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The momentum spectrum for the K electrons ejected during allowed K capture is calculated in the lowest
order of perturbation theory using a nonrelativistic approximation for the electrons. The differences be-
tween this theory and the previously developed theory of Primakoff and Porter are pointed out. The new
theory yields a spectrum which is virtually identical to the Primakoff-Porter spectrum over almost the
entire momentum range of the ejected electrons. A discussion of relativistic effects and effects due to atomic
screening and nuclear recoil is given. The discrepancies existing between the theoretical predictions and the

experimental results are also discussed.

I. INTRODUCTION

N nuclear decay by orbital electron capture the
neutrino emitted in the decay is sometimes accom-
panied by another emitted particle, either a photon or an
electron. The emission of the additional particle is a
consequence of the fact that the electronic structure of
the atom undergoes a rearrangement as a result of the
nuclear decay, particle emission being one of the more
drastic possible rearrangements. When two particles
are emitted, the energy released in the decay process is
shared statistically between them.

The case in which a photon is emitted, viz., radiative
orbital electron capture, has been carefully studied by
Glauber and Martin in two well-known papers.}?2
These authors have calculated both the photon-energy
spectrum and the total radiative capture probability
per electron capture event. A complete mathematical
analysis of this problem was made possible as a result
of a crucial observation concerning the sum over inter-
mediate electron states which appears in the calculation.
Glauber and Martin noticed that this sum, which is
simply the Green’s function for the Dirac equation with
a nuclear Coulomb potential, could be represented in
closed form (provided one of the position coordinates
was evaluated at the origin).

The most interesting case of electron emission is that
of K-electron emission during K-electron capture. The
relative transition rate per K-capture event is inde-
pendent of all nuclear matrix elements and depends only
on the atomic structure of the atom. In particular, the
shape of the momentum spectrum of the ejected elec-
trons is sensitive to screening and correlation effects
between the two K electrons in the initial state. Hence,
a study of the ejected-electron momentum spectrum
provides a method for examining the validity of various

* This paper is based on a dissertation submitted in partial ful-
fillment of the requirements for the degree of Ph.D. in physics at
Stevens Institute of Technology, 1964 (unpublished).

1 R. J. Glauber and P. C. Martin, Phys. Rev. 104, 158 (1956).

2 P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).

assumptions concerning the structure of K-electron
states in many electron atoms.

The problem has been studied theoretically by
Primakoff and Porter.? Their treatment of the problem
is a nonrelativistic one (except for the description of
the neutrino) and is based on the use of the sudden-
perturbation approximation. This approach necessitates
the use of a two-electron wave function to describe
the initial electronic configuration. For this purpose
Primakoff and Porter construct a two-parameter varia-
tional wave function, designed to take account of screen-
ing and correlation effects and adjusted to minimize
the energy of the initial electronic configuration. They
then calculate the momentum spectrum for the ejected
electrons, the total ejection probability per K-capture
event and the probability, per K-capture event, for the
production of two holes in the K shell of the atom.

Primakoff and Porter published their theory in 1953.
Since then a number of experimental observations have
been reported®*2 on various aspects of the problem. The
experiments are rather difficult to perform, and as a
result, the errors associated with many of the early
attempts are so large that a detailed quantitative com-
parison with the Primakoff-Porter theory is not justified.
However, during recent years experimental techniques
have improved to the point where a quantitative com-
parison with the Primakoff-Porter theory is now mean-
ingful. In particular, Lark and Perlman' have measured
the probability for the production of two holes in the

3 H. Primakoff and F. T. Porter, Phys. Rev. 89 930 (1953).

4 The presence of electrons in all shells above the K shell is
ignored. See Sec. V for a discussion of effects due to these electrons.

5 F, T. Porter and H. P. Holz, Phys. Rev. 89, 938 (1953).

6 G. Charpak, Compt. Rend. 237, 243 (1953).

7 J. A. Miskel and M. L. Perlman, Phys. Rev. 94, 1683 (1954).

8 M. Langevin, Compt. Rend. 245, 664 (1957); J. Phys. Radium
19, 34 (1958).

9 R.) W. Kiser and W. H. Johnston, J. Am. Chem. Soc. 81, 1810
(1959).

0 H, Daniel, G. Schupp, and E. N. Jensen, Phys. Rev. 117,
823 (1960).

u N, L. Lark and M. L. Perlman, Phys. Rev. 120, 536 (1960).

12 J, G. Pengra and B. Crasemann, Phys. Rev. 131, 2642 (1963).
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K shell during K capture in Cs®.. They reported an
experimental value which was about a factor of two
less than that predicted by the Primakoff-Porter theory.
Most recently, Pengra and Crasemann'? have measured
the energy spectrum of the electrons ejected during K
capture in Fe%. For low ejection energies, their results
differed from those predicted by the Primakoff-Porter
theory by factors of from 2 to 3.

