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Attenuation of Transverse Ultrasound in Copper*
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We investigate the propagation of shear acoustic waves traveling parallel to a magnetic 6eld along a
symmetry direction in a metal crystal. We obtain the propagation constant of ultrasound for the (100) and
(111)directions in a single copper crystal using an analytic representation of the conduction-band structure
obtained from existing theoretical calculations of the energy eigenv'alues of the conduction band. Various
characteristic parameters of copper were obtained together with curves showing the attenuation and the
rotation of the plane of polarization of shear acoustic waves.

I. INTRODUCTION

HE work of Kjeldaas' on the theory of the atten-
uation of transverse sound waves propagating

parallel to an external magnetic Geld in a pure metal
crystal inaugurated a considerable amount of theoreti-
cal'' and experimental' ' studies. The equation of
motion of the lattice in the presence of a shear wave has
been considered in connection with the study of the
helicon-phonon interaction in metals. ' ' These authors
assume a metal consisting of a free-electron gas em-
bedded in an isotropic background of positively charged
ions which are able to sustain both longitudinal and
shear acoustic waves. The results of experimental work
on potassium' using the Kjeldaas geometrical arrange-
ment appear to agree with the free-electron model; how-
ever, as one would expect, the results of similar work on
copper, tin" and aluminum" do not agree with the
free-electron model.

Taking the velocity of sound s in a typical metal to be
of the order 10' cm/sec, the phonon wavelength will be
approximately 10 ' cm for ultrasonic waves of frequency
100.Mc/sec. Since this wavelength is much larger than
the-lattice spacing, we may describe the sound wave by
the' displacement and velocity Gelds g(r, t) and u(r, t)
= 8$(r,t)/c)t. When an external magnetic Geld of several
thousand gauss is placed parallel to the wave vector
q of the sound wave, the cyclotron frequency of the elec-
trons greatly exceeds the frequency co of the sound wave;
thus, we may consider the sound wave Gxed in space.
Assuming the mean free path of the electrons to be
larger than the wavelength X of the sound wave, they
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will gain energy from the sound wave via interaction
with the resulting self-consistent electric Geld. The con-
dition for this to occur for electrons having an average
velocity 8 in the direction of the Geld is

where T is the electronic cyclotron period. Writing the
cyclotron frequency of the electron co,= 2rr/T and
q=2x/X, Eq. (1) becomes

co,= g8. (2)

Since. the detailed electronic model has little effect on
the velocity of shear acoustic waves, " we can write
t=t/cos, oo being the angular frequency of the sound
wave. With this and the deGnition co.=eBs/rl, c, where
m. is the cyclotron effective mass of these electrons, Eq.
(2) can be written in the form

J3s (cos/se) rr4tI—— (3)

This result implies that the ultrasonic attenuation of
shear waves in metals as a function of applied magnetic
field shows an absorption edge, which we shall refer to
as the Kjeldaas edge, at the magnetic Geld for which the
right side of Eq. (3) is a maximum.

We consider the propagation of a shear elastic wave
along a symmetry direction of a metal crystal parallel
to an external dc magnetic Geld. Further, we require
that the shear modes be degenerate, i.e., the velocity of
sound is independent of the plane of polarization. For
example, this occurs in a cubic crystal for propagation
along a (100) or (111)direction. In Sec. II we consider
the equation of motion of the lattice under these condi-
tions. In Secs. III and IV we apply these results to
the calculation of the attenuation of sound in copper
metal as a function of magnetic-Geld strength.

"S.Rodriguez, Phys. Rev. 130, 1778 (1963).
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II. THEORY

Taking the force on an ion arising from the short-
range ion-core interactions as Ms'V'(, where M is the
mass of the ion whose charge will be assumed to be se,
we can write the equation of motion for the displace-
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ment Geld of the lattice as

82—g= ss Vs(+(F,/1'�),
R2

(4)

F,=seE+(se/c)(u&&Bp)+(sm/r)((v) —u), (5)

where (v) is the average electron velocity. The quantity
(v) may be related to the electron current density by
the equation

(6)j&'1 = —Npe(v),

where eo is the number of conduction electrons per unit
volume.

