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A formula for the phonon-drag part .S, of the thermoelectric power in metals is obtained by assuming that
the electron scattering processes can be described by a relaxation time 7 (k). The formula differs from the
simplest variational expression only by having extra factors of 7 in numerator and denominator. The signs
of the contributions of S, and the low-temperture limit are discussed.

1. INTRODUCTION AND DERIVATION

ECENTLY, Van Baarle! and Fletcher and Dugdale? have suggested that the impurity scattering of elec-
trons may play an important role in the phonon-drag part S, of the thermoelectric power in metals.
This at first sight would seem to be unlikely. Consider the simplest approximation to .S, given by?
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in which a(jq; kI,k’l') is the relative probability that the
7q phonon will engage in the interaction that sends the
electron state from ki to k'’ (relative to all other
interactions that the phonon jq may enter); v(kl) is
the velocity of the electron in reduced wave-vector
state k and band /; and No(jq) is the equilibrium
distribution of phonons in state jq, frequency w(jq),
and velocity v(jq). The second sum U9 is over all
states and transitions that need the qj phonon. The
factors 2 in the numerator and denominator come from
a sum over spin, and the factors ¥ come from converting
2, (&l)v,(jq) to 3 1v(kl)- v(jq) valid for cubic materials.

The quantity ¢ does not depend on the scattering of
the electron by impurities, but only on the scattering of
the phonon by impurities (it enters as just another of
the processes that the phonon can enter into when the
relative probability is calculated). How then can the
impurity scattering of the electrons affect the S, term?

There is, in fact, an impurity effect on the electrons
that may matter here, but it is lost in the very simple
approximations used in manipulating the variational
principle.

An expression for S, which is almost as simple as
Eq. (1) but which shows the effect of electron scattering
by impurities can be obtained by assuming a relaxation
time 7(k,/), in the collision terms of the generalized
Boltzmann equation.®5 Such a procedure allows the
equation to be solved without any trouble, and without
recourse to the variational principle. Furthermore, the

1 C. Van Baarle, Physica 33, 424 (1967).

2 R. Fletcher and J. S. Dugdale, Proceedings of the International
Low-Temperature Conference, Moscow, 1966 (unpublished).

3 M. Bailyn, Phys. Rev. 120, 381 (1960). See Appendix H, in
particular Eq. (HS).

4 M. Bailyn, Phys. Rev. 112, 1587 (1958). See Eq. (14). The
first to set up an equation of this type was L. Gurevich, J. Phys.
(U.S.S.R.) 10, 67 (1946).

5 See also M. Tsuji, J. Phys. Soc. Japan 14, 618 (1959).
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solution for .S, reduces to Eq. (1) when the assumed
relaxation time is approximated by a constant. We
feel, therefore, that the approximation of a relaxation
time is in all respects better than the first variational
approximation, especially when the impurity scattering
of electrons is larger than the phonon scattering, in
which situation the use of a relaxation time is probably
quite good altogether. 7 is not, however, treated as a
constant over the Fermi surface, the anisotropy assumed
being crucial to the subsequent discussion.

The derivation of the new result will only be sketched
briefly. A knowledge of some of the equations in Ref. 4
will be necessary, and is assumed without discussion.
The electron distribution function f(k?) is expanded in
the usual way:

fkD)= fo(E(D))— (3 fo/0E)g(Kl) 2

where fo is the Fermi function, and g(k!) the new
unknown. The generalized Boltzmann equation is
obtained by solving the phonon Boltzmann equation in
terms of g and then substituting into the electron
Boltzmann equation, the result being Eq. (14) of Ref. 4,

—(@0f/3)arn—U=L(g). )

Here U is the “drag” correction to the drift term, and
L(g) is a generalized scattering term containing not
only the ordinary electron-phonon scattering L, and
the impurity scattering of electrons Limp, but also a
“drag” correction Lpy'. The effects from Ly’ were
called “phonon relaxation” effects in Ref. 4 and “reac-
tion” effects in Ref. 5, to distinguish them from the
effects from U. Thus

L(g)=Lpn(g)+ Lo/ (g)+Limp(g). )

