Calculations on the Scattering of Electrons by Atomic Systems with Configurations $2 p^{q *} \dagger$

Kenneth Smith
Royal Holloway College, Englefield Green, Surrey, England
AND
R. J. W. Henry \ddagger
Kitt Peak National Observatory,§ Tucson, Arizona
AND
P. G. Burke
Atomic Energy Research Establishment, Harwell, Didcot, Berkshire, England

(Received 28 November 1966)

Abstract

The continuum Hartree-Fock equations which describe the radial motion of an electron incident on carbon, nitrogen, and oxygen atoms, and on singly ionized oxygen, all in the ground-state configuration, have been solved. The resulting elastic and inelastic cross sections among the three ground-state terms of the atoms are presented and compared with previous calculations and experiment. The auto-ionization levels in atomic oxygen are calculated and found to be in good agreement with the experimental determinations of the corresponding atomic-oxygen absorption-line series.

1. INTRODUCTION

IN a previous paper, ${ }^{1}$ we have developed the theory for describing transitions induced by electron impact between all the ground-state terms of atoms and ions with configurations $(n p)^{q}$, where $n=2$ or 3 and $0 \leqslant q \leqslant 6$. In addition, a description was given of the numerical methods which have been developed to solve the resultant coupled integro-differential equations. In the present work, we report the results obtained from the computer code for the neutral target atoms carbon, nitrogen, and oxygen, and for singly ionized oxygen. As outlined in Ref. (1) the interest in these systems is primarily astrophysical.

In the collision problem, the wave functions of the target systems are assumed to be known. Roothaan and Kelly ${ }^{2}$ have presented SCF (self-consistent-field) functions in analytical form for all discrete states arising from configurations $1 s^{2} 2 s^{m} 2 p^{n}$, where m and n may be any integers provided there are at most eight electrons for nuclear charge seven, and nine for nuclear charge eight. The physical systems under consideration in this paper are the continuum states of $\mathrm{C}^{-}, \mathrm{N}^{-}, \mathrm{O}^{-}$, and O , with the parent atom or ion in its ground-state configuration. In this paper, the emphasis is on determining the optically forbidden transition probabilities among the

[^0]ground-state terms of the parent atom, using SCF functions for the target atom.

In addition, a direct quantitative comparison can be made with experiment for the atomic-oxygen absorp-tion-line series which is obtained from the solutions of the $e^{-}-\mathrm{O}^{+}$system, where we use SCFfu nctions for the target ion.

The ground-state configuration of carbon in the inde-pendent-particle model is $(1 s)^{2}(2 s)^{2}(2 p)^{2}$, which leads to the ground-state terms ${ }^{3} P,{ }^{1} D,{ }^{1} S$ which will be denoted collectively by ${ }^{2 S_{1}+1} L_{1}$. Since the Hamiltonian is diagonal in the set of the total quantum numbers $L S \pi$, then the number of radial equations coupled together for a particular set will depend on the allowed range of the quantum numbers $L_{1} S_{1} l_{2}$, where the orbital angular momentum of the projectile $l_{2}=L+L_{1}$ and $S_{1}=S+\frac{1}{2}$. We recall that the parity quantum number is defined in terms of the behavior of the wave function under a reflection of the coordinate axes in the origin. Consequently, when the wave function of the target atomic system is approximated by products of one-electron Hartree-Fock orbitals, then the parity is $(-1)^{\Sigma_{i} l_{i}}$, where the sum is over all the orbital quantum numbers of the individual electrons. For carbon, this means $\pi=(-1)^{l_{2}}$. In Table I we list the l_{2} values and the number of radial equations coupled together for $L \leqslant 3$.

In the calculations reported here, we have assumed that the orbitals of the atomic electrons are accurately represented by analytic SCF functions. ${ }^{3}$ That is to say, we assume that

$$
\begin{equation*}
P_{i}(r)=\sum_{\alpha} \bar{C}(i, \alpha) r^{I(i, \alpha)} e^{-\xi(i, \alpha) r} \tag{1}
\end{equation*}
$$

where $i=1 s, 2 s, 2 p, \cdots$ and α denotes the number of

[^1]Table I. Orbital quantum numbers l_{2} of the projectile in the various $L S \pi$ states, together with the number of radial equations coupled together in those states for electrons incident on either carbon or oxygen.

L	S	π	${ }^{3} P$	${ }^{1} D$	${ }^{1} S$	No. of equations
0	$\frac{1}{2}$	Even		2	0	Two
	$\frac{3}{2}$	Odd Even	1			One None
		Odd	1			One
1	$\frac{1}{2}$	Even	0,2	2		Three
		Odd	1	1,3	1	Four
	$\frac{3}{2}$	Even	0,2			Two
		Odd	1			One
2	$\frac{1}{2}$	Even	2	$0,2,4$	2	Five
	$\frac{3}{2}$	Odd	1,3	1,3		Four
	Even	2			One	
3	$\frac{1}{2}$	Odd	1,3			Two
	Even	2,4	2,4	3	Four	
	$\frac{3}{2}$	Odd	3	$1,3,5$	3	Five
		Even	2,4			Two
	Odd	3			One	

terms taken to represent an orbital. The functions are normalized such that

$$
\begin{equation*}
\int_{0}^{\infty} P_{i}(r) P_{j}(r) d r=\delta_{i j} \tag{2}
\end{equation*}
$$

In Table II we present the SCF parameters we have used in our production runs on $e^{-} \mathrm{C}$ scattering; they were taken from Clementi. ${ }^{4}$ In addition, we have presented the experimental energy differences between the terms, taken from the tables of Moore. ${ }^{5}$ These were used in our calculations rather than the consistent set of SCF values in order that a direct comparison can be made with experiment. The \bar{C} 's of Eq. (1) are related to

Table II. Clementi parameters (Ref. 4) for the SCF functions used for production runs on carbon. The SCF energies for the terms are $E\left({ }^{3} P\right)=37.68861$ a.u. $; E\left({ }^{1} D\right)=37.6313$ a.u.; $E\left({ }^{1} S\right)$ $=37.5495$ a.u., and the experimental energy differences between the terms are $\Delta E\left({ }^{3} P-{ }^{1} D\right)=0.0929 \mathrm{Ry}, \Delta E\left({ }^{3} P-{ }^{1} S\right)=0.19728 \mathrm{Ry}$.

Orbital, i	$C(i, \alpha)$	$I(i, \alpha)$	$\xi(i, \alpha)$
1 s	0.92695	1	5.41250
	0.07665	1	9.28630
	0.00073	2	1.0311
	-0.00167	2	1.5020
	0.00539	2	2.58975
	0.00210	2	4.2595
$2 s$	-0.20786	1	5.4125
	-0.01175	1	9.2863
	0.06494	2	1.0311
	0.74109	2	1.5020
	0.34626	2	2.5875
	-0.13208	2	4.2595
$2 p$	0.24756	2	0.9554
	0.57774	2	1.4209
	0.23563	2	2.5873
	0.0109	2	6.3438

[^2]the C 's in Table II by
\[

$$
\begin{equation*}
\bar{C}(i, \alpha)=C(i, \alpha)\{[2 I(i, \alpha)]!\}^{-1 / 2}[2 \xi(i, \alpha)]^{n_{i}+1 / 2}, \tag{3}
\end{equation*}
$$

\]

where n_{i} is the principal quantum number of the atomic orbital i.

The ground-state configuration of oxygen in the inde-pendent-particle model is $(1 s)^{2}(2 s)^{2}(2 p)^{4}$, which leads to the same ground-state terms as carbon. Thus, the l_{2} values and the number of radial equations coupled together are the same as those of Table I. The SCF functions computed by Roothaan and Kelly ${ }^{2}$ for the ${ }^{3} P$ state of oxygen were used to describe the terms of the ground-state configuration. Once again, the calculations reported here were carried out with the experimental energy differences which results in $E\left({ }^{1} D\right)=-74.73722$ a.u. (atomic units), and $E\left({ }^{1} S\right)=-74.65556$ a.u. relative to the SCF value for $E\left({ }^{3} P\right)=-74.80915$ a.u.
The ground-state configuration of nitrogen and O^{+}is $(1 s)^{2}(2 s)^{2}(2 p)^{3}$ and leads to the three terms ${ }^{4} S,{ }^{2} D,{ }^{2} P$. While the set of l_{2} values is different from those presented in Table I, a similar table can readily be constructed. Calculations on $e^{-} \mathrm{N}$ scattering were carried out using the SCF functions and energies of Roothaan and Kelly. ${ }^{2}$
Calculations on $e^{-} \mathrm{O}^{+}$scattering were carried out also using the SCF functions of Roothaan and Kelly, but in order to compare directly with experiment, the experimental energy differences between the terms were used. ${ }^{5}$ Thus, relative to the SCF value for $E\left({ }^{4} S\right)=-74.37253$ a.u., $E\left({ }^{2} D\right)=-74.25036$ a.u. and $E\left({ }^{2} P\right)=-74.18818$ a.u.