Let us assume the space-time dependence of the sound
wave is given by exp(koi —iq r), where to and q are the
angular frequency and wave vector of the sound wave.
Within the linear approximation all other quantities
dependent on the sound Geld show the same space-time
variation. For convenience, we describe the transverse
wave by the circularly polarized parameters $~——$,+if„
where we have taken a Cartesian coordinate system
with the z axis parallel to Bp. Using similarly defined
quantities we obtain from Eqs. (4)-(6)

( i(oem) se)
~

(os—s'qs&Q. co— ~4,+ —~E~
mr) ~i

t sm
(7)

t n~er j
where 0,= (seBp/3Ec) is the cyclotron 'resonance fre-

where F, represents all other forces exerted on the lat-
tice. These forces incIude the long-range Coulomb forces
of the other ions, as screened by the conduction elec-
trons, the effect of the external magnetic Geld on the ion
and an average collision force resulting from electron-
ion interactions. The Grst two forces may be described
in terms of a self-consistent electromagnetic Geld acting
on the electrons and on the positive ions, together with
any external Gelds that may be present. This contribu-
tion to F, is zeE+(se/c)u&&B, where E is the self-
consistent electric Geld and B is the sum of the self-
consistent magnetic Geld and the external dc magnetic
field Bp. We can set B=Bp since the external field will be
much larger than any self-consistent magnetic Gelds
which may arise from the presence of the wave. The
average collision force results from the momentum
m(v —u) being transferred to the lattice when an elec-
tron of mass m and velocity v collides with the lattice.
Here we have assumed that the electron scattering is
isotropic, i.e., all directions of scattering are equally
probable, in the frame of reference in which the lattice
is locally at rest. If we introduce an average electron-
lattice collision time r= (1/r(k) ) ' where the average is
taken over all the electrons, i.e., averaged over the
Fermi surface, the force F, can be written

c2q2E~ = —4zio)j~. (9)

The second such relation is the so-called constitutive
equation relating j&'1 to R. The electron current density
has a component from the self-consistent field R and
a component from the fact the scattered electrons retain
a drift velocity u."There is also a component from the
diGusion current resulting from variatioas in the local
electron density. However, the local electron density is
constant in the approximation that E,=O, and, hence,
we may ignore this term. This constitutive equation,
obtained by the standard arguments of transport theory
discussed in Refs. 11 and 13, is

j&'&=a (E—mu/er), (10)

where e is the magnetoconductivity tensor. Equation
(10) may be written in circularly polarized notation as

j~&'& = o ~LE~—(waco/er) $~$, (11)

where o-~=a.„&ifJ„.We have used here the relations
o„=o.» and o.„,= —o,„which follow from symmetry
considerations of the crystalline model.

From Eqs. (9) and (11) we obtain

j~&' +Npeipp&~ ——(ic'q'/4~re)E~ =—iPo.pE~. (12)

The last equality defines the parameter P. op rspe'r/m. ——
is a constant which has the dimensions of a conductivity,
but should not be identiGed with the dc electrical con-

~s T. Holstein, Phys. Rev. 113,479 (1959).
"A. W. Overhauser and S. Rodriguez, Phys. Rev. 141, 431

(r96u).

quency of a free ion in the magnetic Geld Bo. Ther'e is,
of course, a longitudinal mode resulting from the com-
ponent E, of the self-consistent Geld. However, we take
this component to be small and, hence, the interaction
of the transverse modes and this longitudinal mode is
negligible.

There may also be a force on the lattice from the con-
duction electrons due to the presence of a deformation
potential O'. Thus, we should add to F, the term —eepVC
to include this force. However, C is dependent upon the
presence of the disturbance, and, hence, must have the
same space-time dependence. Therefore, VC can have
a nonzero component only in the s direction, i.e., only
for the longitudinal mode. Again' the e8ect of the inter-
action of this longitudinal mode with the transverse
modes is negligible.

We now need equations relating E~ and j~&'l to 4.
'One such relation comes from Maxwell's equation con-
necting the total current density

j=jt"+npeu

to the self-consistent electric Geld E, i.e., cV X E
= —(BB/cd) and cV&&B=47rj. We have neglected the
electric displacement in these equations since co&&cq.

Noting that V E=O because we have taken E to have
only transverse components, we have
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micro (G~—1)
4,

er (G~—iP)
(13)

with 0~=0zG~. Substitution of Eq. (13) in Eq. (11)
gives

ductivity of the crystal. Substitution of Eq. (11) in
Eq. (12) gives

linearly with the time N. The function v(e,k„g) is the
velocity of an electron on the orbit dehned by e and k,
at the time I, and v, (e,k,) is the average of this velocity.
f0= fo(c(k)) is the electronic distribution in thermal
equilibrium, and integration of —(dfo/de) over e indi-
cates, of course, that the integral over k, in Eq. (16) is
to be evaluated at the Fermi energy e+. In circularly
polarized notation Eq. (16) becomes

With Eqs. (13) and (14), Eq. (7) becomes

(14) e Bp
ag ———

(2zr) 'k'c
dk, T(ep, k.)(U ~+V„~)V ~*

zimco (1—iP) (Gg—1)
GP—e g +Qg+ 4.=0. (15)tv.

