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Soft x-ray emission from metals results when an electron in the conduction band makes a radiative transi-
tion to an inner hole of the atom. The object of this paper is to study the effect of the electron-hole scattering
resonances on the soft-x-ray emission spectra of metals. A detailed theoretical calculation was done for the
emission spectra of Li and Na. From this calculation, the qualitative features of the observed K emission
spectrum of Li can be explained if a p-scattering resonance exists in the band near the Fermi surface. The
resonance is caused by the electron-hole scattering. A resonance violates the Friedel sum rule unless a
localized state analogous to a “local moment” is invoked. The crystal was divided into Wigner-Seitz spheres.
The normal Li ion was removed from the center of the sphere and replaced by a Li ion with a 1s hole. A
Hartree-type potential was constructed for this Li ion. Multiple scattering of other ions outside the Wigner-
Seitz sphere was treated in the optical model. Scattering wave functions for the electrons inside the Wigner-
Seitz sphere were computed numerically and used to calculate the matrix elements. The emission spectrum
of Li was computed for various effective masses. The Lg; emission spectrum of Na was computed along
similar lines. No localized state was found in the band. This result may explain why no anomaly exists for
the Ly; emission spectrum of Na. The spectrum of the unobserved L; emission of Na has also been computed.
Here, there exists a p-scattering resonance, as in the K emission spectrum of Li. From the calculation, it may
be concluded that a lack of localized state is the reason why the emission spectra of other substances are
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normal.

INTRODUCTION

HE soft-x-ray emission of metals results when
one of the electrons in the conduction band makes
a radiative transition into an empty inner shell. Thus,
unlike most of the physical properties of metals which
are determined by the energy level of the electron
system as a whole (such as cohesive energy), or by the
electrons at the Fermi surface (such as cyclotron
resonance and electrical conductivity), the x-ray emis-
sion is capable of giving direct evidence about the
individual energy levels in the conduction and higher
bands. Thus, the x-ray emission spectrum has been
used to define Er, the Fermi energy and m*, the effec-
tive mass. The emission spectra also have particular
value in helping to decide whether the excitation-band
picture should be applied to metals as well as to
insulators. It is found that the x-ray spectra of metals
show strong discrete lines on contrast with the absorp-
tion spectra of the insulators like alkali halides. Be-
cause of these properties, the x-ray emission spectra
of metals have been well investigated.

The qualitative features of the spectra of most metals
are well understood. However, the K emission spectrum
of lithium has a feature which has no straightforward
interpretation. The spectrum was first measured by
Skinner and O’Bryan' in 1934. Since then, the mea-
surement has been repeated by Bedo and Tomboulian,?
Canterall and Trotter,? and most recently by Crisp
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and Williams.* All the measurements show that the
K emission spectrum of Li has a premature peak about
1.2 eV below the Fermi level. This result cannot be
explained by the ordinary density-of-states calculations.
The most accurate determination of the energy band
of Li was that of Ham,? 1962 [see Fig. 5(c)]. His result
shows that the Fermi surface is about 0.65 eV below
the symmetry point N’ of Brillouin zone. This calcu-
lation thus disproves the suggestion of Cohen and
Heine in 1958° that the anomaly is due to the contact
with the point N’ of Brillouin zone. Ham’s result further
shows that near the Fermi surface, the density-of-states
curve is rising. Tomboulian? showed that the dis-
crepancy could be explained neither by the instru-
mental broadening nor by the lifetime effects. Jones
and Schiff® advanced the theory that the shape of the
K emission of Li could be explained as due to the
presence of the 1s hole. However, their theory could
not explain why emission spectra of other substances
do not show the effect.

Goodings,? in a simplified model, used a Koster-
Slater type of localized approximation to calculate the
density of states in the presence of the 1s hole. He
claimed from physical arguments that the observed
shape is due to a change of the density of states and
the matrix elements when a 1s hole is present. In a
recent paper, Shuey' considered the peculiar shape of

4R. S. Crisp and S. E. Williams, Phil. Mag. 5, 525 (1960).
§ F. S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962).
¢ M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958).
7D. M. Tomboulian, in Handbuch der Physik, edlted by S.
Flugge, (Spnnger—Verlag Berlin, 1957), Chap. XXX, p
( 8;1) Jones and B. Schiff, Proc. Phys. Soc. (London) A67 217
1954
9 D. A. Goodings, Proc. Phys. Soc. (London) 86, 75 (1965).
10 R. T. Shuey, Bull. Am. Phys. Soc. 10, 266 (1966).
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the emission spectrum of Li as due to electron-hole
scattering. He took into account the band structure
of the Li atom. However, he used the first-order Born
approximation to compute the oscillator strength. This
approximation may not be justified if the phase shifts
are not small. His work also indicates a peak just before
the Fermi surface.

From a realistic quantitative calculation we have
made, the qualitative shape of the K emission spectrum
of Li can be explained if a p-scattering resonance exists
in the band near the Fermi level. In our calculation the
potential of a Li atom with a 1s hole was used. The
resonance is caused by this potential. Such a resonance
violates the Friedel sum rule unless a localized state
analogous to a ‘“local moment” is invoked. The im-
portance of such virtual levels in determining the
properties of metallic alloys were first recognized by
Friedel" in connection with the resistivity properties
of alloys, where one sees the level as a scattering reso-
nance at the Fermi surface. The idea of localized states
has been extended by Clogston,? who applied it to the
Knight shift, Anderson,”® and Wolff,¥ who found
localized magnetic states in metallic alloys, and by
Caroli,’® who applied the localized state techniques to
the study of the optical properties of solids, in particular
the AuNi system.