We shall assume that at low enough temperatures the
dominant scattering term is Limy, for which the relaxa-
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tion-time approximation is probably quite good. For
Ly, and Ly, the reader is referred to Refs. 4 and S.
Whether Ly, and Ly’ are neglected altogether or simply
approximated, we make the hypothesis that the total
L(g) can be written in terms of a single ki-dependent
relaxation time 7 (ki) :

L(g)=r(kl)7(3 fo/0E)g (kl). ©®)

It should be noted that this is the second relaxation-
time approximation made in solving the coupled Boltz-
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man equation: the first (see Ref. 4) was in assuming that
all phonon-phonon collision terms could be treated in
terms of a phonon relaxation time. Further, these are
the only two approximations made in the whole argu-
ment leading to Eq. (6) below, aside, of course, from
allowing the Boltzmann equation itself to be linearized.

Equation (3) can be solved without further ado, and
the result can be inserted in the expression for the
thermoelectric power obtained by computing J, and
setting it equal to zero. The answer for the drag part is

g

Equation (6) is the new approximate formula contain-
ing the influence of the impurities as well as of the
phonons.®7 It reduces to Eq. (1) whenever 7 is a func-
tion of energy® only.

It is convenient at this point to rewrite the result in
terms of an internal sum

w(ki)= (2fo/2E) 3. [—a(ja; KD +a(ja; KV k)]
T XDV ()
having the units of velocity. Then Eq. (6) becomes
k2e*) . Tv-w[—dfo/0E]
e 30X i [—0fo/0E]

where all quantities depend on k.

=
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2. DISCUSSION

Apropos of Eq. (6), we have three comments. First,
and most important perhaps, we conclude that at low
temperatures .S, may be quite sensitive to the impurity
content through the 7(ki) factors in Eq. (6). Such
a sensitivity, if present, would emerge by a given im-

i3 % (L) (k)L — 8 fo/OE],
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purity affecting the positive parts of the contributions
to .S, differently from the negative parts, or by the
relative +— influences of one impurity being different
from those of another. (The signs of contributions are
discussed more fully below).

Second, pursuing the idea that different regions of
the Fermi surface act differently, it is possible to divide
the Fermi surface into different sections labelled i, the
division being arbitrary, and to separate .S, into a sum
of terms corresponding to each ¢ with a weighting factor

0'4;/0’3
So=Z(Ui/”)Sgiy 9)

where o; has the significance of the conductivity of
region 7 and .Sy, that of the phonon-drag thermopower
of region i.

Equation (9) can be arrived at in various ways. At
low enough temperatures, the important q’s are very
small. Thus the phonon transitions between the regions
1 form a small part of the total number of transitions
and can be neglected. Thus the numerator of Eq. (6)
turns into a sum over regions ¢, and the quantities in
Eq. (9) are

(10)

gt

(11a)

e 222D o(k)*r(kD)[—afo/0E]

The electron sums are all restricted to the kI’s in region
i. Here o; and .Sy; have the significance of the conduc-
tivity and thermopower from regions 7, although of

8 Tsuji (Ref. 5) must have had this formula, or its equivalent,
written down in his notes. But since he assumed that 7 (k) was a
function of E, his formulas allowed the = factor to cancel out,
thus proving long ago that the simplest variational expression
emerged from an isotropic = approximation, rather than pointing
out the possible anisotropic effects. At the time of Tsuji’s article,
there was of course no experimental indication that such effects
might be significant.

7J. M. Ziman, Advan. Phys. 10, 1 (1961), in using his version

course 7, depending as it does on the impurity scatter-
ing, involves in its evaluation a large number of transi-
tions befween regions, no matter what the temperature.

Use of Eq. (11a) implies that Eq. (9) is a low-
temperature approximation. If, however, we start from
Eq. (8), we can obtain Eq. (9) without approximation

of the variational principle, was the first to encorporate 7(k)’s
in the phonon-drag expressions. They entered through a varia-
tional trial function suggested by the Boltzmann equation. His
results do not reduce to ours.
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by defining
223D rv-w[—d fo/OE]

e 2230 [—df,/0E]

Since this resembles Eq. (8), we are led to describe it as
the phonon-drag part of region ¢, much in the same way
that Eq. (10) is the conductivity of region 7, noting,
however, that w now involves in its evaluation transi-
tions to other regions, just as 7 does.