In Sec. 2 we discuss in detail the tests we used to ensure that the results of the computer code are correct. In Secs. 3 and 4 we present our results for the inelastic and elastic cross sections, respectively, for electrons scattered from the three ground-state terms of carbon, nitrogen, and oxygen atoms. The positions and widths of the auto-ionization levels in atomic oxygen are tabulated in Sec. 5 for the partial waves ${ }^{3} S^{\circ},{ }^{3} P^{\circ}$, and ${ }^{3} D^{\circ}$, and are compared with experimental determinations of the corresponding atomic-oxygen absorption-line series.

2. CHECKING THE CODE

The only previously published calculations which are identical in formulation to a small subset of those reported here are those of Myerscough and McDowell. ${ }^{6}$ These authors have solved a single integro-differential equation. Their results for the carbon phase shift $\delta\left({ }_{4}^{4} S^{\circ}\right)$ are plotted as dots in Fig. 1 and joined by a smooth curve in the two regions; their phase shift is positive between 0.6 and 0.7 Ry and is not shown in Fig. 1. These calculations were performed using the parameters quoted in Ref. 7 for the orbitals of the atomic electrons.

[^3]Fig. 1. The energy variation of the ${ }^{4} S^{\circ}$ phase shift for electrons incident on carbon atoms calculated by Myerscough and McDowell (Ref. 6) compared with our results.

The radial equation included terms which allowed explicit orthogonalization of the solution to the s-discrete orbitals, and was solved using an iterative numerical procedure. The anomalous behavior of the solution in the region of 0.65 Ry was interpreted by the authors as a resonance. For such a narrow resonance the background phase should be smooth and Fig. 1 shows that their background phase has a discontinuity in the first derivative.

The resonance explanation does not seem plausible for additional reasons. Those narrow resonances which have been predicted by theoretical calculations on electron-atom collisions, and subsequently confirmed by experiment, have always been consequences of many(≥ 2-) channel formulations. In other words, the singleequation model of Myerscough and McDowell does not have the usual resonance mechanism built into it. While resonances can be generated in single-channel
problems, ${ }^{8}$ it requires a particular structure to the potential (strong short-range attraction, together with longer-range repulsive barrier) which is not met here. Consequently, on the above physical arguments alone, we would expect the phase shift $\delta\left({ }^{4} S^{\circ}\right)$ to vary smoothly with energy over the entire range. In Fig. 1 we present our results as crosses and it is seen that the conjecture of a smooth curve is confirmed. These results were obtained by solving the same equation and using the same parameters for the Hartree-Fock orbitals as Myerscough and McDowell, but not orthogonalizing the solutions to the s orbitals. We have also performed calculations including s orthogonalization and the results are very close to the crosses. Runs were also made using Clementi ${ }^{4}$ parameters and the results agreed very well, differences less than 5%, with our results presented in Fig. 1.

[^4]From Table I we see that the set $(L S \pi)=\left(1 \frac{3}{2}\right.$ even $)$ results in a pair of coupled radial equations. Myerscough and Mc Dowell's formalism ${ }^{6}$ neglected the equation for $l_{2}=2$, as well as its coupling to $l_{2}=0$. Their results are reproduced in Table III, as well as the more recent values published by Myerscough, ${ }^{9}$ who used a noniterative numerical technique to solve the radial equation, but did not orthogonalize her solutions to the s states. While the difference between these two sets of results is enormous, they have one feature in common: smooth variation with energy over the range considered. Because of this, it is very surprising that the noniterative technique ${ }^{9}$ gives different answers from the iterative method. ${ }^{6}$ We should expect such large differences only where the phase shift varied dramatically with energy, which would be manifest in the iterative method jumping wildly from one iteration to another. In Table III we have presented some phase shifts from a completely independent code written by one of us (R. J. W. H.) in collaboration with Dalgarno and Stewart. See Ref. 10 for the formalism, which includes orthogonalization to the s states and uses an iterative technique. These results agree very well with the original results of Myerscough and McDowell. In Table III, column SHB, we present also the results of the present code limiting it to a single equation with no s orthogonalizing. The agreement between columns MD, H, and SHB confirms the reliability of all three. The same analytic Hartree-Fock orbitals of the atomic electrons ${ }^{7}$ were used in all calculations.

Further conclusions can be drawn from Table III: Columns MD and H are, in principle, based on identical formalisms and numerical procedures-they agree. The agreement of SHB with MD and H confirms the conjecture that the numerical procedure should not alter the results when the variation of phase shift with energy is smooth; and demonstrates that s orthogonalization is unimportant. The above evidence indicates that the results in column M are wrong.
A very valuable check on the accuracy of the calculations reported here, and which has not been possible for any previous work, is the symmetry of the R matrix.

Table III. ${ }^{4} P$ phase shift for electron-carbon scattering in the single-equation approximation. Column M, Myerscough (Ref. 9); column MD, Myerscough and McDowell (Ref. 6); column H, Henry (unpublished); column SHB (this paper).

k^{2} (Ry)	M	MD	H	SHB
0.02	-0.389	-0.27	-0.27	-0.275
0.04	-0.575	-0.39	-0.39	-0.387
0.06	-0.708	-0.48	-0.48	-0.472
0.08	-0.824	-0.56	-0.55	-0.545
0.10	-0.926	-0.63	-0.61	-0.608
0.30		-1.15		-1.036
0.50		-1.46		-1.310
0.70		-1.58		-1.517

[^5]Of course, this symmetry is only a necessary condition which the numerical results must satisfy; it is not sufficient to guarantee their correctness. A glance at Table I shows the order of the various sets of equations which must be solved for given $L S \pi$. For example, in the case we have just been comparing with previous results, ${ }^{4} P$, there are two coupled equations. We found that the matrices were symmetric to six significant figures. The stability of this symmetry has been investigated when the integration step size H is increased or decreased, when the matching point r_{0} of the numerical method is varied, and when the point r_{a} at which the exponential potentials are neglected is varied. (As an illustration of the variation, some of these tests are given in Table IV for oxygen.)

In the over-all quantum state ${ }^{2} P$ we see from Table I that in our model there are three coupled radial functions. Myerscough and $\mathrm{McDowell}{ }^{6}$ in their formalism neglected the two equations with $l_{2}=2$ as well as the coupling to $l_{2}=0$. Their results, ${ }^{11}$ as well as the noniterative results of Myerscough, ${ }^{9}$ are compared with ours, limited to one equation in Table V. Once again, we see that the two sets of these authors' results differ enormously, while the results of one of us (R.J.W.H.), column H , which used procedures which are numerically equivalent to MD , agree very well with those of the present code SHB which is numerically equivalent to M. Further evidence in support of our results comes from the symmetry of the full $3 \times 3 \mathbf{R}$ matrix. However, none of the models used in the first three columns of Table V could make such a check. We conclude that the results of Refs. 9 and 11 are wrong; furthermore, the results in columns H and SHB are mere approximations to those discussed in the next section.

Calculations on the elastic scattering of slow electrons by oxygen atoms have been performed by Myerscough, ${ }^{12}$ using the numerical technique of Ref. 9; her results are reproduced in Table IV, column M, where they are compared with results obtained using the present code, columns a, b, c, and A. That is to say, we restrict our code to solve precisely Myerscough's equation. The single radial equations solved by Myerscough can be seen from Table I; they are ($L=1, S=0.5, \pi=$ even, $l_{2}=0$) and ($L=1, S=1.5, \pi=$ even, $l_{2}=0$). While Myerscough orthogonalized her solutions to $P_{2 s}(r)$, the code giving the results in columns a-c did not, but the results in column A were obtained by a code which orthogonalized the radial function to both $P_{1 s}$ and $P_{2 s}$.

Columns a to A of this table are further evidence in support of the statements made earlier that orthogonalization to closed subshells is not important. While our results for the ${ }^{2} P$ phase shifts differ from Myerscough by 10%, the ${ }^{4} P$ results differ by a factor of 2 . When we include the full set of three radial equations ($S=0.5$)

[^6]Table IV. ${ }^{2} P$ and ${ }^{4} P$ phase shifts for electron-oxygen scattering in the single-equation approximation. Column M, Myerscough (Ref. 12); column H, independent code of Ref. 10; column a, $H=0.01, r_{0}=1.0, r_{a}=15.0$; column $\mathrm{b}, H=0.02, r_{0}=0.5, r_{a}=5.1$; column c, $H=0.04, r_{0}=1.0, r_{a}=10.2$; column A, $H=0.01, r_{0}=0.5, r_{a}=16.0$ and includes s orthogonalization. Columns LAC were taken from the results of a code (noniterative, no orthogonalization) written by L. A. Conway (unpublished) : LAC1, $H=0.125$; LAC2, $H=0.05$; LAC3, $H=0.0125$. (We are indebted to Miss Conway for allowing us to use these results.)