It has been suggested® that the apparent discrepancies
between the experiments and the Primakoff-Porter
theory reflect inadequacies in the structure of the two-
electron variational wave function chosen by these
authors to represent the initial state of the system. The
use of such a wave function can be avoided by including
the initial-state electron-electron interaction in the
perturbed part of the Hamiltonian (rather than in the
unperturbed part as Primakoff and Porter have done).
This approach is equivalent to performing a perturba-
tion expansion on the exact two-electron wave function
where the perturbation is taken to be the electron-
electron interaction.’* The problem of K-electron
ejection during K capture is then one in third-order
perturbation theory and involves a sum over inter-
mediate electron states. However, due to the work of
Glauber and Martin it is now possible to represent this
sum in closed form, and it is this simplification which
makes a more exact analysis possible at the present
time. ~

In Sec. II,we develop the basic equations of the
theory. It is shown that by restricting the analysis to a
nonrelativistic description of the electrons, two signi-
ficant simplifications result in the structure of the matrix
elements. One is due to the vanishing of retardation
effects while the other is due to a partial cancellation
between the two matrix elements which contribute to
the process. Section III is devoted to a review of the
Primakoff-Porter theory and a discussion of the dif-
ferences between that theory and the theory presented
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F16. 1. Feynman diagrams for K-electron
ejection during K capture.

13 See, for instance, Ref. 12, p. 2648.
14 This approach has also been suggested by Primakoff and
Porter, Ref. 3.
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here. In Sec. IV, we carry out the detailed calculations
of the theory and obtain the formula for the ejected-
electron momentum spectrum. In Sec. V, the results of
the theory are presented and comparison is made with
the results of Primakoff and Porter and with recent
experimental observations.

II. MATRIX ELEMENTS AND TRANSITION RATE

The theory presented in this paper is based on treat-
ing the electron-electron interaction along with the beta
interaction as perturbations on the nuclear Coulomb
interactions of the system. Accordingly, the unperturbed
electron field ¢, (x) satisfies a Dirac equation containing
the Coulomb field of the nucleus,'®

[vui+74zf"+1]¢e(x>=o. M

ox,

In this representation, the interaction Hamiltonian
density is
3z (x) =3Cy (x)+3Cs(x) , @)

where 3C, represents the interaction of the electron
field with the radiation field and 3Cg represents the beta
interaction, for which we use the usual V—\4 coupling.
The probability amplitude for the process may then be
obtained from the appropriate terms of the expansion
for the scattering matrix. In the lowest order, the two
terms in the expansion which contribute to the process
correspond to the diagrams shown in Fig. 1.

The first diagram represents the effects on the motion
of the uncaptured K electron due to the sudden change
in the nuclear charge as a result of the K-capture process.
The matrix element for this diagram comes from the
first-order term in the scattering matrix and is given,
in configuration space, by!®

M,=G[1—Pis] / 08 (DT85 (D (4,612 (1)

X/ ar'e 17 (g2 (X)), (3)

where Tp=v,(1+M;), Au=v.(1+~;5), and G is the
vector coupling constant of the beta interaction.
¢V (r) and ¢,V (r) represent the initial and final states
of the nucleus, respectively.!” Similarly, ¢” represents the

16 We employ units in which m=c=%=1, (m is the electron
mass), and e=a=1/137. x,=(r, i) and the Dirac matrices are
defined asy= —ifa and va=0. Also vs=71y2vsvs and ¢=oTv,.

16 Although this term is formally of the first order, it is actually
of order € because of the near orthogonality of the initial and
final states of the ejected electron; see Sec. III.

17In the nuclear wave functions, the coordinates of all the
nucleons except the one involved in the capture process have been
suppressed. It is understood that an integration over this co-
ordinate implies an integration over the coordinates of the other
nucleons as well. A summation over all the protons in the initial
nucleus is also implied.
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emitted neutrino and ¢1?’, ¢,(%, and ¢, represent
the two initial K electrons and the ejected electron,
respectively; the electron wave functions ¢ being
Coulomb-field eigenfunctions corresponding to a
nuclear charge Ze. Py, is the exchange operator which
interchanges the two K electrons.

It will prove useful for our later work to rewrite the
overlap integral appearing in (3) in a slightly different
form. To this end, let us consider the functions ¢,%’ (r)
and ¢,V (r) which satisfy

Zo
(HO_ ——)¢M(Z) (1)=E,?¢,D(x), (4a)
r

Za «
(B =400 = B0, @)

r 7.
If we treat the a/7 term in (4b) as a perturbation, we
can calculate the functions ¢,4V(r) from the ‘“‘un-
perturbed” functions ¢, (r) by standard perturba-
tion methods. Such a calculation gives

A (r)

WD (1) =67 (r)—l—aZ’ m
L\

X / oD@, O 0. )

The prime on the summation sign signifies the omission
of the term »=A\. If we insert this expansion into (3)
and, in keeping with our approximation, retain only
the first nonvanishing term, we can rewrite M, as

Ma—aG[1—Pis] / I 6,7 @D, (03 (1)

Xb (s / T @), ©
where W is the energy of the ejected electron. We have
suppressed the superscript (Z) since it is now the same
for all the electron wave functions.