We have also calculated the Lo; emission spectrum
of sodium, finding no localized s state in the band. This
may explain why no anomaly exists for the Ly; emission
band of sodium. A similar calculation for the unob-
served L, emission spectrum of Na was made, showing
that there exists a p scattering resonance, as in the K
emission band of Li. A summary of the calculations was
reported at the 1966 April meeting of the American
Physical Society.!®

We discuss in Sec. 1 the methods used to compute
the potentials and the wave functions of Li and Na
atoms with inner holes; while in Secs. 2 and 3 brief
reviews are given of the Wigner-Seitz method and
Hartree-Fock approximation, respectively. In Sec. 4,
the model Hamiltonian is derived and solved. A con-
dition for the existence of localized states is also given
in this section. We describe the theory of x-ray emission,
apply the results to the study of the soft x-ray emission
of Li and Na, and compare the observed and calculated
emissions in Sec. 4. A summary and some difficulties
with the model Hamiltonian are given in the last
section. Throughout the paper energy, distance, and
angles are measured, respectively, in electron volts (eV),
in angstrom units (A), and in radians.

1 P, de Fajet de Castlejan and J. Friedel, J. Phys. Radium 17,
27 (1956); J. Friedel, Nuovo Cimento 7, 287 (1958).

12 A, M. Clogston, Phys. Rev. 125, 439 (1962).

13 P, W. Anderson, Phys. Rev. 124, 41 (1961).

1P, A. Wolff, Phys. Rev. 124, 1020 (1961).

15 B. Caroli, Physik Kondersierten Materie 1, 346 (1963).

16 1. K. A. Allotey and J. J. Hopfield, Bull. Am. Phys. Soc. 11,
331 (1966).
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1. CONSTRUCTION OF THE ATOMIC
POTENTIALS

To make a realistic calculation of x-ray emission of
an atom, we need to know the potential of an atom with
a hole in its inner shell. Such a potential may be
obtained by the Hartree-Fock self-consistent-field
method.'™® However, the labor involved in con-
structing such a field for an accurate result is con-
siderable. In the computations, therefore, approximate
potentials which produced the energy levels of the
atomic state of that substance reasonably were used.

For the K emission of Li, a potential for the 1s
configuration was constructed, while for the L; and
L,3 emissions of Na, potentials for the 1s5?25s?2p% and
15?252p% configurations of Nat+, respectively, were
constructed. For the potential of the 1s state of the Li
atom, a variational calculation gave an effective hydro-
genic charge of 2.69. Though the potential constructed
using this effective charge gave an energy level which
was in excellent agreement with the ionization energy
of the 1s? state of Li (the observed energy is 75.62 €V,
while the calculated energy using the effective charge
of 2.69 is 75.2 eV), it reproduced the energy levels of
the excited states, particularly the p states, poorly.
It was too strong for the p states. The potential was
therefore changed at some points until a compromise
potential was obtained. The observed and computed
energy levels of Lit* are shown in Tables I and II.

An attempt was made to apply the Prokofjwe
method® to the construction of a potential for Nat+,
but the accuracy obtained was poor, and this method
was discarded. It was found later that earlier attempts
by other workers to apply the Prokofjwe method to
other substances had also failed.”:* The reason for
the failure to obtain a Prokofjwe-type potential for
Na*t+ may be due to the fact that the potential is not
central. The potential used for Nat*, in which one 2p
and the 3s electrons were missing, was constructed by
trial and error. The initial potential was calculated by

TasLE I. Calculated energy £, and observed energy Eo of Na*t+.
Units of E, and E, are in electron volts.

Ec E()
1522520 60.00 64.00
15225225 48.70 47.29
1522522535 12.40 14.45
152252253 9.70 10.95
1522522 pds 5.60 6.20
1522522 p5s 3.20 3.51

17 D. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957).

18 H. A. Bethe, Intermediate Quanmtum Mechanics (W. A.
Benjamin, Inc., New York, 1964), pp. 33-109.

¥ 7. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960), Vols. 1 and 2.

2 W. Prokofjwe, Z. Physik 58, 255 (1929).

2 F, Seitz, Phys. Rev. 47, 400 (1935).

2 K. E. Gorin, Physik Z. Sowjetunion, 9, 328 (1936).
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TasLE II.® Calculated energy E, and observed energy E, of Lit™.
Units of E, and E, are in electron volts.

E, E,
1s 74.45 75.62
1s2s 12.50 15.77
1s2p 16.00 13.91
153s 6.30 6.64
1s3p 6.50 6.16

® As is evident from Table II, the best potential we could construct for
the Li** was still strong for the p electrons. The effect of this in our cal-
(':ulgtlox;s has been accounted for by the appropriate choice of Up and Us
in Sec. 4.

finding the potential as a function of 7 due to charge
distribution on concentric spheres of radii 7,; of maxi-
mum charge density of #/ electrons.

Thus, there were placed at 7;,=0.027 A two electrons,
at 7,=0.148 A five electrons. The values of 7,; used
were taken from Slater.”® For the 15?252p% configuration
of Nat+, the arrangement of the electrons on the con-
centric spheres was similar to that described above
except that in the present case, one electron was placed
at 7s,, six electrons at 73, and two electrons at 7.
Table II shows the observed and calculated energy
levels of Na*+. Within these approximations, the
potentials for the 15?25?2p% and 1s2252p% configurations
of Nat* were not very different because 74—72p
=0.022 A. In Figs. 1(a), 1(b), and 1(c) are shown the
computed wave functions for the 1s hole (1s) of Litt,
2p hole (1522522p%) of Nat+, and the 2s hole (152252p°)
of Na*+, respectively.

2. WIGNER-SEITZ METHOD

The method is to divide the real space into unit cells
as one constructs a Brillouin zone in the reciprocal
lattice by bisecting the vectors to their nearest neigh-
bors. In the bec lattice, the lattice assumed by Li and
Na, this gives a regular octahedron. The assumption is
then made that this octahedron is not very different
from a sphere, and that in the outer regions where
departure occurs, the potential is very weak and the
wave function is smooth. Compare Figs. 1(a), 1(b),
and 1(c). We shall denote by 7, the radius of the s

& o4
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1.0
Fic. 1. (a) Radial or
wave function of 1s hole 04
of Li. (b) Radial wave & o2
function of 2s hole of © og s
Na. (c) Radial wave -0z ! o ¢
function of 2p hole of o4
Na. -os
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sphere (Wigner-Seitz sphere). The values of 7, for Na
and Li are 2.15 A and 1.71 A, respectively.