$k^{2}(\mathrm{Ry})$	M	LAC1	LAC2	LAC3	H	(a)	(b)	(c)
						$\delta\left({ }^{2} P\right)$		
0.03	-0.343	-0.344	-0.295	-0.292	-0.291	-0.293	-0.292	-0.295
0.04	-0.395	-0.396	-0.340	-0.336	-0.336	-0.337	-0.336	-0.340
0.06	-0.482	-0.483	-0.414	-0.410	-0.410	-0.411	-0.411	-0.414
0.08	-0.556	-0.556	-0.477	-0.472	-0.471	-0.473	-0.473	-0.476
0.10	-0.618	-0.619	-0.531	-0.526	-0.525	-0.526	-0.527	-0.530
					$\delta\left({ }^{4} P\right)$		-0.475	
0.03	-0.075	-0.290	-0.233	-0.229		-0.230	-0.234	-0.233
0.04	-0.100	-0.335	-0.269	-0.264		-0.265	-0.270	-0.268
0.06	-0.143	-0.409	-0.329	-0.324		-0.325	-0.330	-0.328
0.08	-0.179	-0.472	-0.380	-0.374		-0.375	-0.381	-0.379
0.10	-0.209	-0.526	-0.425	-0.419		-0.419	-0.426	-0.424

and pair of equations ($S=1.5$), we obtain symmetrical \mathbf{R} matrices-a check not possible in Myerscough's work. Furthermore, our results are stable under wide variations of the parameters. Additional support for the correctness of our results can be seen in Table IV, where we give the unpublished results of one of us (R.J.W.H.) and of L. A. Conway, using completely independent codes. We conclude that Myerscough's results are numerically incorrect.
The symmetry of the \mathbf{R} matrix for all our results was checked in an analogous manner to the case of carbon to ensure that it was stable when the integration step size was increased or decreased, when the matching point of the numerical method was varied, and when the point at which the exponential potentials are neglected was varied.
Seaton ${ }^{13}$ solved two coupled equations for oxygen at an energy of 0.3 Ry for the set $(L S \pi)=\left(1 \frac{1}{2}\right.$ odd), which restricts the calculation to p waves in the two open channels and ignores the coupling to the closed ${ }^{1} S$ channel. His resulting collision strengths were $\Omega\left({ }^{3} P,{ }^{1} D\right)$ $=1.06$ and $\Omega\left({ }^{1} D,{ }^{3} P\right)=0.90$. These dimensionless parameters are related to the collision cross sections through

$$
\begin{equation*}
\sigma\left(n, n^{\prime}\right)=\left(\pi / k_{n}{ }^{2} \omega_{n}\right) \Omega\left(n, n^{\prime}\right), \tag{4}
\end{equation*}
$$

where ω_{n} is the statistical weight of the initial state. The collision strengths should be equal, but in Seaton's calculation some of the exchange terms were neglected, thus destroying the symmetry of the \mathbf{R} matrix. At this energy our program gives $\Omega\left({ }^{3} P,{ }^{1} D\right)=0.925=\Omega\left({ }^{1} D,{ }^{3} P\right)$ when the two coupled equations are solved. There is no post-prior discrepancy, since all the exchange interactions between the terms are included.

As mentioned previously, the calculations reported in the next section on carbon and oxygen used SCF functions, but experimental energy differences. For nitrogen we use the SCF energy differences. In Fig. 2 we present the excitation cross section ($4^{5} S^{\circ}-{ }^{2} D^{\circ}$) calculated

[^7]using SCF energies and compare it with calculations using experimental energy differences between the two terms. We see that the result is insensitive to these parameters.

A further qualitative check on the correctness of the code comes from $(L S \pi)=\left(0 \frac{1}{2}\right.$ even) in carbon. In Table VI we present the phase shifts and cross sections for $k^{2}<1.0 \mathrm{Ry}$. At low energies we see that the phase shift has an interesting structure; very close to threshold it is positive, but it changes sign around 0.11 Ry. This type of behavior has been observed previously in elec-tron-hydrogen atom scattering. ${ }^{14}$ Qualitatively, this phenomenon can be understood as follows: At very low energies, the colliding electron will be influenced by the long-range part of the potential only. The higher the incident energy, the deeper will be the penetration of the projectile into the atomic charge cloud, where exchange effects are very important. From the sign of the phase shift, the code predicted that, while the long-range potential is attractive, the short-range forces are repulsive. The code gave the long-range attractive polarization as (2.9982 r^{-3}), which was verified.

A somewhat remarkable prediction of the code was that the ${ }^{2} S^{\circ}$ phase shift was identical to the ${ }^{4} S^{\circ}$ phase shift in the electron-oxygen system. It was verified that this was caused by chance cancellations in the exchange terms.

A further check on the accuracy and correctness
Table V. ${ }^{2} P$ phase shift, $l_{2}=0$ for electrons incident on carbon atoms. Column M, Myerscough (Ref. 9); column MD, Myerscough and McDowell (Ref. 11); column H, unpublished results based on the code of Ref. 10; and column SHB, this paper.

$k^{2}(\mathrm{Ry})$	M	MD	H	SHB
0.02	-0.117	-0.19	-0.35	-0.3531
0.04	-0.215	-0.30	-0.49	-0.4943
0.06	-0.283	-0.41	-0.60	-0.6010
0.08	-0.348	-0.52	-0.69	-0.6894
0.10	-0.409	-0.62	-0.76	-0.7659

[^8]

Fig. 2. Excitation cross section ${ }^{4} S^{\circ}-{ }^{2} D^{\circ}$ for electrons incident on nitrogen atoms calculated with SCF energy differences, the full curve, and experimental energy differences, crosses. (The "experimental" scale has been shifted to higher energies.)
of codes can be applied if one uses the properties of boundedness. Hahn, O'Malley, and Spruch ${ }^{15}$ have shown that if a scattering calculation is based on a variational principle in which the trial function approximates the closed-channel part of the wave function, but the open-channel portion of the trial function is determined by solving the ordinary integro-differential equations for it resulting from the variational principle,

Table VI. ${ }^{2} S^{\circ}$ phase shift for electron-carbon scattering.

$k^{2}(\mathrm{Ry})$	δ, radians	$\sigma, \pi a_{0}{ }^{2}$
0.04	0.06914	
0.06	0.06227	
0.08	0.03861	
0.10	0.0118	0.0006
0.12	-0.01621	
0.14	-0.0445	
0.16	-0.0727	
0.18	-0.1004	0.0359
0.20	-0.1274	0.0916
0.30	-0.3512	0.1352
0.40	-0.4459	0.1653
0.50	-0.5230	0.1848
0.60	-0.5902	0.1966
0.70	-0.7484	0.2030
0.80	0.2058	
1.00		

${ }^{15}$ Y. Hahn, T. F. O'Malley, and L. Spruch, Phys. Rev. 128, 932 (1962).
then the approximate values for the phase shifts are always less than the true values and they monotonically approximate the true magnitudes when one increases the number of trial functions. The formalism we have used ${ }^{1}$ satisfies these criteria. In Table VII, we present the ${ }^{2} P$ phase shifts in three approximations. From Table I we see that in this case, there are two channels connected to the ${ }^{3} P$ state and one to the ${ }^{1} D$ state, so that there are one, two, or three raidal equations with three, seven, and eleven exchange terms, respectively. From Table VII we see that including the closed (${ }^{1} D l_{2}=2$) channel does increase the eigenphases, as required by the bound theorems. In this table we have presented also the phase shift ${ }^{2} D$ which hardly changes at all as we increase the number of closed channels taken in the trial function. These results indicate that our accuracy

Table VII. Phase shifts at $k^{2}=0.05$ Ry for electron-carbon scattering in a variety of approximations. N_{E} is the number of distinct exchange terms; δ_{a} and δ_{b} are the eigenphases.

No. of equations	${ }^{2} D$		${ }^{2} P$		
	N_{E}	δ_{2}	N_{E}	δ_{a}	δ_{b}
1	4	-0.028928	3	-0.551578	
2	7	-0.028964	7	-0.541925	0.028310
3	11	-0.028963	11	-0.537622	0.028417
4	15	-0.028962			
5	19	-0.028944			

Fig. 3. Excitation cross sections among the ground-state terms of atomic carbon induced by electron impact.

is less than four significant figures. The method of Ref. 15 has been extended ${ }^{16,17}$ to the case where both inelastic and elastic scattering occur.
A quantitative check on the accuracy of the code is furnished by its predictions of the positions of the resonances in the $e^{-} \mathrm{O}^{+}$system. A detailed discussion of these results will be given in Sec. 5 .

3. FORBIDDEN TRANSITIONS

Since we have taken the experimental energy differences between the terms of carbon, then the two inelastic thresholds are at $0.0929 \mathrm{Ry}\left({ }^{1} D\right)$ and 0.19728 Ry $\left({ }^{1} S\right)$ above the ground state. In Fig. 3 we have drawn the three total inelastic cross sections for the transitions among the ground-state terms induced by electron impact. Unfortunately, no experiments have been carried out to observe these transitions, although total-scattering experiments have been performed by Maecker et al. ${ }^{18}$ The only published theoretical calculations have

[^9]been reported by Pilyankevich. ${ }^{19}$ While the cross sections in Fig. 3 are about the same size as those of nitrogen, to be discussed below, they are three times larger than the corresponding oxygen excitation cross sections. Comments on the high-energy behavior of these cross sections are given in some detail in our"presentation of the oxygen results.

For oxygen, as mentioned in the Introduction, we used the experimental separation of the terms in our calculations; the resulting thresholds for excitation are $0.14386 \mathrm{Ry}\left({ }^{1} D\right)$ and $0.30718 \mathrm{Ry}\left({ }^{1} S\right)$ above the ground state.