Let us now consider the second diagram appearing in
Fig. 1. This diagram represents the effect on the motion
of the uncaptured K electron due to the sudden vanish-
ing of the electron-electron interaction between this
electron and the K electron which has been captured.
The matrix element corresponding to this diagram is

dK eiX- (r1—r2)
M b————[l Py / dry / dr, ] dr; f o =]

X &1 (r2) 2 (r2)ds™ (x3)T ups™ (r5)

X & (t)A,GE(rs,11)vupa(rs),  (7)
where E= E;+ E;—W. The electron Green’s function,
Gge(r,r'), appearing in (7) is the Coulomb-Dirac
Green’s function. It satisfies the equation

[H(r)— EJGe(r,x")=—vd(r—r'), ®
where H, is the Coulomb-Dirac Hamiltonian.
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In this paper we restrict ourselves to ejected-electron
energies for which the motion can be well described
nonrelativistically. It is at these energies that Coulomb
effects are most important and hence lead to the most
interesting results.!® In a nonrelativistic treatment, it
is to be expected that the electron-electron interaction
reduces to an instantaneous Coulomb interaction. This
reduction and the subsequent simplification of the
matrix element may be achieved most easily by first
rewriting the integral over K, appearing in (7), in a
more covariant form,

dKvy, v,
/ m / (k= WHErs 7, (9)

where the represent intervening matrices and
ku= (K,iko). The retardation effects can now be sep-
arated out by a technique due to Feynman®® according
to which

"Ypd4k Py Y'éi' .
J2; _i=1 i

where the é; are the two transverse polarization vectors.
Equation (10) is an operator equation which is under-
stood to hold true for the corresponding matrix elements.
Feynman has derived this equation for the matrix
elements of free-particle states. In Appendix A, we
extend this proof to include Coulomb field states. The
first two terms on the right represent the retardation
effects due to the exchange of virtual transverse photons
while the last term represents the instantaneous
Coulomb interaction.

In a nonrelativistic treatment, only v4 can couple the
final and initial wave functions of the ejected eleciron.
Thus, for the corresponding matrix elements of (10),
the first two terms on the right vanish and only the
Coulomb interaction term survives. Incorporating this
simplification into (9) and carrying out the &, integra-
tion, we obtain the result

/ dK'Yv *Yy dK
—_— = —’)/4 ... »‘Y4 s
[K*—(W—E)] J K?

in the nonrelativistic limit. After substituting this result
into (7) and carrymg out the K integration, we obtain
the following expression for M:

Y 4d4k

o bidE yae
| , (10)

(11)

My=0G[1—P15] / dry / dr, / drs—-¢/T(rz)¢2(f2)
712

X @A (1)L (15)¢ (13)A,G 1 (x5,11)pa (r1) . (12)

A further simplification of the matrix elements is
motivated by the following considerations. While one
K electron, with coordinate 1y, is being captured by the

18 Actually, since the energy released in the decay is usually
quite small, relativistic effects can be neglected for all but the
highest eJected-electron energies.

18 R, P. Feynman, Phys. Rev. 76, 769 (1949).
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nucleus, the second K electron, with coordinate rs, is
being ejected. If electron one is much closer to the
nucleus than is electron two when the capture process
occurs, then the potential energy of electron two will
undergo almost no change and thus electron two is not
likely to be ejected. Therefore, when 753>, we expect
the corresponding amplitude for the process to be
extremely small. Mathematically, this sharp decrease in
the transition amplitude in the region r2>ry, occurs
through a mutual cancellation between the two matrix
elements, M, and M. In order to effect this cancella-
tion explicitly, it is necessary that we rewrite the ex-
pression for M, in a somewhat different form. To this
end we consider the expression

(E.—W) f dt,Gr(t5,11)y4p1(r1) .

If we introduce the eigenfunction expansion for the
Green’s function,

ba (ra)‘ﬁa (1'1)

G (1‘3,1'1) = ; (E—— Ea) )

and make use of the relation E=E;+E,—W, this
expression can be reduced to

(E.—W) f driGe(rs,r)vap1(r) =¢1(rs).  (13)
Substitution of (13) into (6) then leads to

M.= —C\EG[l_PHJ/drK(sz (rs)FpQSiN (r3)¢;"(r3)AM

dr
X f G (ear)yids(rs) | g (rgars).  (14)
72
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We can now conveniently combine (12) and (14) to
get the total matrix element for the process

M=M,+My=—aG[1—Py;] f drsd ¥ ()T s (xs)
X (r3)A, / drGg(rs,r)e1(11)

x f dmﬂ(m)m(n)(i—i). (15)

Y2 T2

For allowed K capture, the wave functions of the
leptons involved in the beta interaction can be replaced
by their values at the origin. Furthermore, in the non-
relativistic limit the nuclear matrix elements reduce to

(07, Tup™) — {iN(d,Y,00:Y),(0,Y,0:N)} ={B,B4}, (16)

and (15) becomes
M= =GP} 000 [ 4G 00,00

1 1
x [ g i e)s)(———), (7
T2 712
where B=B,A,.