2e'Bo

(2zr) 'lz'c

( df0)
dk. T(e,k.)

dei

An equation of the same form as Eq. (15) was derived
by Quinn and Rodriguez, ' who assumed that the metal
consisted of an electron gas imbedded in an isotropic
background of positively charged ions, and, hence, the
longitudinal component of the self-consistent electric
field arising in the presence of a transverse acoustic wave
was identically zero. We have assumed the existence of
a discrete lattice, and neglected the interaction of the
longitudinal mode with the transverse modes. As men-
tioned by Quinn and Rodriguez, solutions of Eq. (15)
may be identified with right- and left-circularly polar-
ized acoustic waves and with a left-circularly polarized
electromagnetic wave called a helicon.

The rnagnetoconductivity tensor o is discussed in Ref.
13 where the result

XD/r+z(&u zzco.—zl v—,)j '. (19)

e(z)= e(—~). (20)

Since c(k) exhibits p-fold rotational symmetry about
the direction under consideration, we expand it in a
Fourier series as

e(k)= Q eg(p)k, )e'""
l=~

(21)

If the direction of Bois a p-fold axis of rotationalsym-
metry in the crystal, then that direction will be a p-fold
symmetry axis for e(k) in k space. For example, in a
cubic crystal, p=4 and 3 for the (100) and (111)direc-
tions, respectively. The directions which we consider
in a cubic crystal are also such that there exists a plane
of mirror symmetry which contains the symmetry di-
rection. If we consider a plane perpendicular to the
symmetry direction, it will intersect the mirror sym-
metry plane in a line which we use as the origin of an
angular coordinate q, i.e., a point in k space may be
designated by the cylindrical coordinates (p, &p,k,) and
for a given k, and p

X g V V„*L1/r+i(co—zz~, —q v,)j ' (16) Using Eq. (20) and the fact that e(k) is real, we obtain
m the condition

is obtained, with e&(p,k.)= e i(p, k,), (22)

1 r
V (e,k,)=— dl v(N)expiI q R~(N) .zoo,lf —(17).

0

where each e~(p,k,) is real.
The transverse components of the electron velocity

can be written

eBp
COg =

T(e,k,) cm, (e,k,)
(18)

The period of motion T(e,k,) in k space of an electron
having energy e and a component of its wave vector
equal to k, in the s direction is related to the cyclotron
frequency or, by

|'Be Be) Be z Be)
Izz ~=

~

ai —
I

= e+'~ —a-—
&Bk. Bk„i Bp p Bvi

Substitution of Eq. (21) in this expression gives

p+ —Q ze)+e&'(n&+&) e
)

(23)

(24)

where m, is the cyclotron effective mass of the electron.
The function R(N) which gives the position in real space
of an electron of energy ~ and component k, of the wave
vector at the time I can always be separated into two
terms R, (N) and R„(N) so that R= R,+R„.Here R„ is
a periodic function of k, while R,=v, (e,k,)zz increases

where

1(Bei pt
up+ ——ze P=—

~

W—e( ~.
k&Bp p i

Equation (21) also gives the z component of the electron
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velocity
1. 86

=gg+P eg cosPtq,
h8k,

where b(sj ) is defmed to be one if i=j and zero other-
wise. Fixing l and adjusting the summation index lj we

(25) obtain

y= Mcg. (26)

The s component of R~(N) is given by the periodic
part of J'e,dg, or

gO

R„=g sinPlog, gg.
g=l /Peg~

(27)

De6ning Xg=qeg//Pgo, and substituting Eqs. (27) and
(24) in Eq. (17) we obtain

T

V p=—
T Q

dl( g wg+e'"g"'")

Xexpel P Xg sinplog, u n&o,N'og, gg—j. (28)
l=l

Using the expansion'4

where h8= cgso/cik, and beg= 2(g)sg/r)k. )
In order to obtain the time dependence of q we use

the relation og,T(e,k,)= 2a to write

d p/dN = og,+f(og,N),

where f(og,N) is a periodic function of the time param-
eter I with period 2a./pg0, . Integrating and neglecting
the periodic variation of q with I, we find

II Jg, (Xg)wg+~g -g(Xg)l=& /I, lg ~ E& ~ ~ ~ j=2

Therefore

X8(gg, &1+Q kP/s).
k~1

V-+V.+*= Z II ~g;(XJ)~g; (X')
l],=oo lmlQ lel3 ~ ~ l~lga' ~ ~ ~ j=2

XL Q wg+Jg, g(Xg)jt P wg+J (Xg)j
l~oo l'