An expansion as in Eq. (9) has a great convenience if
the regions ¢ are so chosen that within each one, 7 is
fairly constant. Then the 7’s cancel out in Egs. (11).
The separation would be even more useful if the regions
1 were not only of constant 7 but of a single sign.

The conclusions obtained concerning the sensitivity
of .S, to impurity scattering of electrons, and to the
separation as in Eq. (9), are in agreement with the
suggestions of Fletcher and Dugdale?® and Van Baarle!
mentioned at the outset.

The third comment concerns the sign of .S,. Using
Eq. (6) for the basic expression, we note that the sign
depends on the sum of contributions from all transitions
kI — K'I' and that each of these provides a + or —
contribution depending on whether

I &

Sgi= (11b)

Z=[v(k)r(k)—v&)r(&'V)] v(jq) (12)
is 4 or —. Of course the selection rule, explicit® in
the a’s,

K —k=gq+K, 13)

must also be satisfied, where K is a reciprocal-lattice
vector. Notice that it is v that appears in Eq. (12) not
kor . This v can easily be traced back to the field terms
of the Boltzmann equations, and does not stem from
an assumption as to the form of g in Eq. (2).

The standard sign for .S, is negative, and this comes
about from Eq. (12) in the simple situation charac-
terized by (1) = constant, (2) nonumklapp processes,
and (3) free-electron spherical energy surfaces. For then

8 R. Fletcher and J. S. Dugdale (Ref. 2) actually used Sy=3_ ;s
X (03/a)S4i. Where a; was estimated to be W./W, where W is the
lattice thermal resistance associated with region 7. (They noted
however, that the «;s could be included in S,’s themselves).
Their separating off of this factor o; gives us some insight into our
own «o’s. The only real difference between the two is that their
refers to a whole region whereas ours refers to an individual
transition. Our« is the relative probability of a transition involving
a particular phonon. Such a probability may be described as an
inverse relaxation time for the phonons, so that symbolically

ey TR
a(jq; kk') = > 71(jq; kiks) +rother 1

If now we suppose that it is legitimate to average this over a
region 7, and further to average numerator and denominator
separately, and finally if we note that the denominator will refer
to all regions 7 in general, so that its average spans the whole
Fermi surface, we get Fletcher and Dugdale’s formula, provided
we define W; to be proportional to (r71);,. The appearance of a
thermal resistance in the denominator of the phonon-drag term is
not unrelated to Ziman’s (Ref. 7) variational version of the
expression.
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v— v’ is proportional to — g, whence Z is negative. It was
pointed out in Ref. 4 that an umklapp process, all other
conditions remaining the same, tends to give an
anomalous sign, since v—v'~ — (q+K) is generally in
a direction opposite to q. And in Ref. 3, Appendix H,
it was shown that a hole surface provides the opposite
behavior (negative contribution for umklapps and
positive for nonumklapps).

When approaching rather bizarre surfaces, it would
be encouraging if some sort of general rule existed for
when + and — contributions occur. Unfortunately,
about the only valid statement is a generalization? of
the filled-sphere—empty-sphere cases cited above,
namely, that when the shortest surface connection
between k and ko’ (in the extended zone scheme, where
k' is the equivalent state to k’ that is closest to k) lies
on a convex strip of surface (relative to the filled part),
the contribution tends to be normal (negative), but if
the strip lies on a concave part, the contribution tends
to be anomalous (positive).

At low enough temperatures, where only the small ¢’s
are excited, this tendency becomes stronger and
stronger,? since if q is small enough the region on the
Fermi surface containing k and k’ can be approximated
by a shape with a constant curvature.