Now, to bring about the cancellation in (17) which
occurs when r2>>7;, we expand 1/71, in spherical har-
monics in the usual way,

1 1 1 w /re\™

—=—+—% (5 Parerr),

Y12 7> 7r>n=l\7>
and split up the integration in (17) into two regions
according to whether 7,S7s, thus obtaining

Yo n=1 \ 79

M=—aG[1—PJ&(0)6 f its / dﬂl{ /0 " nzdnGE(o,rl)m(rl)[—i > (ﬁ)nPn(fl-fz):'

4 / nzdncE<o,rl)¢1(rl)[i—i—i > (f)nmm-m]}«w(ram(r». (18)

Since we are treating the electrons nonrelativistically,
Gz(0,r;) and ¢4(r1) are spherically symmetric functions.
Thus, with the aid of the addition formula for the
Legendre functions, we see that all the terms involving
the P,’s vanish when the integration over Q; is per-
formed and M thereby reduces to

M= —aG[l—Pm](ﬁ"(0)@/drzfdrxGE(O,r1)¢1(71)
11
><¢ﬁ(rz)¢z(rz)0(n—rz)(—-———>, (19)

72 71

where we have introduced the step function 6(r). For
further analysis it will be convenient to use the well-

e r1 71 7=l \7y

known integral representation for 6(r),

1 r= dketr
0(r)= lim — —
0 218 J o (B—1e)

in which case M becomes

u=—25r1_p ]'(O)(B/
2wt 210 (k—1e)

X/dr@fT(r2)¢2<7’2)€_ik72/d1'10}3(0,1'1)

Xea(r 1)6“"‘(i“‘ i') . (20

72 71
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Section IV will be devoted to the evaluation of M.
Here we simply note the connection between M and the
ejected-electron momentum spectrum. The total
transition rate for the ejection of a K electron into the
momentum range dP is

= i ’
dw=2mwP*dP / Qe _/ dPi S/,Sg;sl,sz ]

X6(W+E,—AE—E,—E,), (21)
where the spin states of the two emitted particles have
been summed over and the spin states of the two initial
K electrons have been averaged over. A summation
over all final nuclear spin states and an average over
the initial nuclear spin states are also implied. P and
P, represent the momenta of the ejected electron and
the neutrino, respectively. E, is the energy of the
neutrino and AE is the energy released in the nuclear
transformation. Anticipating the results of Sec. IV
which show that | M |2is independent of P, and thus
depends only on |P|, we can easily perform the inte-
gration indicated in (21). The result is

dw=813(AE+E;+E—W)PHP Y | M|2.  (22)
III. RELATIONSHIP TO PRIMAKOFF-
PORTER THEORY

Primakoff and Porter treat K-electron ejection
during K capture by means of first-order time-depend-
ent perturbation theory. Since the beta interaction is
assumed to take place instantaneously, the method is
in fact a sudden perturbation approximation. These
authors work in a representation in which the inter-
action Hamiltonian consists solely of the beta interac-
tion; all correlation effects between the two initial K
electrons are included in the initial unperturbed wave
function of the system. In this representation, the
matrix element for K-electron ejection during allowed
K capture is

M=G[1—P1] / dr ¢, (1)¢7(0)Bepr,. @ (0,1), (23)

where ¢1,2(r1,rs) represents the space and spin de-
pendence of the initial two-electron state including
correlation effects between the two K electrons. To
represent this two-electron state Primakoff and Porter
construct an approximate wave function of the form

¢1,2(l'1,l'2) — N¢1(r1)q52(r2)e°“ (r1tre) gaaris s (24)

in which ¢; and ¢, are ground-state hydrogenic wave
functions for a nuclear change Ze and N is the appro-
priate normalization factor. The factor e*2"2 accounts
for the correlation due to the electron-electron inter-
action and the factor e*1¢'1+72) accounts for the partial
screening of the nuclear Coulomb' interaction. The
values of the parameters a; and a; are chosen such as to
make this wave function a reasonably good fit to
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Hylleraas’s varjational nonrelativistic wave function
for the problem of two electrons in the ground state
about a nucleus of charge Ze.0