The total inelastic cross section ($\left.{ }^{3} P-{ }^{1} D\right)$ is presented in Fig. 4, as a function of $k_{1}{ }^{2}$. At high energies the cross section is approaching its asymptotic behavior of $k_{2}{ }^{-6}$, which is as expected for this spin-forbidden cross section. Also shown are the results of Seaton, ${ }^{13}$ the dashed curve, who used the exact resonance approximation for the case of incident and final p-wave electrons, corresponding to the set $(L S \pi)=\left(1 \frac{1}{2}\right.$ odd $)$. The discontinuity in Seaton's curve is due to the fact that above the ${ }^{1} S$ threshold Seaton solved three equations (p waves in each channel), whereas below it only two equations were

[^10]

Fig. 4. Excitation cross sections among the ground-state terms of atomic oxygen induced by electron impact, the full curves. Dashed curves are the calculations of Seaton (Ref. 13).
solved; thus the effect of the exponentially decreasing function in the closed channel was ignored. In this case we solved four coupled equations both below and above the ${ }^{1} S$ threshold. It was found that this set $(L S \pi)$ $=\left(1 \frac{1}{2}\right.$ odd $)$ dominated the total inelastic cross section throughout the energy range, contributing 90% at 1.0 Ry and 60% at 5 Ry .

The total inelastic cross sections $\left({ }^{3} P-{ }^{1} S\right)$ and ($\left.{ }^{1} D-{ }^{1} S\right)$ are also drawn in Fig. 4 and again compared with Seaton's results-the dashed curves. At high energies the spin-forbidden transition falls off at $k_{3}{ }^{-6}$, while the cross section (${ }^{1} D-{ }^{1} S$) goes as $k_{3}{ }^{-2}$. At low energies the dominant contribution to the cross section for ${ }^{1} D-{ }^{1} S$ is $(L S \pi)=\left(0 \frac{1}{2}\right.$ even $)$ which was neglected by Seaton; hence, his results are smaller than those presented here. We note, as for carbon, that $\left({ }^{1} D-{ }^{1} S\right)$ is greater than (${ }^{3} P-{ }^{-1} S$) which implies that in $L S$ coupling the spin selection rule is more rigidly obeyed than the orbital selection rule.
While no experiments have been reported on these transitions, total-cross-section measurements have been performed by Maecker et al., ${ }^{18}$ Lin and Kivel, ${ }^{20}$ Neynaber et al., ${ }^{21}$ Sunshine et al., ${ }^{22}$ and Daiber. ${ }^{23}$ Previous

[^11]calculations have been carried out by Yamanouchi, ${ }^{24,25}$ Seaton, ${ }^{26}$ and Percival ${ }^{27}$ on the excitation of oxygen atoms by electron impact.

Seaton ${ }^{26}$ estimated the contributions to these transitions from various terms he had neglected in his classic paper. ${ }^{13}$ Since his earlier work agrees as well as it does with the elaborate calculations we have performed keeping all terms in the equations, we have not included the slight changes of Ref. 26 in the dashed curves of Fig. 4. Percival ${ }^{27}$ has calculated the collision strengths for low-energy excitation of oxygen from the ground-state term $(2 p)^{4} P$ to the excited configurations $(2 p)^{3}{ }^{4} S(3 p){ }^{3} P$ and $(2 p)^{3}{ }^{4} S(3 p){ }^{5} P$, and so his work lies outside the scope of the calculations reported here. Yamanouchi et al. ${ }^{24}$ calculated the probability for the excitation of the metastable states ${ }^{1} D$ and ${ }^{1} S$ from the ground state ${ }^{3} P$, using a modified distorted-wave BornOppenheimer approximation. Their results were shown

[^12]Fig. 5. Excitation cross sections among the ground-state terms of atomic nitrogen induced by electron impact.

to exceed the conservation limit by Bates et al. ${ }^{28}$ and are not included here. Similarly drastic numerical approximations were made in Ref. 25.

In Fig. 5 we present the inelastic cross sections for the forbidden transitions among the ground-state terms of nitrogen induced by electron impact. The only reported experiment on the excitation of nitrogen atoms by electron impact ${ }^{29}$ is concerned with the configuration change $3 p{ }^{4} P^{\circ}-3 s{ }^{4} P$ and so is outside the scope of this paper. No previous theoretical calculations on these excitation processes have been carried out.

Finally in Tables VIII-X we give the most important partial-wave cross-section contributions for the forbidden transitions in carbon, oxygen, and nitrogen, respectively. It can now be seen from Table IX why Seaton ${ }^{13}$ obtained reasonable results for the transitions

[^13]$\left({ }^{3} P-{ }^{1} D\right)$ and $\left({ }^{3} P-{ }^{1} S\right)$ while considerably underestimating the cross section for $\left({ }^{1} D-{ }^{1} S\right)$. He essentially considered only the ${ }^{2} P^{\circ}$ contribution and for the latter transition this contributes less than half the total value over the energy range considered, with the biggest error being made close to the threshold. As expected, the spinallowed transitions, since they contain a direct interaction, involve many more high partial waves than the spin-changing transitions. It is these contributions from higher partial waves which change the high-energy behavior of the cross section from k^{-6} to k^{-2}.

4. ELASTIC SCATTERING

For oxygen and carbon the quartet states make no contribution to the inelastic cross section because only the ${ }^{3} P$ term is allowed and it is decoupled from the other two terms. (See Table I.) The dominant contribution comes from the set $(L S \pi)=\left(1 \frac{3}{2}\right.$ even). In Figs. 6 and 7 we present the total elastic cross section $\left({ }^{3} P_{-}{ }^{3} P\right)$. In Fig. 7 the dashed curve is the total cross section, as the

Table VIII. Partial-wave contributions to the excitation cross sections of carbon atoms by electrons.

Table IX. Partial-wave contributions to the excitation cross sections of oxygen atoms by electrons.

k^{2} (Ry)	$=0.2$	0.25	0.3	0.35	0.4	0.5	0.6	0.8	1.0	1.5	2.0	3.0	4.0
${ }^{3} P_{-}{ }^{1} D$													
${ }^{2} P$	0.000	0.000	0.001	0.001	0.001	0.003	0.004	0.007	0.010	0.015	0.017	0.015	0.011
${ }^{2} P^{\circ}$	0.159	0.269	0.336	0.371	0.383	0.376	0.352	0.297	0.255	0.177	0.133	0.083	0.051
${ }^{2} D$	0.001	0.001	0.002	0.003	0.003	0.004	0.006	0.009	0.012	0.017	0.019	0.017	0.013
${ }^{2} D^{\circ}$	0.000	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.002	0.002	0.002
${ }^{3} P-{ }^{1} S$													
${ }^{2} P^{\circ}$				0.010	0.021	0.033	0.038	0.037	0.034	0.025	0.019	0.012	0.007
${ }^{2} D$				0.000	0.000	0.000	0.000	0.001	0.002	0.005	0.006	0.006	0.004
${ }^{1} D-15$													
${ }^{2}$ S				0.059	0.053	0.038	0.029	0.019	0.014	0.008	0.006	0.003	0.002
${ }^{2} P^{\circ}$				0.023	0.034	0.040	0.041	0.041	0.039	0.030	0.022	0.011	0.005
${ }^{2} D$				0.005	0.015	0.026	0.030	0.031	0.028	0.020	0.015	0.008	0.005
${ }^{2} F^{\circ}$				0.001	0.004	0.009	0.011	0.013	0.013	0.013	0.012	0.009	0.007
${ }^{2} G$				0.000	0.001	0.004	0.005	0.006	0.006	0.006	0.006	0.005	0.005
${ }^{2} H^{\circ}$				0.000	0.001	0.002	0.002	0.003	0.004	0.004	0.004	0.003	0.003
${ }^{2} \mathrm{~J}$				0.000	0.000	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002

Table X. Partial-wave contributions to the excitation cross sections of nitrogen atoms by electrons.