An expansion of Z in powers of ¢ demonstrates this
clearly. Using d/dkq to mean a directional derivative
toward ¢, and pq(k/) to mean the algebraic radius of
curvature of the ‘“normal” section on the Fermi surface
containing v(k/), the normal, and q, we get

3
limZz = —qa—k—EV(kl)r(kl)]' v(ja)

a
=—q{—|v(kl)r(kl)|9(kl)-v(jq)
ok,

Folkr (DLb-+o '] V(@) (120)

i

where ¢ is the “torsion” and b=9(kl)X§. Note that
9(kl)-§— 0 as ¢— 0. Now if we suppose that v(jq) is
in the direction of q, then

Iii%Z= —o(kl) (kD)o (7q)pq (kI)~1. (12b)

In this case, the sign of Z depends only on the sign of
the radius of curvature pq and not, for example, directly
on 7 or v(kl) or their derivatives.

In considering a point k on the Fermi surface, notice
that the sign of Z may change from q direction to q
direction even for very small q (as on a “neck” surface,
where transitions along the neck have concave connec-
tions, those around convex), and that an average over

9 This was pointed out to me by Dr. Dugdale and Dr. Guénault.
10 An expansion of this type was first done by Ziman in Ref. 7 in
terms of effective mass.
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directions is not particularly easy, since the phonon
velocities, which enter as v(jq)~%, ultimately (see below)
may cause a considerable weighting.

This concludes the discussion of Eq. (6). In the
Appendix, the entire expression for .Sy; is integrated
out for small ¢ (low temperatures) a good deal of the
way. And in the following paper, the results are applied
to the noble metals.
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APPENDIX. THE LOW-TEMPERATURE LIMIT

The results obtained in the text simplify considerably
if one allows 7" to get very small, a situation correspond-
ing to many of the experiments. The simplification
arises because the factor dNo/d7 insures that only the
very small ¢’s will matter if 7" is small enough. Thus the
low-T" limit leads to a small-g approximation, which
simplifies the mathematics.

We have already seen at the end of Sec. 2 how Z
reduces for small g. Referring to Eq. (11a) we see that
there remains « to evaluate. From Eq. (H7) of Ref.
3. and Egs. (9b) and (7) of Ref. 4, we find, neglecting
phonon-impurity and phonon-phonon interactions,

| Leera- (@) [ *fo(E (R 1— fo(E (k+ ) J6(E (k+ q) — E (k) — F1w)

2w

where £ is the direction of polarization of the jq
phonon, and where

Ik,k+q='/’¢+q*¢kvvom Q'/(Vk‘pk*)¢kv Vo, (A2)

Vo being the potential from one cell on the rigid ion
expansion of the crystal potential, and yy the electron
wave function.

We wish now to integrate the denominator of Eq.
(A1) for an arbitrary Fermi surface. The crux of the
matter lies in the fact that the energy delta function
together with the factor fo(E(k))[1— fo(E (k+q))] will
restrict the k’s to lie on certain lines on the Fermi
surface, these lines well defined once the shape of the
Fermi surface and the vector q are specified. For a
spherical surface, the lines are circles lying in a plane
perpendicular to the vector q, with radius (kz*—¢?/4)"2.
For vanishingly small q on an arbitrary surface, the
lines are those on which q is tangent to the Fermi
surface. We shall denote these by the symbol LT(q),
meaning “lines of tangency of q.” For arbitrary q and
an arbitrary surface, nothing general can be said except
that such lines exist; for simplicity we will call them
“lines of intersection of ¢.” It would only be for surfaces
exactly cylindrical in some region that a line could
develop into an area, and we shall omit this exceptional
circumstance from the argument.

Thus the way to integrate over k’ in the denominator
is to separate as follows:

V 1
Z=———de’/dk1dk2] —
'k 8w ho (k)

where %; is to mean a direction along the appropriate
““line of intersection of q”, and k5 is to mean a direction

(A3)

Lo oo (0 [ 2fo(ER D1 — fo(E (K + @) J8(E (K +q)— E(K)—fiw)

(A1)

chosen for convenience, such that the integral will
eliminate the delta function. J is the appropriate
Jacobian.