Using the wave function (24) to represent the two
initial electrons, the appropriate Coulomb eigenfunction
for the ejected electron and a Dirac plane wave for the
neutrino, these authors calculate M by means of (23).
Here we simply wish to quote their final result for the
relative probability per K-capture event for the ejec-
tion of the uncaptured K electron with a momentum in
the range dP,

dw, 1602a'P exp[— (4a/P) tan~'(P/a)]
dP h (a2 P2)4(1— ¢ 27! P)

X[l—Z(AZH)T’ 23)

The only difference between the theory of Primakoff
and Porter and the theory developed in the present
paper is in the method of construction of the initial
two-electron wave function. Whereas Primakoff and
Porter use a variational method, we calculate the wave
function from perturbation theory. In particular, we
treat the electron-electron interaction as a perturbation
on the nuclear Coulomb interaction of the electrons.
Since the exact wave function ¢1,2(r1,12) satisfies

CH (r)+H o (x2)+€/712]¢1,2(11,15) = En,291,5(11,10), (26)

the unperturbed wave function is simply the product of
two hydrogenic wave functions. A standard perturba-
tion calculation then leads to the following expansion
for the wave function,

where a=Za.

é1(t1)da (12
b1y )= (I T —
tin (Ey+Ey—E,—E,)

1
X / dry/ / drz'—-—,¢11(1’1')¢1(7’ v)

712
Kt (r2)pe(re)+0(a?).

The prime on the summation implies that the term for
which the energy denominator vanishes is omitted from
the sum. Let us now insert (27), rather than (24), into
(23). An integration over r and the introduction of the
Green’s function by means of the eigenfunction expan-
sion then leads to the result

27

M=G[1—P1,]¢ (0)®p1? (0) / At ZD1(r)o D (r)

1
+Ga[1“'P12](5”(0)(B/d1‘1/d1’2—-
712

XGr(0,71)p1(r))pst (x)pa(r2).  (28)

2 See H. A. Bethe and E. E. Salpeter, in Handbuch der Physik,
ggizted by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35, p.
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With the introduction of (5) and (13) into the first
term of (28), it is then easily seen that (28) becomes
identical with (17).

The advantages of the perturbation method are well
known. Generally it provides us with more accurate
wave functions than does the variational method. Most
important, however, it allows us to make a reliable
estimate of our error; this, of course, is not possible
with the variational method.

IV. DETAILED CALCULATIONS AND
FINAL RESULTS

In this section we wish to evaluate M in detail and
obtain a final formula for the relative differential
transition rate. We begin by introducing the appropriate
representations for the wave functions and Green’s
function appearing in the matrix element. For the initial
and final electron states these are the familiar Coulomb

eigenfunctions,
a3 1/2
¢i(”)=(—) € Xy, (29a)
™
AT (1 e
r)= e1ra2 T —)etPr
¢5(x) 2mn 7
XF(—1ia/P, 1, —iP-v—iPr)X;, (29b)

in which the Pauli spinor X determines the spin de-
pendence of the state and F(c,d,2) is the confluent
hypergeometric function.

In considering the form of the Green’s function, we
observe that since we are working in the nonrelativistic
limit (P<1), the condition |E| <1 is always satisfied.
In this case the Green’s function does not represent a
freely propagating wave but rather is a function which
decreases very rapidly away from the nucleus. The
Green’s function with these particular properties has
already been studied by Glauber and Martin* in con-
nection with the problem of radiative K capture.
These authors have shown that this Green’s function is
simply related to the Whittaker function, W,,1/2(2ur),
and, in the nonrelativistic limit, is given by

—TI'(1—n) Wy,12(2u7)
Ge(0,)= s

2w 7

(30)

with p=[2(1—E)]'” and n=a/p. From the defining
equation for £ we see that | E| <1—a?and consequently
0<7<1/v2. In this case we can make use of a real
integral representation for the Whittaker function,
which is valid for 0<y<1, to rewrite the Green’s
function as

" i 145\
Gr(0)=——e / e‘z“”( —) ds. 31)
™ 0 S

2t Glauber and Martin, Ref. 1, especially Sec. 6.
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This representation proves to be a convenient one for
carrying out the spatial integration.

We begin our evaluation of M by performing the two
spatial integrations appearing in (20). This involves the
evaluation of the following four integrals:

dr

L= / TR — (320)
7

ol

L= f ) (=i, ()
dr

13=/—GE(0,7)¢1(r)eik’, (32¢)
7

. oI,
]4= /erE(O,r)¢1(r)e”"= -’LB—I; (32d)

To evaluate I3, we introduce the representations (29)
for the wave functions along with the well-known inte-
gral representation for the confluent hypergeometric
function,

1
F(ib1,2)=—

T/ ¢

dt 1% (t—1) "%tz (33)

in which the path of integration encircles the branch
cut extending from O to 1 along the real axis in the
positive sense. The spatial integration in 7; may then be
carried out by elementary methods. The result is

e™*2PT (1—ia/P) ( a®
= _<_>%x foz
(2m)322i P2

™

dt tia/P—l (t_ 1)—ia/P—1
¢ ,
c (t—10)

with o= (k+P—1a)/2P. In order to ensure convergence
of the radial integral, it is necessary that the contour
C satisfy the requirement, Im¢t>—a/2P. To evaluate
I;, we introduce the representations (29a) and (31)
into (33c). This leads, after completing the spatial
integration, to the result

as\1/2 o 1+S 7 1
I;= —-4#(——) X / ds(“) _ 35
T 0 s / (a+u+t2us—ik)?