k^{2} (Ry)	$=0.3$	0.4	0.5	0.6	0.8	1.0	1.4	2.0	3.0	4.0
					${ }^{4} S-{ }^{2} D$					
${ }^{3} S^{\circ}$	0.000	0.001	0.001	0.002	0.002	0.002	0.002	0.001	0.000	0.000
${ }^{3} P$	0.837	1.100	1.076	1.001	0.836	0.700	0.513	0.357	0.202	0.095
${ }^{3} D^{\circ}$	0.004	0.009	0.015	0.024	0.045	0.066	0.096	0.103	0.075	0.047
${ }^{3} \mathrm{~F}$	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.004	0.005	0.005
					${ }^{4} S-{ }^{2} P$					
${ }^{3} P$		0.133	0.281	0.327	0.323	0.290	0.224	0.157	0.084	0.036
${ }^{3} D^{\circ}$		0.000	0.001	0.003	0.011	0.021	0.036	0.044	0.035	0.022
					${ }^{2} D-{ }^{2} P$					
${ }^{1} P$		0.027	0.037	0.035	0.027	0.021	0.014	0.009	0.005	0.004
${ }^{1} P^{\circ}$		0.047	0.038	0.031	0.024	0.020	0.015	0.010	0.006	0.004
${ }^{3} P$		0.039	0.087	0.114	0.129	0.122	0.096	0.061	0.022	0.005
${ }^{3} P^{\circ}$		0.149	0.110	0.085	0.058	0.042	0.027	0.014	0.007	0.004
${ }^{1} D$		0.070	0.151	0.180	0.182	0.165	0.127	0.087	0.045	0.018
${ }^{1} D^{\circ}$		0.004	0.011	0.014	0.018	0.019	0.020	0.017	0.011	0.007
${ }^{3} \mathrm{D}$		0.062	0.077	0.069	0.055	0.046	0.034	0.025	0.016	0.012
${ }^{3} D^{\circ}$		0.011	0.028	0.031	0.029	0.024	0.017	0.010	0.005	0.003
${ }_{1}{ }^{1}$		0.091	0.003	0.004	0.004	0.004	0.004	0.004	0.003	0.003
${ }^{1} F^{\circ}$		0.004	0.009	0.009	0.006	0.005	0.004	0.005	0.005	0.003
${ }^{3} F$		0.003	0.009	0.011	0.012	0.012	0.011	0.009	0.006	0.005
${ }^{3} F^{\circ}$		0.014	0.035	0.042	0.047	0.047	0.042	0.031	0.019	0.013

Fig. 6. Elastic cross sections for electrons incident on the groundstate terms of oxygen.

inelastic cross sections ($\left.{ }^{3} P-{ }^{1} D\right)$ and $\left({ }^{3} P-{ }^{1} S\right)$ have been added to the elastic cross section. This can be compared with the experimental results for the total cross section, obtained by Sunshine et al. ${ }^{22}$ (open circles), and it is seen that the theoretical curve overestimates the cross
section at low energies. This can in part be attributed to the neglect of polarization, i.e., the reaction of the scattered electron back on the atom. Temkin ${ }^{30}$ atte mpted to include this effect by the method of polarized orbitals and applied the formalism to the scattering of s-wave

Fig. 7. Total cross sections for electrons incident on oxygen atoms. Curve B is the total elastic cross section ${ }^{3} P-{ }^{3} P$, while curve A includes the excitation cross sections ${ }^{3} P-{ }^{1} D$ and ${ }^{3} P-{ }^{1} S$. The circles are the experimental points of Sunshine et al. (Ref. 22); curve C was taken from the calculations of Bauer and Browne (Ref. 35).

[^14]

Fig. 8. ${ }^{2} S$ partial-wave cross sections for electrons incident on atomic oxygen.
electrons from oxygen. His results indicate that when polarization corrections are included, the cross section is lowered by a factor of 2 near threshold, and is scaled to about a 10% reduction at an energy of 0.4 Ry . Neynaber et al. ${ }^{21}$ have measured the total collision cross sections for electrons scattered by atomic oxygen. Over the range 0.169 to 0.85 Ry they observed a cross section which was almost constant at $(6.2 \pm 0.5) \pi a_{0}{ }^{2}$. This lies well below our results in Fig. 7, and is 30% smaller than the results of Sunshine et al. ${ }^{22}$ for incident electron energies greater than 0.5 Ry. Nevertheless, for energies below 0.4 Ry, it is clear that the distortion (polarization) of the atomic charge cloud has not been fully taken into account in our model of one configuration. Preliminary theoretical attempts to include more distortion have been reported by Bates and Massey, ${ }^{31}$ Hammerling, Shine, and Kivel, ${ }^{32}$ and Klein and Brueckner, ${ }^{33}$ as well as Temkin, mentioned above. The theory for including any number of excited (real or virtual) configurations within the Hartree-Fock approach has been developed by Smith and Conway. ${ }^{33 a}$

[^15]In Fig. 6 we have compared the total elastic cross section for ${ }^{3} P-{ }^{3} P$ with the cross sections for scattering from the two higher terms ${ }^{1} D$ and ${ }^{1} S$. From Table I we see which sets of $(L S \pi)$ contribute to $\sigma\left({ }^{1} D_{-}^{1} D\right)$ and $\sigma\left({ }^{1} S-{ }^{1} S\right)$; the set ${ }^{2} S$ is particularly interesting in that it gives rise to a cusp ${ }^{34}$ (see Fig. 8).

The salient features of our oxygen results, as presented in Fig. 7, curves A (total) and B (elastic), are in disagreement with the experiment of Sunshine et al. ${ }^{22}$ at very low energies and excellent agreement for energies above 0.6 Ry . The disagreement is confirmed by the result of Lin and Kivel, ${ }^{20}$ who, via indirect observations, quote the cross section to be about $2.0 \pi a_{0}{ }^{2}$ at $k^{2}=0.04$ Ry. Bauer and Browne, ${ }^{35}$ curve C, have drastically simplified the Hartree-Fock equations by deriving effective potentials for exchange and correlation. They obtained good agreement with experiment (at the intermediate energies), as seen in Fig. 7. An additional feature of interest is the dip in the ${ }^{1} D-{ }^{1} D$ cross section just above threshold, as drawn in Fig. 6.

There are two coupled equations and two reaction channels for the ${ }^{2} S$ over-all state. For incident energies greater than 0.163 Ry both channels are open; this is

[^16]Fig. 9. Elastic cross sections for electrons incident on the ground-state terms of atomic nitrogen.

the threshold energy required to excite the oxygen atom from the ${ }^{1} D$ to the ${ }^{1} S$ state. In Fig. 8 we have plotted the elastic cross section $\sigma\left({ }^{1} D-{ }^{1} D\right)$ and the excitation cross section $\sigma\left({ }^{1} D-{ }^{1} S\right)$ in the vicinity of the inelastic threshold. There is an example of a cusp in the elastic cross section, but no suggestion on a resonance.
The contribution of this set to the total inelastic cross section $\sigma\left({ }^{1} D-15\right)$ is found to be dominant for low energies ($k_{3}{ }^{2}<0.05 \mathrm{Ry}$).

In Fig. 9 we present the three elastic cross sections from the ground state ${ }^{4} S$ of nitrogen and from the pair of metastable states, ${ }^{2} D$ and ${ }^{2} P$. All ($L S \pi$) combinations which contribute to these cross sections have been included. In Fig. 10, the dashed curve represents our calculated total collision cross section versus energy for electrons incident on the ground-state term, ${ }^{4} S$. On this graph we have plotted the calculations of Klein and Brueckner ${ }^{33}$ and of Bauer and Browne, ${ }^{36}$ as well as the experimental results of Neynaber et al. ${ }^{37}$ As for oxygen, the single configuration Hartree-Fock model we have used grossly overestimates the cross section at very low energies, but does seem to tend to the experimental values beyond 10 eV . The model of Bauer and Browne

[^17]seems to be good at low energies, but is still rising at 10 eV . From these results it is clear that our model is neglecting the effect of long-range forces which are dominant at low energy. It is however, surprising that our results are so far in error when it is remembered that the equivalent single configuration result for $e^{-}-\mathrm{H}$ scattering is only 10% in error. It is suggested therefore that part of the discrepancy is experimental.

In Fig. 11 we present the three elastic cross sections for electrons incident on the three terms ${ }^{3} P,{ }^{1} D,{ }^{1} S$ of carbon. The curves have the same structure as for nitrogen and oxygen. The previous calculations of Myerscough and McDowell have been discussed extensively in Sec. 2 and since their work, as well as that of Cooper and Martin, ${ }^{38}$ are approximations to our model, they will not be discussed further. Malik and Trefftz ${ }^{39}$ have calculated the s-wave contribution to the total cross section for the scattering of electrons by carbon (and nitrogen) atoms; their results bear no resemblance to the experimental curve quoted in Fig. 7 and give huge cross sections at zero energy, about $80 \pi a_{0}{ }^{2}$. In Fig. 12 we show the ${ }^{2} S$ partial-wave cross sections where a cusp effect

[^18]

Fig. 10. Total cross sections for electrons incident on nitrogen atoms, dashed curve, compared with previous theoretical calculations of Klein and Brueckner (Ref. 33) and Bauer and Browne (Ref. 36) and the experimental results of Neynaber et al. (Ref. 37), circles.
similar to that discussed in oxygen occurs. It is interesting to note that it is an inversion of the oxygen cusp.