Xb(gs, &1+Q kPla), (32)
k=1

$3@0 00

dk.T(...k.)
(2gr) k e g& m gggs'gggg' ~ ~ ~ gag~' ~ ~ ~ j=2

XJg,.(X;)Jg,'(X,)P Q wg+ Jg, g(Xg) $

gN = lg —1'+ Q k(4 —lg,.') .
k=2

For p=3, 4, or 6, V„~V„+*——0. Thus, putting Eq. (32)
in Eq. (19) we have

exp(iX sine) = P Jg(X)e'", (29)

wg+ exp(iPtog, g)j
l

&& P ( P Jg, (X;)exp(g.jPl, og,gg) j (30).
&;=oo

Interchanging product and summation and integrating
we have

V-+= Z Z II ~g;(Xg)wg'
i=co l1, lu ~ ~ .l~ ~ ~ ~ g=&

Xb(gg, P/a1+ Q kPts), (31)
k~1

where Jg(X) is a Bessel function of order /, we write Eq.
(28) as

I T

V ~=— dsg exp/i(+1 —gs)go,gj
0

X( g wg+J (X,)]
l'

X -+sl ~—~I +1+Zkpl» i

—
V& I, (33)

s 1

where we have substituted qi for q v, .

III. APPROXIMATE ANALYTIC REPRESE5'TA-
TION FOR THE BAND STRUCTURE

OF COPPER

The electronic band structure of copper deviates from
the free-electron model because of the strong overlap of
the s and d energy bands. Thus, an analytic function of
k to represent the conduction-band structure cannot
easily be found, although such a description is necessary
to obtain the velocity components given by the gradient
of c(k). Recent theoretical calculations of the energy-
band structure of copper have been made by Segall, "
who used the Green's-function method, and by Bur-
dick, "who used augmented plane waves to obtain nu-
merically the electronic energy eigenvalues for selected
values of the electron wave vector k. Both of these au-

"H. B.Dwight, Tab1es of Integrahs and Other N athematical Data
(The Macmillan Company, New York, 1961),'.4th ed. , p. 198.

'5 B. Segall, Phys. Rev. 125, 109 (I962)."G. A. Burdick, Phys. Rev. 129, 138 (1963).
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thors used--the potential derived for copper by Chodo-
row" and their results are in close agreement with one
another. Roaf" used the experimental frequencies of the
de Haas —van Alphen oscillations for various directions
of the magnetic field obtained by Shoenberg" to 6t an
analytical expression for the Fermi surface. From this
expression he obtained the radius vectors of the Fermi
surface for a number of angles. His results are in rea-
sonable agreement with the Fermi surfaces obtained by
Burdick and Segall.

We propose to 6t an analytical expression for e(k) to
the numerical calculations of these authors. Our results
involve the use of Burdick's data only, although we ob-
tained similar results when Roaf's data was incorpor-
ated with Burdick's. The first Brillouin zone for the
face-centered cubic (fcc) lattice, which is the lattice
con6guration of copper, was partitioned into 2048 cubi-
cal volume elements by Burdick. The energy eigenvalues
were then computed for the value of k lying at the center
of each volume element. By reason of the symmetry of
the fcc lattice it is necessary to consider only those k
values lying within a one-forty-eighth part of the volume
of the Brillouin zone, the energy eigenvalues of all other
k values considered in the erst Brillouin zone being equal
to those of one of the k values in this smaller volume.
There are 89 k values in this smaller volume, each of
which may then be weighted fear the number of k values
in the total Brillouin zone which are equivalent to it by
symmetry. The weighting factor for each k value is
given in Table II of Burdick's article, "and the energy
eigenvalue of the conduction band is given in Table III
of the same article. The frame of reference used by
Burdick was one in which the Cartesian axes of k space
lie along the (100) directions.

To obtain an analytic expression for e(k) we have ex-
panded e(k) in a series of functions, each of which has
the symmetry of the point group of the lattice, and per-
formed a least-squares fit of this series to the numerical
results of Burdick. This series may be written in the form

The root-mean-square error can be written

where e(x;) is the calculated energy eigenvalue of the
conduction band at k;=kpx; taken relative to e(1'rs),
and 3f is the number of values of x;, 2048 in this case.
Taking (r)1.&/r)a;) =0 for j=1, 2, . . . n to minimize I&,
we obtain

This set of equations may then be solved for the set of
coefhcients aj which give the approximation having
minimal root-mean-square error. These coefficients for
various values of e are tabulated with the corresponding
root-mean-square error in Table I.'

The last column in Table I shows the coeScients and
root-mean-square error corresponding to the trial Fermi
surface used by Pippard" to describe his experimental
results in measurements of the anomalous skin effect in
copper. This surface was of the form

1—zs+y2 1z2+Q (zsy2+yss2+zsa2) +Bzsyszs

where A =0.3 and 8= —5.6. It should be noted that
this is an expression to describe the Fermi surface and
was not an attempt to represent the band structure of
copper.