The crystal potential at any point in one of the s
spheres may be regarded as the sum of three terms:
(a) the ion-core potential due to the ion at the center
of the octahedron, (b) the Coulomb potential of the
N—1 other ion cores making up the crystal, (c) the
Coulomb potential of N—1 electronic charges situated
outside the octahedron. The contributions made by
(b) and (c) to the crystal potential may be combined
to give the Coulomb potential of N—1 exterior electrical
neutral polyhedra as a first approximation. However,
in higher approximations, each octahedron contributes
a multipole potential of high order which will be most
important near the boundary of the s sphere. A cal-
culation by Wigner and Seitz® on alkalis showed that
this effect is negligibly small. Therefore, the only
surviving term is (a), the ion-core potential which is
approximately spherically symmetric within the s
sphere. Because of the spherical symmetry, the Schro-
dinger wave equation within the s sphere is separable.

h2
(—V2+ V(r)——Ek>¢= 0, 2.1)
2m
Uk,l 7
_Oul )Y,m(o,qb) , (2.2)

where Uy (r) satisfies the radial Schrédinger equation

10+1)

72

U kl 2m

+<k2——V(r)— )Ukl-—-O. (2.3)
dr? 72

In solving Eq. (2.3) inside the s sphere, boundary
conditions were imposed such that the wave function
and its derivative must be continuous, and also that
the Bloch condition

Yi(r+Ry) = e Rif, (r)

must be satisfied. In the usual solution of Eq. (2.3),
using the Wigner and Seitz approximation, only the
wave function corresponding to the bottom of the con-
duction band is computed, the others being obtained
by perturbation expansion. The wave function corre-
sponding to I, 2=0, must have the same symmetry as
the crystal; namely, cubic symmetry relative to any
nucleus. Hence, ¥, may be expanded in the Kubic
harmonics in the cell.

Yo=Rs(r)+g(6,0)Rg(r)+ (term with I=6), (2.5)

where Rs(r) and Rg(r) are the radial functions. In the
present approximation, only the first term in Eq. (2.5)
is retained.

(2.4)

2 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).
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The boundary conditions may thus be written
Yo=Rs(r;), 0<r<rs,

(dRs/dr)rer,=0. 2.7

Equation (2.7) follows because the wave function must
approach the cell boundary horizontally, since it must
by reflection symmetry be even about the boundary.
E, was obtained for Na by Wigner and Seitz,® and for
Liby Seitz,? using Eq. (2.3) with /=0 and the boundary
conditions defined by Eqgs. (2.6) and (2.7). These
studies wused Prokofjwe and Seitz potentials,
respectively.

The potential acting within the s sphere has been
taken as solely due to the central ion; however, if an
account of direct Coulomb interaction of uniform
charge distribution inside the s sphere is taken, the
potential inside the s sphere should be written

V()+ / e (resdu) f “[,,<r,e,¢>

ol

< Y1m(0,¢)d3r]d3ra, (2.8)

bt

(2.6)
and

X

in which 75 is greater and < the lesser of 71 and 7,, the
positions of electrons 1 and 2, respectively. p(7,0,¢) is
the charge density inside the s sphere. We have assumed
that the charge distribution inside the s sphere is
uniform and constant, hence the potential has spherical
symmetry with only /=0 component contributing. The
last expression on the right-hand side of Eq. (2.8) may
thus be written

(e¢/2rs)[3— (»2/r ) ]. (2.9)
The mean of the extra potential is
62 Ts 1,2 Ts 6 62
——j (3——)d37// dr=-—. (2.10)
27.9 0 782 0 5 ¥s

3. MANY-BODY PROBLEM

The electrons interact with each other as well as
with the atomic nuclei. The Hamiltonian for the N
electrons may be expressed as

He¥ [t VOIHE —t 1.

i=1 i<i¥

3.1)

I, is the electrostatic interaction between the nuclei
and is assumed constant. e;= (#2/2m)V? denotes the
kinetic energy of the ith electron. The second term
represents the energy of interaction between the
electrons and all the nuclei, and the third term is the
electrostatic interaction of electrons with each other;
7, is the position of the ith electron and 7;; is the distance
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between electrons 7 and j; e is the electronic charge.
Equation (3.1) has been written in the spirit of Born
and Oppenheimer approximations. As a first approxi-
mation, it shall be assumed that the atomic nuclei are
fixed. Relativistic effects, including the spin-orbit
coupling, are also neglected.

The principal approximation for reducing the com-
plexity of the many-body problem is the Hartree-Fock
(H-F) method, which in the second quantization may
be written

Z anICmT\I/H-F'*'Z Z (annmz_Fqnnmz)CmT\I’H-F

=E.CoWnr. (3.2)

In writing down Eq. (3.2), the off-diagonal terms were
neglected as being small. ¥g.r is the Hartree-Fock
wave function for N—1 electrons, and Ct and C are

the creation and destruction operators. The F’s are
defined by

Fuw!'={n| et V(r)|m), (3.3)
62
Fognm’= <nq nm> , (3.4)
r1— 72
and
e?
qum2=<qn \nm> . 3.5)
r1— 72l

F o qnm® 1s the direct Coulomb interaction between the
electrons while Fgnun? is the exchange interaction
between parallel-spin electrons. Missing in Eq. (3.2)
is the correlation energy, which takes into account the
fact that because of their Coulomb repulsions, electrons
avoid each other.

4. THE MODEL

The normal ion from the center of the s sphere was
removed and replaced by the impurity ion. It was
assumed, as when the normal ion was present, that the
Wigner-Seitz approximation still holds. The multiple
scattering of electrons with ions and the electron-
electron interactions outside the cell were represented
by an optical model potential (Lax,* Goldberger and
Watson?®).

The distortion of neighboring ions due to the presence
of the impurity ion in their proximity was neglected.
The effects of the periodicity of the lattice were also
ignored. However, the electron outside the cell was
assumed to possess an effective mass. This is justified
because no zone-boundary effect was being considered.
Inside the cell the effective mass was taken as the free-
electron mass. The x-ray emission spectra were com-
puted for Li for various effective masses. For Na, the

2 M. Lax, Rev. Mod. Phys. 23, 287 (1951).
25 M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964), Chap. 11.
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effective mass is practically equal to the free-electron
mass both inside and outside the cell, and the Fermi
surface is almost spherical.

