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its Knight shift and T~ are concerned, the Knight shift
of magnesium being +0.111%%uq,

"so that it appears that
in this case the direct-contact contribution E, to the
total Knight shift is substantial and dominant. The
Fermi surface of beryllium differs from that of mag-
nesium in the important aspect that the third-zone
"lens" figure at F enclosing electrons in magnesium" is
completely absent in beryllium. ' Correspondingly, the
energy of the F4 representation in beryllium lies above
the Fermi energy, whereas in magnesium it lies below.
The relatively large positive direct-contact contribution
calculated by Shyu et ul. ,

' is based on the I'4 representa-
tion. By contrast, the state H& (near the "cigars") gives
a small negative shift. ' It would appear' that the Fermi
surface in beryllium is mainly in the vicinity of the
symmetry points H, E, and 3f. All of these points
probably have very little s character, so that the pre-
dominantly non-s character of the Knight shift and
relaxation time appear qualitatively plausible.

32 T. J. Rowland, in Progress in 3faterial Science, edited by
Bruce Chalmers (Pergamon Press, Inc. , New York, 1961),
Vol. IX, p. 14.

The fact that the quadrupole coupling in beryllium,
even though larger than Knight's value by 25%, is still
smaller than the theoretical estimate based on the lattice
contribution to the 6eld gradient and a new independent
value of the quadrupole moment is indeed surprising.
It indicates that the conduction-electron contribution
to the gradient opposes that due to the lattice of point
charges. In view of the appreciable p-like character of
the conduction-electron wave function at the Fermi
surface, deduced from the Knight shift and T~ results,
a substantial conduction-electron contribution to the
field gradient may be reasonable.
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The approximation of the exchange potential which varies as the cube root of the density is examined.
The optimum value of the coeKcient in this expression, i.e., the value which minimizes the total energy of
the system, is determined for a sinusoidal perturbation upon a system of free electrons as a function of the
wavelength of the perturbation. For very long waves the coeKcient assumes the value proposed by Gaspar.
However, over a range of wavelengths which, in relation to the Fermi energy, are more appropriate for
conduction electrons in a metal, the coeKcient increases, well beyond Slater's original value, and then experi-
ences a fairly sharp cutoG. Beyond this range the coeKcient tends to vanish for decreasing wavelengths. A
higher-order approximation incorporating this characteristic is also presented.

'HE Hamiltonian for a system of 2S electrons,

2N

X,= —p p', s—re(r, )—q p r,, 'j, -

where w arises from external forces, q=2me/0', and

r,,= ~
r;—r, ~, assumes in the one-particle —or Hartree-

Fock—approximation the form

2N

~ =2 II(r')

values e„of the equation

&4 =e~4~.

The total energy of the system is found from
z=(mixing).

Substituting for the exchange operator the function
2 (r) proposed by Slater' gives

H(rr) = —V'r'+w(rr)+2q drs p(rs)rrs '—A (r,), (2)

where, with respect to

P(rr, rs) = Z lt-*(rr)lt-(rs),

whereupon the total wave function 0' for the system in

the ground state becomes the Slater determinant con-

structed from the E solutions with the lowest eigen-

p(r) =p(r, r),
' J. C. Slater, Phys. Rev. 81, 385 (1951).
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A(r1)=qp '(r1) dr2 p(r1, r2)p(r2, r1)~12 '. (4)

A further simplification of the exchange potential em-

ploys free-electron wave functions in Eq. (3), whence
Eq. (4) yields

where S" is the exchange energy,

drl(f r2 I3(r1 r2)P (r2 rl)r12

and 8'0 is the corresponding free-electron approximation,

Ap(r) = (6/2r)' qyp' '(r), (5) W0 ,' (6/——2r—)'Ipq dr p'I'(r) .

where, in this instance, y= —,. Such approximations are
commonly welcome where the inAuence of the exchange
operator on the wave function is incommensurate with
its complexity.

Gaspar' has contended, as have Kohn and Sham'
after a more formal analysis, that the proper value for
the coeiiicient in Eq. (5), from the criterion that E be
a minimum for the nearly-free-electron gas, is &=1.
This difference may appear rather large inasmuch as
the first value also stems from the variational principle
(but with the approximation applied at a different
stage). The exchange operator of the Hartree-Fock
equation derives therefrom, and Lowdin4 has dernon-
strated that Eq. (4) gives the function that most closely

approximates this operator.
However, it is not necessarily true that the function

which most nearly reproduces the effect of the exchange
operator cannot be replaced by one imparting a lower
value to K When the electrons are nearly free, A (r) is
nearly constant. Now consider an expansion of A(r)
in which the first, or dominant, term is constant. This
term is important in relating A(r) to the exchange
operator, but it has an effect only upon 0, not upon f„
and, therefore, E. Hence, it is not unreasonable that
one could lower E by applying some constant factor to
the succeeding terms, which is, in essence, what one
does in choosing a different value for y.

Kohn and Sham's argument is justified for a slowly
varying 2o(r). If ro(r) varies sinusoidally, this restriction
may be stated as requiring its wavelength to greatly
exceed that of an electron possessing the Fermi energy.
However, for the conduction electrons of a metal the
periodicity of the crystal potential is of the order of
that of an electron at the Fermi level. For this reason it
was deemed proper to investigate the manner in which
the optimum value of y varies with the wavelength of
ro(r), a relationship which can then be used in a higher-
order approximation of the exchange potential that
allows for the mixture of wavelengths occurring in an
arbitrary ro (r).

