gibbons, Phys. Rev. 112, 136 (1958}."B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958); B.N. Brockhouse, Phys. Rev. Letters 2, 256 (1959).

~' A. Bienenstock, Phil. Mag. 9, 755 (1964)."R.T. Payne, Phys. Rev. Letters 13, 53 (1964).
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Fro. 9. Elastic (solid curve) and thermal (dashed curve)
y-versus-T/O~ curves

fornax-quartz,

perpendicular (J ) and parallel
(I~) to the threefold axis.

FIG. 10. Elastic (solid curve) and thermal (dashed curve)
y-versus-T/O~ curves for n-quartz (y=2yq+y~~) and vitreous
silica.

ever, uniaxial stress data are needed for all but cubic
crystals.

Figure 9 depicts the gammas perpendicular (J ) and
parallel (~~) to the threefold axis of u-quartz, whereas the
gamma related to the volume expansivity is shown in
I'ig. 10 together with the curves for vitreous silica.
The computed pi curve lies, correctly, above pII,
and the latter is negative over the whole temperature
range, while the experimental yII becomes negative only
at very low temperatures (T(12 K). The thermal
gammas along both directions exhibit broad maxima
centered near 30'K. At the upper end of the tempera-
ture range, approaching the n Ptran-sition, gamma ex-
hibits a further moderate increase.

The lack of closer agreement between elastic and
thermal curves is not surprising in view of the com-
plicated structure of O.-quartz, "with nine atoms in the
primitive unit cell. The broad hump at low tempera-
tures is presumably due to optic modes. At least this
assumption is not inconsistent with a small excess heat
capacity. "This e6ect is present in vitreous silica to a
much larger degree and leads to an extraordinarily
large negative expansivity" at a temperature as low
as2 K.

ACKNOWLEDGMENT

With pleasure we acknowledge valuable discussions
with G. K. White.