In order to apply these results to the (111$direction
it is necessary to rotate Eq. (34) so that the k. axis lies
in the (111) direction. We use the expression for the
action of the rotation operator I'rr on the function f(x),
i.e., I' J„f(x) = f(R 'x), where R is the rotation matrix

—v3 V3 0

v2 V2 V2

n

1.(c;,k) = P c;p;(k),
j=1

(34)
Equation (35) becomes

I g(a/, x) =Ep P a;q;(R 'x) =Ep Q g y (x). (38)
where the-cj are the coefficients to be determined and
tr is the number of functions, denoted by ip, .(k), used in
the approximation. For convenience we shall remove
the factor kp=rr/4u from k, writing k=kpx, where
x= (x,y,s). Factoring Ep——h'kps/2m from the c; and in-
corporating higher powers of ko into the cj we write

Using the coefficients aj for the case e=6, the coefB-
cients aj' were calculated and are shown with the rotated
functions q (x) in Table II.

IV. RESULTS

L,(a,,x) =J:p g a; q, ( ).x
j=l

(35)
In principle, if the energy is known as a function of

k, the Lorentz force equation for the motion of a Bloch

The functions p, (x) are given in Table I.
I

'7 M. I. Chodorow, Ph.D. thesis, M.I.T., $939 (unpublished).
» D. J. Roaf, Phil. Trans. Roy. Soc. (London) A255) 135 (1962)."D. Shoenberg, PhiL Trans. Roy. Soc. (London) A255, 85

(1962).

"The expansion for m=10 was used in all calculations in the
(100) directions since it is more convenient and the root-mean-
square error is the sa'me as the computational error given by
Surdick. In this and later calculations the lattice constant for
copper was taken to be 3.603 A."A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325
(&9S7).
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TABLE. L The expansion functions zt;(x) are listed in the upper portion of the table. The coefficients a; for n= 13, 10, 6, and 4 are
listed in the second through

fifth

columns of the lower portion of the table; the last column shows the results for Pippard's trial surface.
The root-mean-square error in rydbergs is shown in the last row.

g'+y'+8'
x4+y4+s4
x2y2+y2s2+s2x2
x'+y'+8'
g2y2S2

g2y4+y2g4+ . . ~

g8+y8+g8
x4y4+y4&4+ &4x4

9
10
11
12
13
14
15

azyzzz(z2+y2+z2)
x2

y
B+y2xB+

g10+y10+g10

x'y8+y'x'+ ~ ~

x'y4+y4x0+ ~ ~

&2yzz2 (z4+y4+z4)
z zy &z2 (zzy 2+y zzz+ zpa 2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
12

n =15
—0.2113

0.006028
0.1068
0.0005733—0.03495—0.002392—0.00001142
0.00007959
0.001113
0.00001453
0.00000005218
0.0000001076—0.0000007571—0.000008421—0.00002446
0.0095

m=10
—0.2693

0.01858
0.07647—0.00002989—0.01090—0.0009108—0.000001508—0.00001131
0.0001023
0.000007448

0.0111

—0.2600
0.02171
0.05814—0.0001486—0.004340—0.0005319

0.0212

m=4

0.08597
0.006731
0,02289

—0.002362

0.0298

Pippard

0.328

0.00218

—0.000892

0.106

In Fig. 2, inexactness of the fit of L(c;,k) to the energy
eigenvalues caused the computed value of ko near the
neck to fall below the observed value. " The dotted
curve shows the correction made to bring ko into agree-
ment with the observed neck radius.

We substitute Eq. (42) in the expression hv, =
Be(p, q,k,)/flk, for p to obtain a series in cosP/y, the coe-
fficients of which are 8 and p~ of Eq. (25). Figures 3 and
4 show 8(k,), pr(k, ), and tts(k, ) evaluated on the Fermi
surface for the (100) and (111)directions, respectively.
In Fig. 4, v2 is essentially zero for all values of k, . Also,
8 is terminated at the k, value for which k() became
smaller than the neck radius (see Fig. 2). Intuitively,
i should go to zero as k, approaches its maximum value

electron
ck(dk/du) = —e(vX&) (39)

can be solved for k(u) using kv= Vze. This solution can
be substituted in the expression for v(k) to obta, in v(u)
from which the coeKcients F,, n&, and te&+ of Eqs. (24)
and (25) can be found. However, except for special cases,
e.g., when the Fermi surface exhibits cylindrical sym-
metry about the magnetic Geld, Eq. (39) is quite difficult
to solve exactly.

