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If an Overhauser static spin-density wave is present in an electron gas, the Fourier transform of a certain
spin-density correlation function is at least as singular as (tl —Q) ' near the wave vector Q of the spin-
density wave. This rules out long-range spin-density waves in one and two dimensions at 6nite temperature,
since it must be possible to Fourier-transform this correlation function back to position space.

OGOLIUBOV has shown, using an inequa, lity de-
rived by him, that a singularity of the form q

'
occurs in certain correlation functions for superQuids
and superconductors. By using similar arguments, we
can deduce the existence of an analogous singularity
for the case where an Overhauser spin-density wave
exists in an electron gas. Bogoliubov' finds that, as q
goes to zero, the relation

while L. ~ ] and I
~ ~ ~ I+ refer to commutators and

anticommutators, respectively. We will be interested in
the case where (A) and (At) vanish, so we drop these
terms. We introduce the field operators

P.(x) = V "' P exp(iK x) ttK,

Pt. (x) = V—'" g exp( i—K x) tttsr
K

(n, )+ ', &l,T(X-,)m/Vqm (1)
and the Fourier components of the density

holds for superQuids, and an analogous relation holds
for superconductors. Here (st~) is the boson occupation
number of states with wave number q, (Xs) is the
occupation number of the zero momentum state, and
the other symbols have their usual meanings.

Hohenberg has applied these relations to show that
there can be no superQuidity or superconductivity in
one or two dimensions. ' For the superQuid case one
can integrate both sides of Eq. (1) over a range of

q including q=0. The right-hand side then diverges
at small q as fdq/q' or fd'q/q' in one or two dimensions,
respectively. However, the integral on the left should
not diverge for small q, since1, E (Eo)—

d'q(rt, )=

Hohenberg's conclusion then follows, since we have a
divergence on the small side of the inequality, so that
(in the superfluid case) we must have (Es)=0 to save it.

In the form stated by Mermin and Wagner, ' the
Bogoliubov inequality reads

l (IA —(A), A' —(A') I+)

&)s T
I II c, A j)l /(LLc, Hl, c'j). (2)

Pqt ~ ~ K'I~K+qt~
E

Pq ~ ~ Ef~K+q / y

E

Eo K

In order to prove our result4' for the Overhauser spin-
density wave, we use Eq. (2) with

C=p) and A=pq q.

This choice is motivated by an analogy with Hohen-
berg's treatment of the superconducting case. We com-
pute the commutators which occur in Eq. (2);

Lc A&=Lpat w-.3=pa,

LLC, Hj, C ]=LI p, t, Hj, p, t]=(Ipq'/m)Et.

pa= pat+pqt

Here V is the volume of the system. Those Fourier
components of the density which are off-diagonal in
the spin indices, namely pq, are essential for discussing
the Overhauser spin-density wave, ' since in the Hartree-
Fock treatment of this phenomenon the creation oper-
ators for the single-particle states are linear combi-
nations of u~Et and atE+q~. The Hamiltonian which we
discuss is the sum of kinetic and potential energies;

H= P(5'E'/2m) tttx, asr, +(2V) 'P tt(K) Lpxptx —Ã7.
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The brackets ( ~ ~ ~ ) denote thermal exPectation values, This second equation is an expression of thef-sum rule, '
which holds separately for pqt and pqi. Then we find
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that Eq. (2) reads

s(Ipq-. , p'o-. }+)&42"l(pq)l'~i&V(&t). (3)

Now we assume that Q is the wave number of the
spin-density wave, of the order of twice the wave
number at the Fermi surface. Then (po) is not zero
and is of order Ã. Let us take the Fourier transform of
both sides of Eq. (3). The small side of the inequality

diverges in one or two dimensions, as it did in the
superQuid case. However, the Fourier transform of the
left-hand side must be finite, due to its physical in-
terpretation as an equal-time spin-density correlation
function, which cannot be in6nite for all r.

The physical meaning of the left-hand side of Eq. (3)
is more transparent in position space. We have, in three
dimensions,

1 exp( iq—r)
d g

= (4irr) —'
(2s.) s trt2

1 exp —i r
A p( —q r)(lpga-. , p'o-.}+)=, d'C p(q r)(Ip. p'}+),

p, = d'x exp( —iq x) Ptt(x)lb'(x).

Substituting in Eq. (3), we find the following relation:

e p( —Q r) d'~(t4' (x)A(x), 4' (x—r) lbt(x —r) }+)&
~&~2' l(po) I'

4irr5'(1Vt )

The quantity on the left in Eq. (4) is proportional to the volume, as it should be. To emphasize its physical mean-
ing, we introduce the spin-density components

S.( )=-,'(P"t( )lt'l( )+P' ( )Pt( )), 'S„( )=-,'(P't( )P ( ) —P t( )lbt( )), S+=S,+iSy.

Now Eq. (4) reads

exp( t'Q r)—d'x(jS+(r), S—(x—r) }+)&
m &nT l(pa)l'

4 r 5' (lVt)

In one or two dimensions, then, the amplitude (p@)
of the spin-density wave must vanish at finite temper-
atures, since the Fourier transform from momentum
space must exist. The only way to satisfy the inequality
(3) is to have the right-hand side vanish. However,
we cannot tell anything about what happens at T=o,
so there is no contradiction with earlier work, ' where
it was shown that for weak interactions a long-range
spin-density wave will occur at T=o only in one di-
mension. Finally, it has been shown by Fedders and
Martin, and by Hamann and Overhauser, that the
electron gas in three dimensions probably does not
have a spin-density wave instability. ~
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We can draw an analogy between this behavior as
q and a similar divergence which arises in the Ornstein-
Zernike treatment of critical Quctuations. There one
finds, at the critical point,

(p~pt~) = (knT/q') const. ,

so that the density correlation function in position space
is actually infinite at the critical point in one or two
dimensions. However, the conclusion from this result is
simply that the Ornstein-Zernike treatment is not
applicable to the one- or two-dimensional case.
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