By inserting (32b), (32d), (34), and (35) into (20),
we then obtain the following expression for the matrix
element:

(34)

—aGuadere /2P ia

M= 23/2P21T7/2 F(I*E)[l_Plgj

X (0)BXX;XoI .,  (36)
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where

1 > dk fdt fialP=1(f— {)—ialP~1
[o=—
2iP) ., (k—ie)J ¢ (t—to)

° 145\ 1
X / ds( )
0 s (a+u+2us—ik)?

4P ‘ 37)
X[w+w+ur4@1a—m]'(

The squared absolute value of the matrix element
must now be summed over the spin states of the two
emitted leptons as well as over the spin states of the
two initial K electrons. These calculations are carried
out in the usual way by introducing the positive-energy
projection operators (14v.)/2 and (e-P,+E)/2E,
for the electrons and neutrino, respectively, and extend-
ing the summations over all states. The result of the
calculation is

s (B-B*+B,B¥)
N P50 (1_ -—27ra/P)

||z (38)

8f18y,81,82

An inspection of (37) and (38) confirms our earlier
statement that >_ | M |2 depends only on P.

In order to obtain the relative rate for K-electron
ejection, we also need to know the transition rate for
ordinary allowed K capture. This is easily computed
by the same method with the result,

G*a?
we=—(AE+HEFB-BHBEY. (39

Combining (22), (38), and (39) and neglecting terms
of order (Za)?, we then obtain for the relative differen-
tial transition rate per K-capture event,

dw  o2a*(P*2a?)
dw,=—=
wx  PirA(1—e2melP)

x[1—m] |I,|2dP. (40)

To complete the analysis, we must still evaluate the
integral 7,. This is done in Appendix B and leads to the
final results given by (B14), (B15), and (B16). With the
aid of these results we then obtain for the differential
transition rate per K-capture event the formula,

dw, 64a2a*Pe*/P exp{(4a/P) tan'[ (2a+u)/P]}

ap (uta)'[a+up+PrP(1—e2me/P)

[T

where I is defined by (B13) and (B14).
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F16. 2. Theoretical
energy spectrum of
K electrons ejected
during K capture by
Feb®, The solid curve
represents the result
of the present calcu-
lation. The crossed
points were com-
puted from the Prim-
akoff-Porter theory.
The theoretical end
point is at E=0.425.
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As pointed out in Appendix B, the series representa-
tion for I is expected to converge quite rapidly. The
error introduced by terminating this series after a finite
number of terms is of the order of the next successive
term in the expansion. In particular, detailed numerical
evaluation for the case Z=26 shows that retaining only
the first two terms of the expansion leads to an error of
order Za, whereas retaining the first three terms reduces
the error to order (Za)?.

The theoretical forms of the ejected K-electron spec-
trum are plotted in Fig. 2 for Fe%, which has a maxi-
mum ejected electron kinetic energy of 218 keV. The
solid curve and crossed points represent plots, converted
to the energy scale, of (41) and (25), respectively.

V. DISCUSSION OF RESULTS
AND CONCLUSIONS

It is clear from Fig. 2 that the theory developed in
the previous sections predicts an ejected-electron spec-
trum which is virtually identical with the Primakoff-
Porter spectrum for almost the entire energy range of
the ejected electrons. This is rather surprising in view of
Primakoff and Porter’s simplified description of the
initial two-electron state. In Sec. ITI it was shown that,
for the nonrelativistic two-electron problem, the per-
turbation treatment neglects terms of order Z—!. That
Primakoff and Porter’s variational wave function should
yield a result which is this accurate is more than one
would normally expect.

The most recent and extensive experimental study on
the spectral distribution of the ejected electrons has
been that of Pengra and Crasemann'® on Fe%, These
measurements covered the range of ejected-electron
energies from 30 to 190 keV. and showed serious dis-
agreements with the predictions of the Primakoff-
Porter theory for energies below about 60 keV. The
only comparable previous experiment, that of Daniel,
Schupp, and Jensen,™ also showed large deviations from
the theoretical curve at low energies. Several experi-
menters have also measured the total relative K-electron
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ejection rate obtaining approximate agreement with
the Primakoff-Porter theory. However, such measure-
ments do not provide a sensitive test of the theory.
A summary of all experimental work done prior to that
of Pengra and Crasemann, including their own observa-
tions, may be found in the paper of Lark and Perlman."