Setting L(c;,k) from Eq. (34) equal to e(k) in Eq. (21)
we may approximate the expansion of Eq. (21). This
expansion may be set equal to e&, the Fermi energy,
and k~, the transverse component of the electron wave
vector on the Fermi surface, can be found by doing a
perturbation calculation for p. The zeroth-order appr
mation gives the equation

ez = ep(pp, k8),

OX1
TAnr, z II. The expansion functions y, '(x) and the coefficients

a, ' are listed. The erst column shows the value of j, the second

(40) a, ', and the third z, '(x).

which may be solved for pp(k, ). The erst-order correc-
tion is

2et(pp, k,)
pt= — cospip—=kt cospip q

(~epl@) (ps k.)
(41)

ki=P kg cosplpp.
L=O

(42)

where ko= po and k~ are the 1=0 and I terms of the
expansion

1
2
3
4
5
6
7
8
9

10
11
12

—0.2600
0.02538—0.006939
0.04342
0.02662—0.0001701—0.00005907
0.0002913—0.0007332—0.0001266—0.0001200—0.0002954

x2+y2+g2
(x2+y2) 2

yz(y' —3x')
g2(x2+y2}
S4

(z2+yz) 3

y2(y2 3x2) 2

yz(z'+y') (y"—3z')
Z2{g2+y2}2
z'y (y' —3x')
z4 (x2+y 2)
gB

The quantities kp(k, ) and kt(k. ) are shown in Figs.
1 and 2 for the (100) and (111)directions, respectively. "H. V. Bohm and V. J.Easterhsng, Phys. Rev. 128, 1021 (1962).
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6.

2-

0.8

E

O

0.6

0-
k, {~/4a)

Fin. 1. ko(k, ) and k&(k,) for the L100j direction.
04

in the (111)direction. However, this need not be true
because the Brillouin zone of the fcc lattice does not
contain a reflection plane perpendicular to the (111)
direction.

The coe%cients m&+ of v+ may be found in a similar
manner. However, these coeKcients are obtained much
more simply by writing Eq. (39) in circularly polarized
notation,

0.2

6 kz (vr/4a)

Fio. 3. tt(ez, k.) and the absolute values of s&(ez,k,) and
sr(~s, k.) for the (100) direction.

Using k+——kre+'& and Eqs. (24) and (42), we obtain
upon equating coeKcients

Figure 6 was terminated in the same manner as Fig. 4.
The cyclotron effective mass m, of an electron, de-

fined in Eq. (18), can be found from a result given by

l.2-

(44)

The coeKcients ws(k, ), wi+(k.), and wi (k,) are shown

in Figs. 5 and 6 for the (100) and (111) directions.

l.0

E

O

„0.8

O
Ct

06

04

0.2

0
0

kz {~/4a)

Fin. 2. ko(k, ) and ki(k, ) fox the (111)direction.

0
0

kz {~/4a)
Fio. 4. s(e~,k,) and the absolute value of

v~(ez, k*) for the (111)direction.
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Harrison"

2zrm, g= —k(BS/r}k.), (45)

2m ky

where S(k,) is the cross-sectional area of the Fermi sur-
face at k, . Using Eq. (42) we find

I.2-
CP

0
6
CP

O
0.8-

S(k,) = kzdkzdy=zr(ks'+-' , Q kzs). (46)
l=1

This expression was differentiated numerically to ob-
tain m, (k,) shown in Fig. 7 for the (100) and (111)
directions. These curves agree with the experimental"
values for the cyclotron effective mass of 1.385 at k, =o
in the (100)direction, 1.355 at k, = 0, and 0.6 on the neck

WI

k, (~/~a)

Fio. 6. us(s~, k,), zsz+(e~, k,) for (111)direction.

f,2

E

o 08

0

04

k, &~/4a)

Using the results shown in Figs. 1—7 this integration
can be performed numerically. Equation (15) can now
be solved for the dispersion formula zd(q, Be). The ex-
perimental conditions are such that or is kept fixed, so
that we should solve Eq. (15) for q=qi iqs fo—r fixed
co. However, it is more convenient, and equally correct
because the velocity of sound changes very little from
its value in the absence of electron interactions and be-
cause qs((qt, to solve for ze=zei+i&es for fixed q given
by orp=sq, orp being the frequency of the externally ap-
plied sound field. ' The coeKcient of attenuation y is
given by

y = 2zes/s.

The difference in velocities of the right- and left-
circularly polarized components of a linearly polarized

-0.4-
2.0.

Fio. S. wo(es, k,), rzt~+(ss, k,) for (100) direction.

in the (111) direction. The dotted portion of the
curve for the (111) direction was obtained by linear
extrapolation.

Assuming that z ~+ and v~ are negligible for l&2, Eq.
(33) reduces to

l.6

+ t.2

S

dk, T(ep, k,)
0.8

Xftcsjt(xi)+tot+A-i(&i)+rcpt Ji+i(&i)$'

1 —1

X —+ifzo —(p/&1)ze, —q8j . (47)

OA-

"W. A. Harrison, Phys. Rev. 118, 1190 (1960).
'4 A. F. Kip, D. N. Langenberg, and T. W. Moore, Phys. Rev.