Consider now the integral over k. Let the intersection
of the k2 axis with the line of intersection of q be called
ko. Then E(ko+q)— E (ko) —#w=0. Expanding from ko
in the direction of ks we have

f dad[EK+q)— E(K)— ]

= / dkzﬁlikaaikZ(E(k"*“I)—E(kl))}

-1

, (A4)

0
=S tp+0-E0)]
Ok
which is evaluated at ko. For small ¢
d 0
—[EK+q@—EXK)]|x——@vE) @) |k
ok ok

= frw(ko)[— t5+p"1]%2]- q, (AS)

where ¢ is the torsion and p the radius of curvature of a
normal section through v(ko) in the direction %, k2 is a
unit vector in the &, direction at ko, and b= £,X 9 (ko)
[In writing Eq. (AS), we used the fact that v(ko)- q=0.]

It is now clear how best to choose the direction k..
If we choose it in the direction of ¢, then b-q=0. Let us
call the corresponding radius of curvature pg (ko). Then

finally
Lim f kb [E(F+q)— EF)—he] pilko)
—F —hw |= ,
g0 2 7 h'u(ko)q

(A6)

and the Jacobian J is siny where v is the angle between
q and dky.
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For convenience let us now call 2; by £4. Then o becomes

S E®) 1~ fo(E (k+ @) J(E (k+ @) — E (k) —70) | Lot £ (GO |2

a(jq; k k+q)=

/ aE fo(E)[1— fo(E'+ho(jQ)) IV (8*h2q) ™

where a weight factor w has been introduced:

w(k")=—;—. (A8
T ) )

When « in the form of Eq. (A7) is placed into Eq.
(11a), there arise two routes by which the remaining
expression can be reduced. On the one hand the k
integral can be performed first; on the other hand, the
q integral can be performed first. We shall do it both
ways for the reason that the former conforms to what
we believe is the essential quality of phonon drag
(namely the effect on the electron system, phonon by
phonon), while the latter allows us to see directly how
the various parts of the Fermi surface enter in, and
makes a numerical calculation perhaps more accessible.

If k is integrated first, there is no real change at all
from what took place in the denominator. The only
ultimate difference comes in the weighting of the final
integral over “lines of tangency of q,” for there is the
extra factor Z to include. The sum over q can be
changed to an integral over z=#w/xT, which can be
evaluated for small enough 7, and an integral over
angles dQy. When all that is done, the remainder is

Syi= e l ,/ < )61(91)7

(2)
dkq’ (kg) | I- €|*
4t kF /Wq) !
B:(d5)= ,

15 A
[ dhgo(kg)|T-£]?
Lr(q)

(A9)

where

(A10)

A ; being the area of the ith part of the Fermi surface,
)
/131‘('1)

signifying integration along the parts of the LT (g) lying
in the ith region, and

dk,q

3(qf)=7w(j@kr/x, (A11)

, (A7)
dkg| T g+ €| 2w (K'Q)

Lr(q)

where kr is the radius of a sphere in % space having the
same volume as that actually occupied, i.e.,

4r V
2—ky*—=N,
3 8

(A12)

where NV is the number of electrons. The new weighting
factor in the numerator of Eq. (A10) is

ke 7(k)
w' (k§) = —sgnpg siny —

o(k) (er)’

(A13)

the angle brackets indicating an average over the entire
ith region of the Fermi surface.

Equation (A9) shows how each phonon (direction)
contributes to the thermoelectric power. The weighting
goes as v(jg)~* and as 3. We note that 8 is obviously a
rather complicated quantity making reference to all
the points on the Fermi surface at which q is tangent.
The weighting in the numerator, @', is quite different
from that in the denominator, w, and it is hard to make
any statements about 8 without first obtaining some
idea of the lines of tangency for q.