Electrons inside the s sphere in which the hole is
located may be described with the following Hartree-
Fock equation:

H=HotHiny()+Ho(r)+Hppt HeotHps. (4.1)

Here, H, is the unperturbed energy of the free-electron
system in the second quantized notation.

Ho=3 3 Ti(nur+nus),
' 1

W 197 a\ I0+1)
e 122y 10407
2mL 7% or\ Or. 72
7t 1s the number operator for electrons in momentum-
and angular-momentum states k and I, respectively,
with spin up.

H mp(7) is the potential of the atom with the inner
hole. The method for obtaining this potential is given
in Sec. 1. H,(r,) is the lowest energy of the conduction
band plus electron-electron interactions outside the s
sphere. H,(r;) also depends on the angular-momentum
states and may be computed by solving the Schrédinger
equation. If the cohesive energy of the metal is known,
however, H.(r;) may be obtained from the equation

Econesion™ (Em+ Ey— El) ’

where H,(r,)=E, is the energy of the bottom of the
band. E, calculated from the above equation includes
the electron-electron interaction.?® E; is the negative
of ionization potential of the metal. E, is the mean
energy of Fermi gas. If N(E) is the density of states,
this energy is given by

Ep= /0 " EN(E)dE / /0 EFN(E)dE.

For a parabolic density of state, we have

4.2)

and

(4.3)

3
Em = KEFermi .

Values of E cohesion were taken from Seitz,?” E; was
taken from the Handbook of Atomic Energy Levels
H ,p+H .+ H,, represents the electron-electron inter-
action part of the Hamiltonian. Hy, is the electron-
electron interaction of p electrons, Hs, represents
electron-electron interaction of s electrons, while H s
is the interaction of p electrons with s electrons.

26 J, Friedel, Phil. Mag. 43, 1115 (1952). )

2 F, Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), pp. 677-680.

28 Atomic Energy Levels, edited by C. E. Moore, Natl. Bur. S_td.
(U. S.) Circ. No. 467 (U.'S. Government Publishing and Printing
Office, Washington, D. C., 1949), Vol. L.
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We may write down the general interaction term for
any [ explicitly as

krp kr o w0  214+1 21741

Hlmtl’mu:z Z Z Z Z Z J ket tmyp my.

k=0 k’=0 1=0 I'=0 m=0 my+=0

X (nklmﬁ'l‘nkl’mpl) (nk’l'mz'f+nk’l’mzrl)

kp kp oo o 2041 2141

_ZZZ Z Z Z chk’lmll"ml'

k k' 1=0 I'=0 mi=0 my=0

X (nklmzfnk'l'mzr1+”klmllnk'l’mtrl) . (44)

J it imyymy 1s the direct Coulomb interaction between
the electrons in momentum states 2 and %’, and in the
angular-momentum states ! and ¥, with components
my and my, respectively; kr is the value of % at the
Fermi surface; Kk immy is the exchange integral for
electrons in the same spin state. In writing down Eq.
(4.4) the off-diagonal terms were neglected. It can be
shown?® that of the density of free noninteracting
electrons in an s sphere, the s partial density accounts
for about 639, while the p partial density measures
about 29%,. Thus we may assume that the role played
by the d and f electrons within the sphere is negligible.
These electrons were thus omitted in writing Eq. (4.1).
Another argument in favor of this omission is that the
K emission of Li is due mainly to that of p electrons.
However, in the Ly; emission of Na, there is a small
admixture of d and s states. The shape of the wave
function within the cell is approximately energy-
independent; hence the Coulomb integral does not
depend on energy in a first approximation, but only on
angular-momentum states. We shall therefore omit the
k index on the exchange and the direct Coulomb
integrals.

The matrix element of the Coulomb interaction term
of Eq. (3.1) may be written

<ab cd>= / / Ua*(rl)Ub*(rg);ei

X Uc (7'1) Ud (7'2)d37’1d37’2 .

¢
712

(4.5)
Assuming a central-field approximation, we have
U, (71) =Rpeo(r1) Yiepe (01¢l) (Ul,msa) .

Here Ryei(ry) is the radial part of the wave function
for a particle at the positional coordinate 71. ¥ 1o (6161)
is the spherical harmonic and is a function of the polar
angle 6; and the azimuthal angle ¢;. The spin part of
the wave function is denoted by (o1,m,%).

#® F. K. A. Allotey, Ph.D., thesis, Princeton University, 1966
(unpublished).
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The interelectronic distance is given by
1/7'12= [7’12—}“7’22— 2r1re COS(@]“I/2

r<9

=3 P,(cos®), (4.6)
g=0 r>0+1

where © is the angle between the radii vectors of
electrons 1 and 2 from the origin of the coordinate
system. Py(cos®) is the Legendre polynomial of order
g. g satisfies the so-called triangular condition, which
requires that g, /® and [® be the sides of a triangle of
even perimeter.®® The methods for computing the
integrals in Eq. (4.5) are discussed in Refs. 17, 18, and
19.

As has been mentioned earlier, only p and s electrons
will be considered. Thus, for the interaction between
p electrons, the triangular condition demands that
g=0 or 2, while for s-p interaction g=0, 1. For the s-s
interaction g=0.

As a first approximation, only the monopole term
(g=0) will be considered. Within this approximation
the exchange and direct Coulomb interaction terms are
identical. The Coulomb interactions between the s
electrons, the s and p electrons and the p electrons will

be denoted by Jss, Jsp, and J pp, respectively.

Density Function

Density functions inside the sphere of radius 7, in
which the hole is located, may be defined by

Ts

kF
fla= Z |Rklscatl2ad37, . (47)
k=0 J,

The integration is over the s sphere. Ryt is the value
of Ry; when the hole is present. We shall discuss how
this is obtained in the later section. « labels a spin
component. Inside the band, % is continuous; hence,
we shall replace the summation over % by an integration,

kr R kT
Z_

EwJo

dk. (4.8)

R is the radius of a large sphere and kg=/Arermi. The
integration over %k is one-dimensional because the
angular dependence of the initial state has already been
determined by the impurity ion, hence not all states of
the continuum that lie in the interval dk are available
to the electron. Thus, Eq. (4.7) may be written

R kr 7s
ﬁa=——/l./ | Rist | 2ad®rdk . (4.9)
™ 0 0

30E. U. Condon and G. H. Shortley, The Atomic Specira
(Cambridge University Press, Cambridge, England, 1963), p. 176.
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The Model Hamiltonian

The mean of the Hamiltonian may then be written

2

6 Jpp 6 6
<H>=§_l Epifpit2 Eu‘fsri-—z-‘ 2 2 (foirt foi)?

1=l =1 j=1

Jop Jes 2 2
—— X fpf+~é— 2 2 (foutfa)?