124, 359 (1961).

8 k (w/4a)

Fin. 7. m, (k,)/m for (100) and (111)directions.
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shear wave gives rise to a rotation of the plane of polari-
zation of the sound wave given by

he/L = Abet/2s, (49)

where 3 co~ is the difference in the real parts of the fre-
quencies of the two circular polarizations and L is the
length of the sample.

The velocity of transverse sound in the (100) direc-
tion, determined from measurements of the low-tem-
perature elastic constants by Overton and Ga6ney, 25

was taken to be 3.011&&10' cm/sec. The coefficient of
attenuation y is shown in Figs. 8 and 9 for frequencies
of 110, 50, and 30 Mc/sec where we have taken the
electron collision time 7- to be such that co,r at 18 kG is
50 and 10, respectively. The rotation of the plane of
polarization for the above frequencies and the larger
collision time is shown in Fig. 10.

The velocity of transverse sound in the (111)direc-
tion, found in the same manner as above, "was taken to
be 2.217)&10' cm/sec. The coefficient of attenuation and
the rotation of the plane of polarization of a shear
acoustic wave propagating in the (111) direction are
shown in Figs. 11, 12, and 13 for the same conditions
described above for Figs. 8, 9, and 10.

Figure 14 shows the product (m, 8/m) versus k, for
the (100) and (111)directions. Using Eq. (3) we ffnd

E
CJ

30 Mc/sec.

O
0

l

8 l6

8 (kG)

I

24

FIG. 9. The attenuation coefFicient y of a shear wave propagat-
ing in the (100) direction for frequencies of 110,50, and 30 Mc/sec
and co, (18)r = 10. This corresponds to a q/ that is 11.4 at 110
Mc/sec and scaled appropriately at lower frequencies.

that the Kjeldaas edge should occur at 20.2 and 24 kG
for the (100) and (111) directions, respectively. The
edge occurs at a larger field in the (111)direction because
the velocity of transverse sound is considerably smaller
than in the (100) direction. The large peak in the co-
efficient of attenuation at magnetic fields just below

0

B (kG)
l6 24 52

I I 0 Mc/sec o
V)
Z,'

CL

CL

0 2

0
0

I

8
I

I6

B, (kG)

I

24
I

.52

FxG. 8.The attenuation coefficient y of a shear wave propagating
in the (100) direction for frequencies of 110, 50, and 30 Mc/sec
and ru. (18)r=50 This correspond. s to a ql that is 57 at 110 Mc/sec
and scaled appropriately at lower frequencies.

"W. C. Overton, Jr. and J. Gaffney, Phys. Rev. 98, 969 (1955).

FIG. 10. The rotation of the plane of polarization of a shear
wave propagating in the (100) direction for the conditions of Fig.
8. The origins of the 50 Mc/sec curve and the 30 Mc/sec curve
have been shifted downward 1 and 2 rad/cm, respectively.
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IO-

24

o -I
V)

Ch

0 Mc/sec.

I I 0 Mc/see

Mc/sec.

.-4

0
l6

B, (kG)

24
I

52

Fxo. 11.The attenuation coeScient y of a shear wave propagat-
ing in the (111)direction for frequencies of 100, 50, and 30 Mc/sec
and co.(18)r=50 This corre. sponds to a q/ that is 78 at 110 Mc/sec
and scaled appropriately at lower frequencies.

the Kjeldaas edge results from the fact that two groups
of electrons with diferent values of positive k, satisfy
Eq. (3). The small dips in the coefficient of attenuation
and the rotation of the plane of polarization in the (100)

direction at Bs=4.0 kG as seen in the 110Mc/sec curves
of Figs. 8 and 10 result from a resonance" in the mag-
netoconductivity tensor o Lsee Eq. (47)g at the mag-
netic Geld for which

gg= 5+, . (50)

Similar resonances should occur at the magnetic Geld

FIG. 13.The rotation of the plane of polarization of a shear wave
propagating in the (111) direction for the conditions of Fig. 11.
The origins of the 50 Mc/sec curve and the 30 Mc/sec curve have
been shifted downward 1 and 2 rad/cm, respectively.

l.6-O

E
CJ

O
l.2

E

0.8E

0
0

c sec.
I

l6

B, (kG)

24

04

0
0

FIG. 12. The attenuation coefBcient p of a shear wave propagat-
ing in the (111)direction for frequencies of 110, 50, and 30 Mc/sec
and o&.(18)r=10. This corresponds to a qf that is 15.5 at 110
Mc/sec and scaled appropriately at lower frequencies.