In Tables XI-XIII we give the most important par-tial-wave cross-section contributions to the elastic scattering by electrons in carbon, oxygen, and nitrogen. It is interesting to note that for many of these cross sections the quadrupole interaction, which behaves asymptotically as r^{-3}, dominates the low-energy cross section, giving a finite partial-wave cross section at threshold even when the orbital angular momentum of the incident electron is not zero. Mott and Massey ${ }^{40}$ show that for potentials of the form

$$
V(r)=c / r^{s}
$$

the phase shift δ_{l} varies as

$$
\delta_{l} \underset{k \rightarrow 0}{\sim} k^{s-2}
$$

provided $2 l>s$-3. For $s=3$, as in our case, this gives $\delta_{l} \sim k$ for all l and thus the cross section $\sigma_{l} \propto\left(\sin ^{2} \delta_{l}\right) / k^{2}$, which is finite at threshold. We find that potentials of the appropriate form are obtained provided the triangular relations $\Delta\left(L_{i} L_{j} 2\right)$ and $\Delta\left(l_{i} l_{j} 2\right)$ are satisfied, where $\left(L_{i} l_{i}\right)$ and $\left(L_{j} l_{j}\right)$ are the atomic and incident orbital angular momenta of the initial and final states, respectively. For elastic scattering $L_{i}=L_{j}$ but l_{i} does

[^19]not necessarily equal l_{j} (see Table I). Examples of this finite behavior at threshold can readily be found in the tables, e.g., in oxygen for the process $\left({ }^{3} P-{ }^{3} P\right)$ we note that for $k^{2}=0.1$ Ry the cross sections for ${ }^{2} S^{\circ}$ and ${ }^{4} S^{\circ}$ scattering are large even though $l_{i}=l_{j}=1$ from Table I. More detailed calculations closer to threshold than those given in Table XII show that at $k^{2}=0.02$ Ry for $\left({ }^{3} P-{ }^{3} P\right)$ the ${ }^{2} S^{\circ}$ contribution is $0.077 \pi a_{0}{ }^{2}$ and the ${ }^{4} S^{\circ}$ contribution is $0.155 \pi a_{0}{ }^{2}$.

5. AUTO-IONIZATION LEVELS OF ATOMIC OXYGEN

The theoretical model ${ }^{1}$ which we have employed in these calculations is the close-coupling approximation. This method has been shown by Feshbach ${ }^{41}$ to give rise naturally to resonances when some of the channels are closed. In particular, the dominant mechanism which produces resonances is the long-range Coulomb force. This is present in the $e^{-} \mathrm{O}^{+}$system which is under consideration in this section. In close-coupling expansion we only include the terms which arise from the groundstate configuration, but these terms are well isolated and weakly coupled to the other (neglected) states. We can thus expect accurate results for the scattering cross sections and the positions of the auto-ionization levels if the above assumptions are valid.

[^20]Fig. 11. Elastic cross sections for electrons incident on the groundstate terms of atomic carbon.

Since we wish to compare with experiment, we have taken the experimental energy differences between the terms of O^{+}, and the two inelastic thresholds are at $0.24432 \mathrm{Ry}\left({ }^{2} D\right)$, and $0.36870 \mathrm{Ry}\left({ }^{2} P\right)$ above the ground state.

The coupled integro-differential equations for the $e^{-} \mathrm{O}^{+}$system have been solved in the energy regions where the ${ }^{2} D$ and ${ }^{2} P$ channels are closed and the ${ }^{4} S$ channel open, and where the ${ }^{2} P$ channel is closed and both the ${ }^{4} S$ and ${ }^{2} D$ channels open. This yielded resonances in the elastic (and inelastic) scattering of electrons by O^{+}. The phase shifts were obtained as a function of energy for the set of total quantum numbers $S=1, \pi=$ odd, and $L=0,1$, and 2 , and a Breit-Wigner resonance fit was carried out for each level. ${ }^{42}$ In order to calculate the atomic-oxygen absorp-

[^21]tion-line series from the positions of the auto-ionization levels, we have used a value of $109837.03 \mathrm{~cm}^{-1}$ for the ionization energy of the ground state of atomic oxygen, ${ }^{3} P_{2}$, as measured by Eriksson and Isberg, ${ }^{43}$ and the Rydberg constant for oxygen was taken to be 109737.31 cm^{-1}.

Six Rydberg series due to allowed transitions from the atomic-oxygen ground state have been calculated and are given in Table XIV. The upper states of these transitions are given in the first column. The results are compared with the experimental determinations of Huffman et al., ${ }^{44,45}$ who have observed the absorption spectrum of atomic oxygen, from which they have ob-
${ }^{43}$ K. B. S. Eriksson and H. B. S. Isberg, Arkiv Fysik 24, 549 (1963).
${ }^{44}$ R. E. Huffman, J. C. Larrabee, and Y. Tanaka, Phys. Rev. Letters 16, 1033 (1966).
${ }_{45}$ R. E. Huffman, J. C. Larrabee, and Y. Tanaka, J. Chem. Phys. 46, 2213 (1967).

Fig. 12. ${ }^{2} S$ partial-wave cross sections for electrons incident on atomic carbon.
tained the Rydberg series due to the allowed transitions. They have also observed three additional Rydberg series, the upper states being $\left({ }^{4} S^{\circ}\right) n s{ }^{3} S^{\circ},\left({ }^{4} S^{\circ}\right) n d{ }^{3} D^{\circ}$, and ($\left.{ }^{2} D^{\circ}\right) n d^{\prime}{ }^{3} P^{\circ}$. These series are inaccessible in our present treatment, since they correspond to all the channels being closed.

The calculated widths of the resonances are also given in Table XIV. No comparison of these can be made with experiment, since the lines observed were too narrow to show the characteristic Beutler-Fano profile. The narrowness of the lines is confirmed at least qualitatively by the present calculations, and furthermore we note

Table XI. Partial-wave contributions to the elastic cross sections of electrons on carbon.

k^{2} (Ry)	0.1	0.15	0.2	0.25	0.3	0.4	0.5	0.6	0.8	1.0
${ }^{3} P-{ }^{3} P$										
${ }^{2} S^{\circ}$	0.001	0.010	0.036	0.065	0.092	0.135	0.165	0.185	0.203	0.206
${ }^{4} S^{\circ}$	2.462	3.005	3.096	2.950	2.735	2.215	1.754	1.392	0.914	0.658
${ }^{2} P$	6.215	5.526	4.935	4.425	3.983	3.262	2.707	2.274	1.654	1.246
${ }^{2} P^{\circ}$	3.898	3.747	3.344	2.804	2.364	1.681	1.208	0.884	0.516	0.344
${ }^{4} P$	8.534	8.045	7.537	7.050	6.588	5.752	5.027	4.404	3.412	2.683
${ }^{4} P^{\circ}$	1.038	1.290	1.485	1.631	1.737	1.861	1.906	1.903	1.823	1.704
${ }^{2} D$	0.036	0.037	0.037	0.037	0.036	0.034	0.031	0.027	0.019	0.011
${ }^{2} D^{\circ}$	4.163	4.169	3.970	3.629	3.240	2.501	1.916	1.488	0.965	0.703
${ }^{4} D$	0.049	0.031	0.015	0.004	0.000	0.013	0.051	0.106	0.236	0.354
${ }^{4} D^{\circ}$	0.621	1.053	1.432	1.745	1.995	2.339	2.532	2.624	2.638	2.543
${ }^{1} D-1{ }^{1} D$										
${ }^{2} S$	0.049	0.042	0017	0.037	0.039	0.032	0.023	0.015	0.005	0.001
${ }^{2} P$	0.037	0.038	0.033	0.029	0.024	0.015	0.008	0.003	0.001	0.001
${ }^{2} P^{\circ}$	0.893	2.215	2.858	3.060	2.994	2.598	2.192	1.854	1.397	1.132
${ }^{2} D$	16.934	15.621	14.435	13.295	12.244	10.403	8.881	7.622	5.710	4.378
${ }^{2} D^{\circ}$	0.404	1.393	3.194	4.064	4.297	3.907	3.253	2.642	1.803	1.355
${ }^{2} \mathrm{~F}$	0.124	0.127	0.143	0.161	0.182	0.232	0.287	0.342	0.439	0.509
${ }^{2} F^{\circ}$	0.275	1.027	1.809	2.467	2.980	3.649	3.981	4.109	4.048	3.813
${ }^{1} S-15$										
${ }^{2} S$			17.220	14.419	13.351	11.500	9.862	8.454	6.261	4.697
${ }_{2}^{2} P^{\circ}$			0.028	3.321	6.364	9.124	9.693	9.367	8.197	7.146
${ }^{2} D$			0.000	0.002	0.005	0.031	0.095	0.197	0.480	0.795

Table XII. Partial-wave contributions to the elastic cross sections of electrons on oxygen.