Next we go back to Eq. (11a) and integrate over q
first, ending up with an integral over the Fermi surface:

Si= lxl l/dskz/dgaq( )Bz(éﬂk), (A14)

where the dimensionless 8’ is

ke (f718) | Leerq-£(G@) |2

B/ (9 k)= (A15)
dkqw (K'Q) | Lo wo1q- (@) |
Lr(q)
in terms of a new weighting
) r 7(k) 1
w"(¢j|k)=— (A16)

o(k) (7): py

The integral over ¢, in Eq. (A14) is over all phonon
directions tangent to the Fermi surface at k.
We notice that a full integration over q is impossible



157

without first having a good deal of information about
the Fermi surface, and would be even if the phonons
were isotropic. (See, for example, the denominator of
B’.) Thus a neat separation of phonon from Fermi-
surface effects is not in general possible.

Notice that the weighting w”” in Eq. (A195) is different
from the @’ in Eq. (A10). The difference consists mainly
in an extra factor | pq| ' in the former. This may at first
glance seem surprising, but if it is noted that Eq. (A14)
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contains an integral over the Fermi surface whereas
Eq. (A9) has one only over a line of tangency, we can
see the connection. If, in fact, we performed part of the
surface integral in Eq. (A14) we would get another
factor |pq| which would cancel the |pq|™! already
present. Thus if we seek the contribution to S,; from
some particular phonon (direction), then the weighting
along a line of tangency should not include the magni-
tude | pq|~* but only the sign, sgnp,.
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The effect of impurities on the phonon-drag part .S, of the thermoelectric power at very low temperatures
is examined for alloys of copper, silver, and gold. S, is separated into three terms corresponding to: (1) the
neck regions in the (111) directions, (2) the convex belly regions around the (100) directions, and (3) the
concave belly regions around the (110) directions. We find that in gold the concave belly region is most
important and in silver the necks are most important. The sign of the neck contribution is examined through
the behavior of the (110) phonons at the zone boundary, and it is found that the positive contributions
dominate there. The experimental results for three types of impurities, (A) uncharged, (B) charged, and
(C) transition-metal, are discussed, and qualitative agreement with the theory is found.

1. INTRODUCTION

N what follows we wish to apply the results obtained

in the previous paper! (henceforth referred to as I)

to a particular example, that of phonon-drag .S, in the
noble metals at very low temperatures.

Recent experiments®™ have shown very strikingly
that the magnitude and even, in some cases, the sign of
S, in the noble metals varies with the kind of impurity
which dominates the electron scattering. For example,
in silver .S, is positive down to the lowest temperatures
in all the samples so far studied.? Where, however, the
scattering is by ‘uncharged’ impurities (Au or Cuin Ag),
S, is much larger than when the scattering is by
‘charged’ impurities (e.g., Ge, In). In gold, it has
recently been found that although S, is normally
positive it becomes negative at low temperatures when
the scattering is by Pt impurity.

Explanations of this dependence of S, on the type
of impurity scattering have already been put for-

1M, Bailyn, preceding paper, Phys. Rev. 157, 480 (1967);
hereafter referred to as I.

2 A. M. Guénault, Phil. Mag. 133, 17 (1967).

3 C. Van Baarle, Physica 33, 424 (1967).

4 C. Van Baarle and R. Huebener, Phys. Letters 23, 189 (1966).

ward.>5 Here we extend and to some extent modify
these ideas inthe light of I.

We saw, in I, that the sign of the contribution to .S,
from a transition along a particular strip of the Fermi
surface depended at very low temperatures on its
concavity or convexity with respect to the occupied
states. In the noble metals we can distinguish three
regions which differ in this respect: (1) the convex belly
regions associated roughly with (100) directions (2)
the concave belly regions centered mainly around the
(100) directions, and (3) the neck regions, (in the (111)
directions) where the principal radii of curvature have
opposite signs.

For simplicity it is often assumed that apart from
the necks, the Fermi surfaces of the noble metals are
nearly spherical. There are, however, substantial
concave regions which are particularly conspicuous in
Cu and Au. These can be seen clearly in the diagrams
given by Segall® and by Roaf” and even more strikingly

5 R. Fletcher and J. S. Dugdale, in Proceedings of the Interna-
tional Low-Temperature Conference, Moscow, 1966 (to be
published).

6 B. Segall, Phys. Rev. 125, 109 (1961).

7 D. J. Roaf, Phil. Trans. Rov. Soc. London 255, 135 (1962).