It has been frequently suggested that the apparent
discrepancy between the Primakoff-Porter theory and
the experimental results is due to the inadequate
treatment of screening and correlation effects in the
description of the initial two-electron state. On the con-
trary, the present calculation has shown that, in the
nonrelativistic limit such corrections are only of the
order Z7, which amounts to about 49, for Fe’5. The
greatest source of error in both the Primakoff-Porter
theory and the present one is the neglect of relativistic
effects. Even at very low ejection energies there is a
relative error of order Za due to the neglect of relativis-
tic effects in the initial and intermediate electron
states. For Fe®® this error is about 209,. As has been
shown by Levinger,” nuclear recoil effects are quite
negligible in B-decay type processes, contributing cor-
rections of much less than 19,. One final source of error
which should be considered results from the modifica-
tion of the ejected-electron wave function as a result
of screening by electrons in shells above the K shell.
A rough estimate of this error may be made by taking,
as the correction factor to the transition rate, the ratio

Fo=¢:(0)[%/].(0) |2,

in which ¢,(r) and ¢,.(r) are the screened and unscreened
one-electron wave functions for the ejected electron,
respectively. An approximate analytic expression for
¢s(1), valid for »<<1/a, has been derived by Good??
for a Thomas-Fermi potential. With the aid of Good’s
results, the screening correction factor may be written
as

- (W_A) (1___ —27ra,/P)
YW (1—etmelp)

in which A=1.795022'% and P=[(W—A)2—17]~,
Numerical evaluation of F, for Z=26 shows that the
screening correction factor is never more than about 5%,.

From the above discussion, it seems clear that the
predictions of the theory presented here, as well as
those of the Primakoff-Porter theory, are correct to
within a relative error of order Za. However, such an
error is far too small to account for the existing dif-
ferences between theory and experiment, where the
error is of the order of hundreds of percent (at low
energies). The present authors know of no other factors
which might seriously influence the theoretical results.
It may therefore be necessary to re-examine the experi-
mental situations to be sure that all possible processes

2 J. S. Levinger, Phys. Rev. 90, 11 (1953).
28 R. H. Good, Phys. Rev. 94, 931 (1954).
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leading to electron production have been properly
accounted for.

APPENDIX A

In a well-known paper® on quantum electrodynamics,
Feynman has given a convenient method for separating
retardation effects from the instantaneous Coulomb
interaction when applying perturbation theory to two
interacting electrons whose unperturbed states are
momentum eigenstates. For our purposes we wish to
generalize the result to include Coulomb field eigen-
states as the unperturbed states.

In configuration space the lowest-order two-electron
interaction has the form

d*k _ ]
/ 22—/ d*1p0 (201) Y upa (1) €1+ -
X /d4x2¢;d (%) vupe(a)e= 22

where the ¢’s represent the stationary states of a one-
electron Dirac Hamiltonian containing an arbitrary
external field. We expand the stationary states in
momentum eigenstates

¢i(x)= f dP a;(P)e>=U(P),

where U(P) is the usual free-particle Dirac spinor.
It is now a simple matter to prove that the matrix
elements of X=+,k, analogous to those of the v,’s
in the interaction term vanish. For example, using the
expansion in momentum eigenstates and the fact that
the Dirac spinors satisfy @U(P)=:U(P) and U(P) @
=4U (P), where ®=1,P,, one easily proves that

/d4x1¢3b(x1) Kepa (xl)eik-zl =0.

Thus, for matrix elements of the type appearing in the
interaction term, the operator equation X =0 is satisfied.
It now follows immediately by Feynman’s original
argument that for such matrix elements the operators
may be separated into the form (10).

APPENDIX B

Here we complete the evaluation of the integral I,
defined by (37). The calculation is most conveniently
carried out by performing the integration over % first.
For this purpose, we rewrite (37) in the form

. o [ (1Y
I,=2iP f dt (i P=1(f—1)ia/P—1 / ds(———>
c 0 N

© dk
X
—w (B—1€) (k— ko) (k—k1)?

x[(k—zkl)+ (k—lko)]’ (B
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with ko=2Pt—P-+ia and ki=—i(a+u+2us). For
large values of %, the integrand is proportional to &5,
Thus, if we go into the complex % plane, we can close
the contour of integration with a semicircular contour
at infinity without affecting the value of the integral.
Accordingly, we close the contour in the upper half-
plane and evaluate the integral by the method of
residues with the result that

) © f14s\"
I,=—4xP f dt fie!P=1 (j— 1) =i/ P f ds(———)
c 0 N

2 1
x[ ; ] (B2)
kok® kiR ko (ko— ky)?