$k^{2}(\mathrm{Ry})$	0.1	0.15	0.2	0.25	0.3	0.4	0.5	0.6	0.8	1.0
${ }^{3} P-{ }^{3} P$										
${ }^{2} S^{\circ}$	0.107	0.125	0.140	0.153	0.163	0.179	0.188	0.193	0.195	0.192
${ }^{4} S^{\circ}$	0.214	0.250	0.280	0.306	0.327	0.357	0.376	0.386	0.391	0.383
${ }^{2} P$	3.271	3.087	2.918	2.760	2.613	2.347	2.116	1.913	1.578	1.315
${ }^{2} P{ }^{\circ}$	1.017	1.372	1.485	1.530	1.523	1.407	1.254	1.096	0.830	0.619
${ }^{4} P$	4.324	4.222	4.116	4.005	3.891	3.664	3.441	3.226	2.832	2.489
${ }^{4} P^{\circ}$	0.000	0.016	0.050	0.090	0.134	0.220	0.297	0.362	0.460	0.523
${ }^{2} D$	0.009	0.008	0.008	0.008	0.007	0.006	0.006	0.006	0.005	0.006
${ }^{2} D^{\circ}$	0.166	0.274	0.361	0.446	0.521	0.639	0.722	0.778	0.834	0.845
${ }^{4} D$	0.021	0.025	0.030	0.036	0.044	0.062	0.085	0.111	0.170	0.230
${ }^{4} D^{\circ}$	0.209	0.331	0.453	0.566	0.669	0.843	0.978	1.079	1.205	1.265
${ }^{1} D-1 D$										
${ }^{2} S$		0.014	0.014	0.016	0.021	0.016	0.015	0.014	0.016	0.018
${ }^{2} P$		0.010	0.010	0.011	0.011	0.014	0.016	0.020	0.028	0.038
${ }^{2} P^{\circ}$		0.115	0.050	0.234	0.431	0.697	0.800	0.808	0.725	0.640
${ }^{2} D$		8.821	7.753	7.500	7.237	6.714	6.217	5.753	4.932	4.245
${ }^{2} D^{\circ}$		0.355	0.509	0.682	0.841	1.099	1.282	1.407	1.537	1.570
${ }^{2} F$		0.035	0.040	0.034	0.029	0.019	0.011	0.005	0.003	0.013
${ }^{2} F^{\circ}$		0.032	0.044	0.149	0.291	0.595	0.862	1.076	1.362	1.515
${ }^{1} S-1 S$										
						7.196	6.719	6.270	5.416	4.661
${ }^{2} P^{\circ}$						0.692	1.643	2.393	3.244	3.663
${ }^{2} D$						0.001	0.002	0.009	0.049	0.124

that the series with the broadest lines is associated with the upper state $\left({ }^{2} P^{\circ}\right) n s^{\prime \prime}{ }^{3} P^{\circ}$, in agreement with Huffman. ${ }^{46}$

Table XIII. Partial-wave contributions to the elastic cross sections of electrons on nitrogen.

k^{2} (Ry)	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0
${ }^{4} S-{ }^{4} S$								
${ }^{3} S^{\circ}$	5.400	4.524	3.833	3.276	2.821	2.445	1.870	1.458
${ }^{5} S^{\circ}$	5.506	5.069	4.653	4.260	3.894	3.557	2.968	2.481
${ }^{3} P$	5.349	6.648	5.373	4.319	3.540	2.956	2.146	1.654
${ }^{5} P$	0.498	1.175	1.736	2.150	2.444	2.644	2.852	2.905
${ }^{3} D^{\circ}$	0.000	0.000	0.000	0.000	0.001	0.003	0.010	0.021
${ }^{5} D^{\circ}$	0.000	0.008	0.035	0.085	0.158	0.251	0.473	0.703
${ }^{2} D-{ }^{2} D$								
${ }^{1} S^{\circ}$			0.000	0.000	0.001	0.001	0.004	0.007
${ }^{1} P$			0.034	0.084	0.134	0.172	0.216	0.233
${ }^{1} P^{\circ}$			0.000	0.001	0.001	0.002	0.004	0.007
${ }^{3} P$			0.965	1.607	1.696	1.581	1.237	0.956
${ }^{3} P^{\circ}$			0.000	0.003	0.002	0.002	0.004	0.008
${ }^{1} D$			1.596	2.248	2.174	1.899	1.316	0.893
${ }^{1} D^{\circ}$			3.263	2.793	2.409	2.091	1.603	1.252
${ }^{3} \mathrm{D}$			0.176	0.449	0.686	0.863	1.072	1.159
${ }^{3} D^{\circ}$			7.631	6.847	6.148	5.529	4.501	3.703
${ }^{1} F$			0.125	0.311	0.455	0.554	0.655	0.682
${ }^{3} F$			0.301	0.765	1.141	1.409	1.705	1.808
${ }^{3} F^{\circ}$			0.000	0.003	0.012	0.028	0.080	0.149
${ }^{2} P-{ }^{2} P$								
${ }^{1} S$				0.431	0.930	0.980	0.731	0.479
${ }^{3} S$				0.027	0.117	0.200	0.310	0.363
${ }^{3} P$				0.421	1.258	1.675	1.835	1.708
${ }^{3} P^{\circ}$				7.538	6.798	6.158	5.038	4.139
${ }^{1} P$				0.041	0.153	0.249	0.366	0.414
${ }^{1} P^{\circ}$				3.315	2.832	2.451	1.865	1.445
${ }^{1} D$				0.261	0.786	1.035	1.100	0.998
${ }^{1} D^{\circ}$				0.000	0.000	0.001	0.009	0.023
${ }^{3} \mathrm{D}$				0.160	0.661	1.121	1.708	1.970
${ }^{3} D^{\circ}$				0.000	0.000	0.002	0.013	0.036
${ }^{3} F^{\circ}$				0.000	0.002	0.011	0.061	0.102

[^22]Cairns and Samson ${ }^{47}$ have measured the absorption cross sections for atomic oxygen at 22 wavelengths and have obtained larger values than the theoretical results of Dalgarno et al., ${ }^{10}$ in particular at four wavelengths, namely, 686, 725, 736, and 780 Å. Huffman et al. ${ }^{44}$ have pointed out that some of the series lines that they have observed lie close to the first three wavelengths listed

Table XIV. Atomic-oxygen absorption-line series (\AA). The lower state is ${ }^{3} P_{2} ; n$ is the principal quantum number of the upper state; Γ is the width in A.

Upper states	n	Theory	Expt. (Ref. 45)	Γ
$\left({ }^{2} D^{\circ}\right) n d^{\prime}{ }^{3}{ }^{\circ}$	3	803.60	804.27	0.0052
	4	770.53	770.79	0.0026
	5	756.13	756.24	0.0014
	6	748.52	748.63	0.0008
$\left({ }^{2} D^{\circ}\right) n s^{\prime}{ }^{3} D^{\circ}$	4	814.13	816.86	0.0050
	5	774.37	775.32	0.0021
	6	757.96	758.41	0.0010
$\left.{ }^{2} D^{\circ}\right) n d^{\prime}{ }^{3} D^{\circ}$	3	803.92	804.77	0.020
	4	770.70	771.06	0.012
	5	756.22	756.35	0.007
$\left({ }^{2} P^{\circ}\right) n s^{\prime \prime}{ }^{3} P^{\circ}$	4		737.02	
	5	700.38	701.00	0.134
	6	686.91	687.20	0.064
	7	679.93	680.15	0.027
$\left({ }^{2} P^{\circ}\right) n d^{\prime \prime}{ }^{3} P^{\circ}$	3		724.93	
	4	697.33	697.53	0.058
	5	685.46	685.54	0.029
	6	679.17	679.20	0.019
$\left({ }^{2} P^{\circ}\right) n d^{\prime \prime}{ }^{3} \mathrm{D}^{\circ}$	3		724.93	
	4	697.31	697.53	0.014
	5	685.44	685.54	0.008
	6	679.17	679.20	0.005

${ }^{47}$ R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
above, but they have no evidence of a line near 780 Å. Our results are in agreement with their conclusions. For example, from Table XIV we see that there is a series line at $685.46 \AA$ corresponding to the transition ${ }^{3} P_{2}-\left({ }^{2} P^{\circ}\right) 5 d^{\prime \prime}{ }^{3} P^{\circ}$ and one at $685.44 \AA$ a corresponding to ${ }^{3} P_{2^{-}}\left({ }^{2} P^{\circ}\right) 5 d^{\prime \prime}{ }^{3} D^{\circ}$.

The Rydberg series of levels, which belong to a discrete spectrum and which precede each threshold in the photon energy scale, provide an indirect method of ionization by absorption into a short-lived state followed by
auto-ionization. Thus, peaks in the absorption cross section can be expected near (or at) each auto-ionization level. The analysis of these resonances will be treated elsewhere.

The good quantitative agreement between theory and experiment for the absorption-line series in atomic oxygen justifies our retention of only the terms of the ground-state configuration in the close-coupling expansion. It is noted that the same approximations were made for the atoms considered in the previous sections.

Collisional Depolarization of the Rb $5 p$ and Cs $6 p$ Doublets*

Alan Gallagher
Joint Institute for Laboratory Astrophysics, \dagger Boulder, Colorado

(Received 16 November 1966)

Abstract

Using the Hanle-effect technique, the cross sections for collisional depolarization of the $\mathrm{Rb}^{2} P_{1 / 2,3 / 2}$ and $\mathrm{Cs}^{2} P_{1 / 2}$ states by inert-gas collisions have been measured. (The natural lifetimes of these states were also obtained from the measurements.) The ${ }^{2} P_{1 / 2}$-state depolarization cross sections are much smaller than any previously reported for $L \neq 0$ states. This results from a strong selection rule governing nonresonant collisions. This selection rule is derived and its effect on $J=\frac{1}{2}$-state depolarization is demonstrated. A relationship between the reported cross sections and sensitized fluorescence cross sections is noted.