2 =1 =1 j=1

(4.10)
Joe 2 82
—7 > [l T 22 X2 fﬂ'if”f’

=1 =1 j=1

Epi= sz“l‘Himp(")‘,‘Hc (ﬂ:) s
Ey= Tsi‘l'Himp(T)'i_Hc(rs) .

Minimizing Eq. (4.10) with respect to f,; and fe;, we
have for the p electrons

Hpi= Tpi+Himp(r)+Um'('8) ) (411)
while for the 7th s electron we have
Hai'_‘ Tsi+Himp(r)+ Usi(rs) ) (4:.12)
6 2
Upi(r)=H(r)+T pp 2. foitJop 2 foi
j=1 j=1
- ]ppfpi ) (4- 13)

and

6 2
Usz‘("s) =Hc(7's)+]sp Zl fpj+]ss Z fsj—]ssfgi. (4.14)
7= 7=l

Equations (4.11) and (4.12) have been solved with
U,i(rs) and U,;(rs) as parameters.
Scattering from the Hole

The general solution of Egs. (4.11) and (4.12) may
be written

kZ 1/2
Rk;(r) =[ :l
2rR(A w2+ Br?)' 2

X [A klj (kr)—I—B;cml(kr)] .

71(kr) and n;(kr) are the spherical Bessel and Neumann
functions, respectively. R is the radius of a large sphere
surrounding the hole, /=0 for the s state and I=1 for
the p state. Ry (r) is assumed to be regular so that at
the origin Bri=0. 41 and By are calculated from the
condition that at a boundary the wave function and
its derivative are continuous. Asymptotically, Eq.
(4.15) may be written

Ru(r)~ (B/ 2w R)'2 sin (kr—+08x—In/2) /by,

(4.15)

(4.16)

where 0x; is the phase shift in the presence of the hole.
The change of the number of electrons in a sphere of
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radius R due to the presence of the hole may be written®
R
An= 41!’/ fZ(lellz— |Rk10|2)dr.
0

R’ is the solution to radial Schrédinger without the
hole.

2w
An==73" (214+1)dp.

T =0

(4.17)

The physical meaning of Eq. (4.17) is that if the im-
purity has a valency z relative to that of the host-
lattice self-consistent potential, U(r) will insure that
the displaced charge n|e| will cancel z|e| exactly in
order that the impurity be screened at large distances.
Thus Eq. (4.17) may be written

Ef QIH1)be=3. (4.18)

T =0

Equation (4.18) is known as the Friedel sum rule’!
In deriving it, it was assumed that all the electrons in
the angular-momentum state / and the spin state have
equal phase shifts. This need not always be the case,
particularly when a scattering resonance exists in the
conduction band. It is then possible to have different
phase shifts for various components of angular mo-
mentum state / and spin state a.

Thus, when a scattering resonance exists in the
conduction band, the phase shift may be different for
each of the electrons in the given / and « states. Instead
of Eq. (4.18), self-consistency is obtained by requiring
that the generalized Friedel relation be

2(2l4+1)
5ij= ey,
=1

1=0,1,2, -+,  (4.19)

where 2; is the contribution to the screening by the
electrons in the state /. For the p electrons,

Skp1tOrpatdrpst-Orpat-Orpst-Orps=m2p, (4.20)
while for the s electrons

5ksl+6k82=7rzs~ (4.21)

Many numerical solutions to Eq. (4.11) were made.
One symmetrical solution is the solution in which the
Friedel sum rule is satisfied. Let us denote by 6xr and
fir the values of the phase shifts and the density
function when the Friedel rule is satisfied. Though the
phase shift is evaluated at £=*%w, to avoid cumbersome
notation the F subscript on kr has been suppressed.
There are also asymmetrical solutions. These solutions
occur when localized states exist in the band. This is

a1 C, Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1964) ; or see Ref. 26.
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analogous to Anderson’s®® theory of localized magnetic
states. One such solution can be obtained from the
configuration in which one p electron is resonant while
the others are not and have equal phase shifts. The
phase shift of the resonant p electron is denoted by
0p1. That of the nonresonant p electron is denoted by
dp2. Density functions for resonant and nonresonant p
electrons are denoted by f,1 and f,e, respectively.
The self-consistency condition thus demands that

dp1+50p0=12p. (4.22)

Similarly, it is possible to obtain solutions to the models
in which two or three p electrons are resonating. For
two electrons with parallel spin resonating, we have

25p1+46p2= T2p, (423)

while for the three electrons with parallel spins reso-
nating, we have
35p1—|—35,,2=7rzp. (424)

Many asymmetrical solutions to Eq. (4.11), in which
Egs. (4.22) and (4.23) are satisfied, have been com-
puted for lithium and sodium. It was found that when
there are symmetrical solutions resonance scattering
exists above the Fermi levels. For the s electrons in
these metals, computations that have been carried out
indicated that with reasonable values of J,; and 2 only
the symmetrical solutions exist. Thus Eq. (4.4) may
be written

2645 p=132s.

Numerical Calculation of f

The results of the calculation of Eq. (4.9) indicate
that

ifm’

=1

2
and Z fsi

are almost constants; the reason being that in the
calculation, the total phase shift of a given angular-
momentum state is assumed to be fixed [see Egs. (4.20)
and (4.21)]. Knowing 8,1 from one of the Egs. (4.22),
(4.23), or (4.24), depending on whether one, two, or
three electrons are localized, 8,2 can be calculated. With
this value it is possible to read off the corresponding
value of U s from the graph of phase shift as a function
of Uj, and fpe from a graph of f, as a function of U,.