In order to proceed with the ¢ integration, we make use
of the definitions of %, and %, to rewrite I, as

T
1.,=;(Jl+12+13) ) (B3)
in which
dit tia,lP—l (If— 1)—-1‘a/P—1 ) 1+S 7
J1=4P f / ds( )
¢ (t—to) 0 s
X———————, (B4a)
(a+p+2ps)?
dt tia/P—-l(t_. 1)—ia/P—1 0 1+S 7
s [o)
C (t—‘to)2 0 S
(a+u+2ps)?
©  f14s\"
J3=f dt t'ia/P—l(t_ 1)—ia/P—-l/ dS<——‘)
c 0 N
1
(B4c)

X .
(2Pt+2ia+iu+2ius— P)?

To perform the ¢ integration we observe that, since all
three integrals vanish at least as rapidly as ¢ as ¢
approaches infinity, the original contour C can be
replaced by the contour C’ consisting of the original
contour C plus a circular contour at infinity taken in
the clockwise direction. The integration over C’ can
then be carried out using residue theory. For the inte-
grals Jq and J», the only residue comes from the pole
at /o and its contribution leads to the results,

— 32w P? 2a a
sl )
(P24-a?) P P

0 145\ 1
X / ds(————) —, (B5a)
0 s (a4-p+-2ps)?

(B5b)
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F16. 3. A plot of the function f(x) defined by (B14), for several
values of the momentum (in ¢ units) with Z=26.

To complete the evaluation of J;, it is advantageous
to change the integration variable to x=s/(1-+s) and
introduce A= (u— @)/ (u+ @) in which case J; becomes

—32mP3¢g—malP 2a a
J=— expl: (—) tan™! (—):I
(P*+a?) (uta)? P P

ldx x1(1—x)
—F—F—F F . (B6
X/o (14Nx)? ®9

Glauber and Martin?* have shown how to evaluate
integrals of this type. The integrand may be expanded
in partial fractions and each of the resulting integrals
expressed in terms of the function,

L dx xn
o (142x)’

and its derivatives by means of the identity,

KM=

(B7)

L dxx

_ Vi)nzc(x) (BS)
o (14AR)™ A\ @) '

In this way, after algebraic reduction, we obtain

— 167 P3g—ma/P 2a a
el )erl)
(P2+a*) (ut+a)? P P

1 9
Xl:———-l——] . (BY)
(1)) A
To evaluate J; we again change the integration variable
to x=s/(1+s) and introduce the definitions,

ti=[P—i(a+u)]/2P; t=[P—i(2a—p)]/2P;
p=(t2—18)/(t—t),
in which case J; can be written as

1 dt tz'zz/P—l (t"“ 1)—ia/P—1 1 dx xn
Js=—o . (B10)
4aP2J ¢ (b—to)2(t—1t0)? o (14px)?

24 Glauber and Martin, Ref. 1, Sec. 8.
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With the aid of (B7) and (B8) this expression can be reduced to
7 1 f di tia,/P—l(t__ 1)—ia/P——1 | ] /1 dx x—n di tia/P—l(t_l)-z’a/P—l
3= - s
4P (ty—t1) ¢ (t—120)2(t—1t1) 4Py (1—x)J ¢ (t—10)2(t—t1) (t—13)

where we have introduced #3= (fi—#x)/(1—x). The ¢ integration can now be carried out as before. The
result, after algebraic reduction with (B7) and (B8) and the use of (B5), is

— 8w P3¢ e/P exp{(2a/P) tan™'[ (2a+u)/P}1

(B11)

Js=—J1 , (B12)
u(u+a)?[ (2a+p)*4-P2]
where )
=14 / dx 1= (1—2) @], (B13)
exp{— (2a¢/P) tan™'[ (2a+u)/PJ} exp{(2a/P) tan~'[ (2a/P)+u(1+4x)/P(1—x) ]}
flx)= ) (B14)
(1422 (140x) (14-0*x)

and o= (u—2e¢—iP)/(u+2a+iP). Combining (B4), (B5b), and (B12), we obtain for I, the formula

o 8m2P2e /P exp{ (2a/P) tan'[ (2a+u)/ P} . (B15)

w(ut+al[ (2a+p)+P*]

The integral I defined by (B13) and (B14) cannot be evaluated in closed form. A rapidly converging series
expansion is however obtainable. The appropriate expansion becomes apparent when we consider a plot of f(x)
for typical values of @ and P. Such a plot is shown in Fig. 3. It indicates that f(«) is a slowly varying function over
the interval 0<®<1. An examination of (B13) reveals that most of the contribution to the integral comes from
the region in the neighborhood of x=0. This suggests that, if f(x) is expanded in a Maclaurin series, then the re-
sulting series for I will converge quite rapidly. Performing such an expansion in (B13) then leads to the following
series for 7:

(B16)

= fOOr 1 4 6 4 1
I=n 2 - + } :l
S nl L (—n) (k1—m) (n+2—n) (14+3—n) (nt+4—n)