I. INTRODUCTION

THE collisional depolarization of atomic states by thermal atom-atom collisions has been calculated in several formalisms. ${ }^{1-3}$ The theories have considered isolated fine-structure states, with hyperfine components, using the adiabatic approximation to evaluate cross sections for foreign gas (nonresonant) depolarization. Franz and Franz have discussed the effect of the fine-structure interval in the nonresonant collisional depolarization of the alkali p doublets, and the implications to optical pumping of a $\Delta m_{J}=0, \pm 2$ selection rule that occurs in several theories for collisional transfer between the J state of these doublets. ${ }^{4}$ It is demonstrated here that there exists in addition to that weak selection rule, a strong selection rule governing depolarization within a J level by inert gas collisions. This strong selection rule asserts that in the adiabatic approximation the entire electrostatic collisional interaction (including exchange) will not cause transitions between states $J M$ and $J-M$ when J is half-integral. The

[^23]effect of this selection rule on $J=\frac{1}{2}$-state depolarization is very apparent, since it requires that the depolarization must be produced by smaller nonadiabatic contributions to the interaction. We present experimental results for the nonresonant collisional depolarization cross sections σ of the $\mathrm{Rb} 5 p$ and $\mathrm{Cs} 6 p$ fine-structure levels, verifying that the $J=\frac{1}{2}$ state cross sections are unusually small. A discussion of the extension of the present adiabatic theories to the $J=\frac{1}{2}$ problem is included, and the meaning of the Δm_{J} selection rules in the adiabatic theories is reviewed. The effect of the reported cross sections on ground-state optical pumping can be established by use of formulas for relaxation of hyperfine components in Ref. 2 in conjunction with procedures in Ref. 4; no discussion is included.

The theories have treated the collision Hamiltonian V as a perturbation that alters the populations of the electronic states of the separated atoms, using the dipole-dipole interaction and straight-line paths for $V(\mathbf{b}, \mathbf{v}, t)$ of a collision with impact parameter \mathbf{b} and relative velocity \mathbf{v}. For this V, the nonresonant collisional depolarization arises from the Van der Waals interaction, and if $\left[V^{2}(\mathbf{b}, \mathbf{v}, t), V^{2}\left(\mathbf{b}, \mathbf{v}, t^{\prime}\right)\right]$ is neglected,
$S(\mathbf{b}, \mathbf{v})=S_{d d}(\mathbf{b}, \mathbf{v}) \equiv \exp \left(-i \int_{-\infty}^{\infty} d t V_{d d}{ }^{2}(\mathbf{b}, \mathbf{v}, t) / \hbar \Delta E_{\mathrm{av}}\right)$
is obtained, ${ }^{2}$ where we represent the effect of one collision by $\psi(\infty)=S(\mathbf{b}, \mathbf{v}) \psi(-\infty)$. This integral can be evaluated in the collision frame (\mathbf{b} and \mathbf{v} along coordi-

[^0]: * Work supported, in part, by the U. S. Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, under Contract No. AF29 (601)-6801, with the Lockheed Missiles and Space Company.
 \dagger Contribution No. 243 from the Kitt Peak National Observatory. \ddagger Work performed in part while a Resident Research Associate of the National Academy of Sciences-National Research Council. § Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
 ${ }^{1}$ K. Smith, R. J. W. Henry, and P. G. Burke, Phys. Rev. 147, 21 (1966).
 ${ }^{2}$ C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131, 1177 (1963).

[^1]: ${ }^{3}$ See C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960) ; C. C.
 J. Roothaan, L. M. Sachs, and A. W. Weiss, ibid. 32, 186 (1960).

[^2]: ${ }^{4}$ E. Clementi, IBM J. Res. Develop. 9, 2 (1965).
 ${ }^{5}$ C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, I (1949).

[^3]: ${ }^{6}$ V. P. Myerscough and M. R. C. McDowell, Proc. Phys. Soc. (London) 84, 231 (1964).
 ${ }^{7}$ V. P. Myerscough and M. R. C. McDowell, Monthly Notices Roy. Astron. Soc. 128, 287 (1964).

[^4]: ${ }^{8}$ See M. Ross and G. L. Shaw, Ann. Phys. (N. Y.) 13, 147 (1961).

[^5]: ${ }^{9}$ V. P. Myerscough, Phys. Letters 18, 262 (1965).
 ${ }^{10}$ A. Dalgarno, R. J. W. Henry, and A. L. Stewart, Planet. Space Sci. 12, 235 (1964).

[^6]: ${ }^{11}$ V. P. Myerscough and M. R. C. McDowell, Proc. Phys. Soc. (London) 84, 622 (1964).
 ${ }^{12}$ V. P. Myerscough, Phys Letters 19, 120 (1965).

[^7]: ${ }^{13}$ M. J. Seaton, Phil. Trans. Roy. Soc. London A245, 469 (1953).

[^8]: ${ }^{14}$ See P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).

[^9]: ${ }^{16}$ Y. Hahn, T. F. O'Malley, and L. Spruch, Phys. Rev. 134, B397 (1964); 134, B911 (1964).
 ${ }^{17}$ M. Gailitis, Zh. Eksperim. i Teor. Fiz. 47, 160 (1964) [English transl.: Soviet Phys.-JETP 20, 107 (1965)].
 ${ }^{18} \mathrm{H}$. Maecker, T. Peters, and H. Schenck, Z. Physik 140, 119 ${ }^{18} \mathrm{H}$.
 (1955).

[^10]: ${ }^{19}$ A. N. Pilyankevich, Zh. Techn. Fiz. 30, 226 (1960) [English transl.: Soviet Phys.-Tech. Phys. 5, 204 (1960)].

[^11]: ${ }^{20}$ S. C. Lin and B. Kivel, Phys. Rev. 114, 1026 (1959).
 ${ }^{21}$ R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo, Phys. Rev. 123, 148 (1961).
 ${ }_{22}$ G. Sunshine, B. B. Aubrey, and B. Bedersen, in Proceedings

[^12]: of the Fourth Internationa Conference on the Physics of Electronic and Atomic Collisions (Science Bookcrafters, Inc., Hastings-onHudson, New York, 1965), p. 130.
 ${ }^{23}$ J. W. Daiber, in Proceedings of the Gaseous Electronics Conference, University of Minnesota, 1965 (unpublished).
 ${ }_{24}$ T. Yamanouchi, T. Inui, and A. Amemiya, Proc. Phys. Math. Soc. Japan 22, 847 (1940).
 ${ }^{25}$ T. Yamanouchi, J. Phys. Soc. Japan 5, 154 (1950).
 ${ }^{26}$ M. J. Seaton, Proc. Roy. Soc. (London) A231, 37 (1955).
 ${ }^{27}$ I. C. Percival, Proc. Phys. Soc. (London) A70, 241 (1957).

[^13]: ${ }^{28}$ D. R. Bates, A. Fundaminsky, J. W. Leech, and H. S. W. Massey, Phil. Trans. Roy. Soc. London A243, 93 (1951).
 ${ }^{29}$ W. F. Sheridan, O. Oldenberg, and N. P. Carleton, in Proceedings of the Second International Conference on the Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 159.

[^14]: ${ }^{30}$ A. Temkin, Phys. Rev. 107, 1004 (1957).

[^15]: ${ }^{31}$ D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London) A192, 1 (1947).
 ${ }_{32}$ P. Hammerling, W. W. Shine, and B. Kivel, J. Appl. Phys. 28, 760 (1957).
 ${ }^{33}$ M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115 (1958).
 ${ }^{332}$ K. Smith and L. A. Conway (unpublished).

[^16]: ${ }^{34}$ L. D. Landau and E. M. Lifshitz, Non-Relativistic Quantum Mechanics (Pergamon Press, Ltd., London, 1958).
 ${ }^{35}$ E. Bauer and H. N. Browne, Atomic Collision Processes (North-Holland Publishing Company, Amsterdam, 1964), p. 16.

[^17]: ${ }^{36}$ E. G. Bauer and H. N. Browne, as discussed in Ref. 37.
 ${ }^{37}$ R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo, Phys. Rev. 129, 2069 (1963).

[^18]: ${ }_{39}^{38}$ J. W. Cooper and J. B. Martin, Phys. Rev. 126, 1482 (1962)
 ${ }^{39}$ F. B. Malik and E. Trefftz, Z. Naturforsch. 16, 492 (1961)

[^19]: ${ }^{40}$ N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, New York, 1965), 3rd ed., p. 89 .

[^20]: ${ }^{41}$ H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287 (1962).

[^21]: ${ }^{42}$ P. G. Burke, D. D. McVicar, and K. Smith, Proc. Phys. Soc. (London) 84, 749 (1964).

[^22]: ${ }^{46}$ R. E. Huffman (private communication).

[^23]: * Research supported by the National Science Foundation under Grant No. GP-5191.
 \dagger National Bureau of Standards and the University of Colorado, Boulder, Colorado.
 ${ }^{1}$ F. W. Byron and H. M. Foley, Phys. Rev. 134, A625 (1964). See Eq. (1) for the linewidths in doublet resonance or Hanleeffect experiments.
 ${ }^{2}$ Alain Omont, J. Phys. Radium 26, 26 (1965).
 ${ }^{3}$ M. I. D'Yakonov and V. I. Perel', Zh. Eksperim. i Teor. Fiz. 48, 345 (1965) [English transl.: Soviet Phys-JETP 21, 227 (1965)].
 ${ }^{4}$ F. Franz and J. Franz, Phys. Rev. 148, 82 (1966).