Figure 2(a) shows the density function f, as a func-
tion of U, for various effective masses of Li. The de-
crease of f, with the increase of U, is due to the fact
that as U, is increased the Coulomb interaction term
is increased. U, thus tends to reduce the number of
electrons inside the cell. Increase in effective mass is
equivalent to increase in the strength of the potential,
hence the reduced values of f, as we increase the effec-
tive mass. Figure 2(b) shows the graph of f, for Na,
which has shape similar to that of Li. In Figs. 2(c) and
2(d) are shown graphs of f for Li and Na, respectively.
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Fi6. 2. (a) Density function f, as a function of U, of Li for
different effective masses. (b) Density function f, as a function
of U, of Na. (c) Density function f; as a function of U, of Li for
different effective masses. (d) Density function f; as a function
of U, of Na.

Figures 3(a) and 3(b) show the variations of phase
shifts at the Fermi surface as a function of U, for Li
and Na, respectively. It is seen that as U, is increased,
the phase shifts decrease to zero and then become
negative. Figures 3(c) and 3(d) show variations of
phase shifts with U, for Li and Na, respectively. These
curves show that, unlike the p electrons, the s electrons
phase shifts have no structure. The absence of structure
in the phase shifts of s electrons explains why the
observed spectrum of L3 emission of Na is normal.

To compute Jp,, we note that from Eq. (4.13) we
may obtain

Upi(r)=Hc(rs)+By—J pofr1,
and five equations of the form
Upz(fs) = Hc("s)"‘Bp_]m)fﬂ )

(4.25)

6 2
Bp=]pp Z fpj+]sp 21 ij,
i=1 i=

where B, is constant. Thus

]mz= (Upl_ Upﬁ)/(fpl_ fzﬂ) .

Similarly, we have for the s electrons
Usl(rs) =Hc(rs)+Bs_Jssfsl y

(4.26)

. 6 4.27)
B,=Js > fsitTsp > Jois

j=1 =1
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and another equation for the electron with the opposite
spin.

Usz(fs) = Hc(rs)+Bs—]asfs2 )

]ss= (Usl_ UsZ)/(fsl_fs2) . (429)

In writing down Egs. (4.26) and (4.29), we have for
convenience suppressed the arguments of U, and U,.
In the present problem, because of the difficulty with
the correlation energy, this is discussed in the last
section of this paper. The parameter Up and Us and
hence z, and 2, could not be computed from the first
principles. We thus solved the problem for various
values of z,. The values of z, however, satisfied the
ordinary Friedel relation. In addition, the s electrons
“antiscreen,” that is, their phase shifts, are negative.

(4.28)
giving

Condition for Stability

The sum of the one-particle energies is just the sum
of the kinetic energies of the individual electrons. Thus,
this sum may be written

2(2141) 2(21+1) #2
2 Tu= —Fki.
i=1 =1 2m

The action of the hole is to alter the total energy such
that the change in the total energy of the p electrons
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F1G. 3. (a) Phase shifts 8z, at the Fermi surface as a function of
U, of Li for different effective masses. (b) Phase shifts 6z, at the
Fermi surface as a function of U, of Na. (c) Phase shifts 6z, at
the Fermi surface of Li as a function of U, for different effective

masses. (d) Phase shifts 8z, at the Fermi surface as a function of
U, of Na.
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(c) (@

F1c. 4. (a) Change of kinetic energy AT, per particle as a
function of phase shifts 6z, at the Fermi surface of Li as U, is
varied for different effective masses. (b) Change of kinetic energy
AT, per particle as a function of phase shifts 6z, at the Fermi
surface of Na as U, is varied. (c) Change of kinetic energy AT
per particle as a function of phase shifts g, at the Fermi surface
of Li as U, is varied for different effective masses. (d) Change of
kinetic energy AT, per particle as a function of phase shifts 8z,
at the Fermi surface of Na as U, is varied.

from symmetrical to that of the asymmetrical solution
may be written with the aid of Eqs. (4.10) as

6
AE,= (3 AT pi—6AT ,r)

=1

—3 (U pp ?:6 fod—6J pprfpr?). (4.30)

=1

AT,; is the change of the kinetic energy of the ith p
electron when the hole is present. Here the subscript
F denotes the Friedel value. Now if we make the wave
function of Eq. (4.16) vanish at the boundaries of a
large sphere R, the following quantized values of & are

obtained:
!
k=li(n+5>7r—5kl]/]€,

n=0,1,2, ---.

The action of the hole is to change the wave vector
such that

Ak=—54/R.
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Thus,
ATZ =
™ 0

(4.31)

dpilde,

which is independent of the size of the sphere. The
condition for stability is

AE;<O. (4.32)
For localization of one p electron, Eq. (4.31) is
(ATpl'*‘SATp?" 6ATpF) - %[]pp(fp12+5fp22)
—6J pprfprt]<0. (4.33)

For localization of two p electrons, the condition is

(ZATPI+4AT172_ 6TpF) - %[]pp(zfp12+4fp22)
— 67 fpr?]<0.  (4.34)

The integration in Eq. (4.31) was done numerically.
In Fig. 4(a) are shown graphs of AT, the change of
kinetic energy per particle as a function of phase shifts
at the Fermi surface of Li. AT, is not very sensitive to
the changes in the effective mass. Figure 4(b) shows
AT, for Na. Graphs of AT for Li and Na are shown in
Figs. 4(c) and 4(d), respectively.

As is evident from the graphs, AT, as a function of
phase shift has a curvature while the AT, graph is
linear. The difference between the two sets of graphs
is due to the fact that p-scattering resonances exist in
the band while there are no s-scattering resonances.

We have given here an explicit calculation for the
stability condition of two resonant p electrons in Li,
m*=1.5 and z,=1.3.