Considering y as a parameter and substituting Ap(r)
for A (r) in Eq. (1), one may determine a y-dependent
E from the solutions. The condition for this E to be
an extremum is

ZO I'= 0 8'

where o.*(k)=o.(—k), one obtains to the second order

q 'W= 3(6/2r)'"N4I'3L '

+2L 3 P Io.(k) I
pp2(y, k)P2(k)G(k) (7)

q
& Wp —3 (6/2r)1&3N4&3L $1/ 2 (L3/3N)2

&Z I ~(k) I V(v k)J3'(k)],

where, with

are defined
p„—'(k)=k (2k„+k),

~(k) =L-'Z Lp-(k)+p. (—k)],
n=l

p
—'(y, k)=1+q 2 dre'k'r ' —

—3,(6/2r)'~'yN @3L' P(k),

and
N

P'(k)G(k) = Q Q olz oi(ka—km) r~—1

n=l m=1

XLp '(k) (~"'—1)+p-(k) p-(k)

+p„(k)p„(—k)e' '].

For a system of free electrons, i.e., for m=o, the ratio
on the right in Eq. (6) becomes indeterminant inasmuch
as p(r1, r2) becomes independent of y. Hence, y is re-
solved by treating m as a perturbation.

Accordingly, let the 2E electrons be confined to a
cube of volume I.', giving for the unperturbed wave
function

(0) (r) —L 3/2gi—kn x'
where (in the ground state)

l'3„&k~ —+ (6n'N)'~3/L as N —+ ~ .

Applying perturbation theory with respect to

~= (dW/dv)/(dW. /&~),

' R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
3%. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
4 P. O. Lowdin, Phys. Rev. 97, 1474 (1955).

(6)
Assuming E is su%ciently large to permit the substitu-
tion of integrations for the above summations over e
and m, one finds

83r2k~ 'p(k) =1+14g—'(1—yp) ln|
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where 2) =k/2k~ and {'=(1+2))2/(1—r))2, and

G(k) =2rLok~ 2g(rt), go(o) g(o ') go(v ')

TAnLE I. The lnnction g(q) and its aPProximation go(ri).

where

1—2)2

l
2riI 1+ 1nt g(rt)

( 1 rp —) 'r dxt'x+1)
=I 1+»| I

—
I

Ilnx), *lx—1j

(1—2)2) r dx x+1) (1+2)2)
lnox — ln2{ .

421 t x x—il 4g

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0000
1.0056
1.0228
1.0528
1.0981
1.1627
1.2536
1.3823
1.5698
1.8504
1.6449

1.000
0.996
0.993
1.009
1.059
1.152
1.283
1.443
1.616
1.787
1.934

~ ~ ~

0.003351
0.01362
0.03149
0.05831
0.09638
0.1498
0.2266
0.3443
0.5570
1.6449

~ ~ ~

0.003322
0.01316
0.02913
0.0506
0.0769
0.1071
0.1404
0.1758
0.2126
1.934

Applying these relations to Eq. (6), one sees that
when o (k) vanishes except for a particular value of k

Table I depicts the function g(ti), for which g(0) = 1 (in
agreement with Kohn and Sham's result), g(1)= ptr2,

and lim„„t)2g(r)) = —',.
When o(k) is not so restricted, the optimum value

of p is a weighted mean of g(t)). In this event it may be
advantageous to apply a relation suggested by the paper
of Hohenberg and Kohn' whereby, after considering

Equations (2) and (9) imply that 22K(r) serves the
exchange potential as does q/r the Coulomb potential.
From the asymptotic behavior of g(ti) it follows that

limrK(r) =-',q,
r—+0

i.e., the "exchange hole" associated with A, (r), roughly
represented by epprK(r)/q, has two-thirds the depth of
that associated with A (r). Moreover, the volume inte-
gral of eporK(r)/q is considerably less than e.

Substituting the approximation,

p(r) =p,+p, (r), go(ri) = (1+3ti2) '+arp+br)' for r)(rip
= (1+3g2)—' for 2)) tip,where pp ——L 2J'dr p(r), one expands in pr the exchange

contribution to the functional representing the total
energy of the system in accordance with for g(r)) in Eq. (10) leads to the replacement of K(r)

by Kp(r), denoted by
W= 3 (6/tr)'"qpp'~2L2

q 'rKo(r) =-', exp( —s/V3)

+4rr 's {$3us'(re s 2)+5/(rio s-
12rip s +24)] sinrios —'gpsLGs ('gp s 6)

44 22
sY/ps) .

+ drtdr2 pt(rr)pt(r2)K(rt2)+' ' '. (g)

b rio s 20tto s 120 co
Then, requiring p& to minimize this functional yields,
to the same order of approximation as that of the Setting a=2.53S, b= —0.85j, and po=&. & renders
previous discussion, the exchange potential

A 1 (rt) dr2 pl(r2)K(r12)
dr rKp(r) = dr rK(r)

0 0

or, differing by a constant,

A t(rt) = dr2 p(r2)K(rt2) . (9)

ice

rrrK(r) = 4q dt's rig(tt) sinstt,
0

(10)

where s= 2k~r.
2 P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964).

The equivalence of Eqs. (7) and (8), irrespective of the
o (k), can be shown to require

and gives the similarity between gp(rt) and g(r)) pre-
sented in Table I.

As regards the use of Eq. (5) in connection with the
conduction electrons in metals, a universal choice for y
seems inappropriate. The value of g, determined from
the fundamental component of the crystal potential,
depends on the valence and, somewhat, on the type of
lattice. Thus, for the alkali metals one has g=1.14; for
aluminum, 2t=0.77. The corresponding g(tt) vary con-
siderably. Taking the harmonics of the crystal potential
into account would be expected to lower the optimum
value for y.