ks (vr/4a)

Fro. 14. (m.s/m) versus k, for the (100) and (111)directions.
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(6.8 kG) for which
gv= 3', . (51)

The magnitude of these resonances depends upon the
magnitude of m»+ and since zv&+ corresponding to Eq.
(50) is larger than tc& corresponding to Eq. (51) for all
values of k„ the resonance at 80=6.8 kG is obscured.
(By making tot+ unrealistically large, resonances at
Bs 6.8 k——G appear. ) These resonances disappear at
lower frequencies and lower collision times. In the (111)
directions m&+ is very small for all k, and, hence, these
resonances are essentially unobservable in all the curves
of Figs. 11—13.

The peak in the coefficient of attenuation in the
(100) directions which occurs at 3.0 kG for a frequency
of 110 Mc/sec and at corresponding lower 6elds for
lower frequencies (see Figs. 8 and 9) may be identified
with the peak observed by Boyd and Gavenda' and
discussed by other authors. 7 ' This peak is associated
with the presence of the Bessel functions in the conduc-
tivity tensor and, hence, should be described in quan-
tum-m. echanical language as a geometrical resonance.
That is, it results from a variation in the matrix elements
rather than a variation in the resonant denominator.

"S.G. Eckstein, Phys. Rev. Letters 16, 611 (1966).

P H YSI CAL R EV I EW VOLUME 157, NUMBER 3 1& MAY 1967

Nuclear Quadrupole Coupling, Knight Shift, and Spin-Lattice
Relaxation Time in Beryllium Metal*

D. E. BARNAAL, t R. G. BARNES, B. R. McCART, t
L. W. MOHN, ) AND D. R. TORGEsoN

Irsstitute for Atomic Researctt artd Departmerst of Physics, Iosoa State Ussicersity, Ames, Iosoa

(Received 23 December 1966)

The nuclear quadrupole coupling and Knight shift of Be have been measured in high-purity beryllium
metal at room temperature and at 77'K in magnetic-Geld strengths up to 25 kOe. The nuclear quadrupole
coupling constant is found to have the value e'qQ/ts=61. 8&1.8 kHz, independent oi temperature. By
contrast, the best estimate of the lattice contribution to the quadrupole coupling is found to be 68~6 kHz,
which implies that the conduction-electron contribution opposes that of the lattice. The Knight shift is
found to have the values Es, = —0.0025+ (6) at 300'K and Es, = —0.0035+(6) at 77'K (in percent);
the uncertainty given is the standard deviation of the measurements. Measurements of the spin-lattice re
laxation time at two temperatures indicate that T&T= 1.66&&10 sec 'K with an uncertainty of 10%.These
experimental observations can be interpreted in terms of direct-contact and core-polarization contributions,
from a predominantly p-like band, which partially cancel to yield the small Knight shift.

INTRODUCTION

HE nuclear quadrupole coupling in beryllium
metal has been of interest both from the solid-

state and nuclear standpoints. From the theoretical
standpoint, the calculation of the coupling constant in
beryllium by Pomerantz and Das' was the first to in-

clude, in an explicit manner, the contribution of the
conduction electrons to the electric field. gradient
(EFG). That calculation, combined with the measured
value of the coupling constant reported by Knight, '
yielded a value for the quadrupole moment of Be'
which was for some time the only available value for
this quantity. Quite recently, atomic beam measure-

* Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2010.

t Summer Faculty Participant. Permanent address: Luther
College, Decorah, Iowa.

f Summer Faculty Participant. Permanent address: Augustana
College, Rock Island, Illinois.

t'l Present address: University of Washington, Seattle, Wash-
ington.

' M. Pomerantz and T. . P. Das, Phys. Rev. 119, 70 (1960).
s W. D. Knight, Phys. Rev. 92, 539 (1953).

ments' have yielded an independent value for Q(Be')
which diGers signi6cantly from that derived by pomer-
antz and Das.

We report here on new measurements of the quad-
rupole coupling in beryllium, in which we have obtained
a value 25%%uz greater than that reported by Knight. s

Nonetheless, this measured coupling is still less than
that calculated on the basis of the atomic beam value
of Be' and the lattice contribution to the EFG. Whereas
the calculation of Pomerantz and Das indicated that
the conduction-electron contribution to the EFG was
of the same sign as the lattice contribution, the present
results suggest that the two contributions are very
likely of opposite sign. This is interesting in view of the
fact that in essentially all other metallic cases the
relative sign of the lattice and conduction-electron
contribution is unknown.

Similarly, the unusually small Knight shift, which

~ A. G. Blachman and A. Lurio, Bull. Am. Phys. Soc. 11, 343
(1966).