Up=20.50, Upy=23.24,
Sp=1.617, 6,,=0.212,
fo2=0.66, fp?=0.0059, J,,=9.69,

2AT j1=—1.572, 4AT p.=—0.260,
2AT p1+-4AT po=—1.832,
3T op(2f o4 pe?) =1.546,
Jopr=12, fprt=0.02, 6AT,r=-—0.96,
3T porfort=0.72,

3T (2 f 24 [ p2?) — 3T ppr for*=0.826,
and
(2AT p1+4AT y—6AT ,r)=—0.872,

Hence, AE,=—0.046. The small value of AE, is due
to the fact that the scattering resonance occurs very
near to the Fermi surface.

5. X-RAY EMISSION

Under electron impact or irradiation by photons, an
electron in the inner shell may be removed from an
undisturbed atom and be located at a great distance
from the parent atom. Subsequent to the removal of
the inner electron, a radiative transition may follow
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when the inner vacancy is filled. Sometimes more than
one vacancy is created. When this happens it leads to
the so-called satellite lines. In our calculation, an
assumption is made that the conduction electrons
respond to screen the hole in a relatively short time
compared with the emission of the x ray. The screening
time is of order Vy/d and is about 107% sec. Vy and d
are, respectively, the Fermi velocity and interatomic
distance. An order-of-magnitude calculation, using the
intensity curve of the K emission of Li shows that the
lifetime of the 1s hole is >10~ sec.

X rays are produced by spontaneous emission. This
emission occurs regardless of the initial presence of an
external field. Thus, unlike the induced emission, one
cannot use semiclassical arguments to obtain the
transition rate. For a completely satisfactory theory,
quantum-field theory is needed. However, it is possible
to obtain the correct probability of spontaneous emis-
sion from general conditions of equilibrium using
Einstein’s 4 and B coefficients for spontaneous and
induced transition probabilities, respectively. The
probability of spontaneous emission of a photon per
unit time per unit solid angle (see Bethe® or Dirac®)
is given by

W=i(@)2(Ee“)2l<¢f1e—m-rw|m>12, 5.1)

2w\ m Eo

where ¥, and ¢; are the wave functions of the atom in,

the initial and final states. Vay, is the projection of the

gradient of ¥, on the direction of the vector potential.

A. E, is the field in the cell where the electron is located
while E is the effective field of the medium outside
the cell. Since we are only interested in the qualitative
shape of the spectrum, the exact value of the Es/Eo
will not be needed.

Hence, the intensity per unit frequency is

4 HPwe’n (Eeff
E,

)N(E)Wflmwm, (5.2)

3 m%*

where N(E) is the density of states, ¥ is the wave
function in the conduction band, ¥ is the wave function
of the hole, and # is the number of holes.

Q /'dSk
(2r)) V.E’

where Q is the volume of the crystal, dS; is a surface
element in the % space; thus,

I=F12w’N(E)|(¥7] Va|¥i)|2,

4 1 [Eetr\2
Fe- ) .
3 m*3\ E,
® See Ref. 18, p. 143.

3 P, A. M. Dirac, Quantum Mechanics (Oxford University Press,
Oxford, England, 1958), p. 245.

(5.3)

(5.4)

where
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The matrix elements may be shown to take the form

1
Wyl VA‘Pk):Z;(l//fi VaU @) [¥s), (5.5)

where U (r) is the potential the electron moves in in the
presence of the hole. Equation (5.4) is general. As out-
lined earlier, the optical selection rules tell us that only
the partial densities and the partial wave functions are
needed. The partial density of states is given by

R m 1/2
n(E)=—( ) .
7 \272E.

Thus, from Egs. (5.4), (5.5), and (5.6), the partial

intensity is given by
4R/ m \17 au
Ij=”‘—< ) F <Rf — Rkj>
3 7 \212E dr

j takes the values from 1 to 2 (2/41); the factor 2 is
due to the spin.

(5.6)

2

(5.7)

Low-Energy Limit
At low energies, Eq. (4.15) may be written

Rip=kr/R, 1=1,
5.8
k—0 (5-8)
and
Ris~k/R, 1=0.
wek/ (5.9)
k—0

R; and dU/dr do not affect the spectrum very much.
Hence, in the limit of low energies, the K emission
should, using Egs. (5.7) and (5.8), be proportional to
E*” while the Lgs emission, using Egs. (5.7) and (5.9),
is proportional to E'2,

The K Emission of Li

We have carried out numerical calculations of Eq.
(5.7), using the radial wave function Ry, defined by
Eq. (4.15), with /=1 and the radial wave function Ri,
obtained for lithium in Sec. 1. The spectrum was com-
puted as a function of U,. It is possible to obtain the
qualitative features of the observed spectrum of K
emission of lithium if we assume that two or three
parallel electrons are resonating. Thus, when two
electrons are resonating,

-Rlcp1>

v
)

2

AR/ m \172
I= ( ) F[2’<R1s
3 7 \2HE
+4I<Rls

aUu
dr

2] . (5.10)
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F16. 5. (a) The observed K emission
spectrum of Li, from Crisp and Wil-
liams. (b) The observed Ls emission

K EMISSION (arbitrary units)
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SODIUM L

\L3 EMISSION (arbitrary units)

spectrum of Na, from Skinner. (c) The <
calculated density-of-states curve of

Li from Ham. The smooth curve rep-

resents the spherical approximation,

and the peaked curve the correct band

structure including the nonspherical

distortion. Er is the Fermi energy for

the correct band.

Rip1 and Rype are the radial wave functions for the
resonating and nonresonating p electrons, respectively,
in the presence of the 1s hole.

The L,3; and L; Emissions of Na

Numerical calculation of the L3 emission spectrum
of sodium was made as a function of U,. No scattering
resonance was found for reasons given earlier, hence

au

8 R m 1/2
I= - —"( ) <R2p Rk3>
3 7 \2#2E dr

R,, is the radial wave function of the 2p hole. Ry, is
the radial wave function for the s electron in the con-
duction band, in the presence of the sodium atom with
2p hole. In writing down Eq. (5.11), we ignored the
small contribution from the d electrons. We did not
compute separately L and L; emission spectra because
the energy separation between them is only 0.21 eV.
The calculations agree qualitatively with the shape
of the Lyz band, the only difference being the low-energy
tail. This feature is common to all the low-energy sides
of the spectra of solids, and it is particularly pronounced
for Ly and L3 bands. Cady and Tomboulian* suggested
that the tail might be due to partial Auger effect. In
this theory the long-wavelength radiation is presumed
to arise from a double electron transition in which one
electron falls into a vacant inner level while a second
electron jumps into the conduction band. Landsberg?®
made a quantitative calculation of sodium. He took

2

(5.11)

3 W. M. Cady and D. M. Tomboulian, Phys. Rev. 59, 38 (1941).
3 P, T. Landsberg, Proc. Phys. Soc. (London) A62, 806 (1949).

2
(eV)

(a) (b)

N(E)

EF

F N N T ' L

[ S |
3 4 5

2
(eV)

(©

‘into account the broadening of energy levels, assuming

a screened Coulomb potential between the pair of
interacting electrons. By adjusting the screened lengths,
he obtains a curve which possesses a tail in qualitative
agreement with the observed tail of the Lg; spectrum
of Na. Raimes?®® has suggested that the tail effect is
due to the short-range correlation between the electronic
positions.

The L; x-ray emission of sodium which occurs when
a p electron in the conduction band makes a radiative
transition to a 2s hole is not observed. The fact that L,
emission of Na is unobservable may be due to an Auger
effect or to intrashell transition of the type L;— L,
and Ly— Ly, or both processes may be operating at
the same time. The L; and M, spectra of other sub-
stances are unobservable and may be due to the above
processes. We have, however, also carried on a quanti-
tative calculation of the spectrum of L; emission of
sodium on the lines adopted for K emission of lithium.
The calculations indicate that there is a p-scattering
resonance in the conduction band of Na.

In Figs. 5(a) and 5(b) are shown the observed spectra
of K and L; emissions of Li and Na, respectively.
Figure 5(a) was taken from Crisp and Williams,* while
Fig. 5(b) was taken from Skinner.! Compare this with
Figs. 6(a), 6(b), and 6(c), which show, respectively,
the computed K emission spectra of Li, with m*=1
and 1.5, and the Ly; emission of Na. In computing Fig.
6(c), we did not take into account the tail effect, for
the origin of this effect is due to an entirely different
cause. Computation was also made for the K emission

36 S. Raimes, Phil. Mag. 45, 727 (1954).
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spectrum of Li for m*=1.37 and 2. The shapes of the
spectra are similar to that shown in Figs. 6(a) and
6(b). Figure 7(a) shows the variation of phase shifts
as a function of kinetic energy of the electron in the
conduction band for m*=1.00. Calculations for Li with
m*=1.37,1.5,and 2, and for Na, show similar variation.
In Fig. 7(b) are shown shapes of partial emission
spectrum of p electron. Figures 7(c) and 7(d) show the
resultant spectra if only one p electron is resonant. To
get the right spectrum, two electrons were assumed to
be resonating in the conduction band [Figs. 6(a) and
6(b)]. It is also possible to obtain the right shape of
the spectrum if three electrons are resonant. Figure 8
shows the partial L, emission spectra of Na, with U,

as a parameter.

6. RECAPITULATION

As shown in Sec. 5, our results give qualitative
agreement with the observed x-ray emission spectra
of Li and Na. However, our work is partially phe-
nomenological in that we have not been able to derive
all the parameters which enter our problem from the
first principles. The difficulties lie with the old-time
problem of exchange and correlation energies. We
remarked in Sec. 2 that the proper potential inside the
Wigner-Seitz sphere should read

.Vatom+ VHartree+ Vexchange+ Vcorrelation . (6- 1)

respectively, the partial K emissions of
the resonant and the nonresonant p elec-
trons. (c) L3 emissions of Na with Us a
parameter.

It is known from the Wigner-Seitz® calculation of
cohesive energy of Na that if we allow only for V,¢om
inside the cell, a good agreement is obtained. This is
because Vexcnange €ssentially cancels the interactions of
parallel spin electrons, while Viorrelation keeps out all
of the antiparallel spin electrons. Hence, the last three
terms of Eq. (6.1) cancel.

In our problem, we have allowed for the exchange
term, but the correlation term is absent. We have
absorbed it into J, making J effective. From Wigner
and Seitz we also know that for the s electrons (which
are typical electrons), Jegective turns out to be very close
to zero for the atomic problem. However, we do not
know the effect that ionic potential (potential with
inner hole) makes on Jeective-

The s-p exchange, which we neglected, will also have
its effect and is the first obvious term (g=1) in a better
calculation of the Coulomb expansion. It is interesting
to note that for the p electrons we have computed J,,
with g=0, using as our wave function Ry,(r), as defined
by Eq. (4.15) for the Li atom with 1s hole.

Ts 1 7’
T pp=(dm)ie / p(r'>[7 / o ()rdr

+ ,/, ,T p(r)rdr:lr’zdr' / ! /0 TP(’)daf

p(r)=|Rip|®.

2

, (6.2)

(6.3)



157

J ppy calculated from Eqs. (6.2) and (6.3), is of the same
order as that we used to fit the Li spectrum. To do J,,
properly, we have to include the g=2 term in the
multiple Coulomb expansion.

We may say that our problem is reminiscent of
Heisenberg theory of magnetism, where the theory
gives a good agreement but where the exchange
parameter has yet to be calculated from the first
principle for dense systems. In the Anderson work® of
localized magnetic states, the J that enters is also
Jeffective, I the sense that it includes the correlation
term.
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F1G. 7. (a) Phase shifts at 7, as a function of the kinetic energy
of the electron, with U, as a parameter of Li, and M*=1.00.
(b) Partial K emissions of Li, and m*=1.0 with U, as a param-
eter. (c) and (d) K is the total K emission of Li, and m*=1, with
only one resonant p electron. K; and K, are, respectively, the
partial K emissions of the resonant and the nonresonant p electron.
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An attractive feature of our model is that it contains
few parameters, J,p, Jps, and J,. Also, at a fixed 2,
the decision of what the best p states are does not
depend on either J, or J ps.

Our work gives a plausible explanation of the
peculiar shape of the K x-ray emission spectrum of Li
as being due to electron-hole scattering resonance in
conduction band. It also shows that the normal shape
of the L3 emission spectrum of Na may be due to the
absence of electron-hole scattering resonance within its
conduction band.
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