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The momentum spectrum for the E electrons ejected during allowed E capture is calculated in the lowest
order of perturbation theory using a nonrelativistic approximation for the electrons. The diGerences be-
tween this theory and the previously developed theory of PrimakoB and Porter are pointed out. The new
theory yields a spectrum which is virtually identical to the PrimakoB-Porter spectrum over almost the
entire momentum range of the ejected electrons. A discussion of relativistic effects and eGects due to atomic
screening and nuclear recoil is given. The discrepancies existing between the theoretical predictions and the
experimental results are also discussed.

I. INTRODUCTION

''N nuclear decay by orbital electron capture the
~ ~ neutrino emitted in the decay is sometimes accom-
panied by another emitted particle, either a photon or an
electron. The emission of the additional particle is a
consequence of the fact that the electronic structure of
the atom undergoes a rearrangement as a result of the
nuclear decay, particle emission being one of the more
drastic possible rearrangements. When two particles
are emitted, the energy released in the decay process is
shared statistically between them.

The case in which a photon is emitted, viz. , radiative
orbital electron capture, has been carefully studied by
Glauber and Martin in two well-known papers. "
These authors have calculated both the photon-energy
spectrum and the total radiative capture probability
per electron capture event. A complete mathematical
analysis of this problem was made possible as a result
of a crucial observation concerning the sum over inter-
mediate electron states which appears in the calculation.
Glauber and Martin noticed that this sum, which is
simply the Green's function for the Dirac equation with
a nuclear Coulomb potential, could be represented in
closed form (provided one of the position coordinates
was evaluated at the origin).

The most interesting case of electron emission is that
of E-electron emission during E-electron capture. The
relative transition rate per E-capture event is inde-
pendent of all nuclear matrix elements and depends only
on the atomic structure of the atom. In particular, the
shape of the momentum spectrum of the ejected elec-
trons is sensitive to screening and correlation eBects
between the two X electrons in the initial state. Hence,
a study of the ejected-electron momentum spectrum
provides a method for examining the validity of various

~ This paper is based on a dissertation submitted in partial ful-
fillment of the requirements for the degree of Ph.D. in physics at
Stevens Institute of Technology, 1964 (unpublished).' R. J. Glauber and P. C. Martin, Phys. Rev. 104, 158 (1956).' P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).
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assumptions concerning the structure of E-electron
states in many electron atoms.

The problem has been studied theoretically by
Primakoff and Porter. ' Their treatment of the problem
is a nonre1ativistic one (except for the description of
the neutrino) and is based on the use of the sudden-
perturbation approximation. This approach necessitates
the use of a two-electron wave function to describe
the initial electronic configuration. 4 For this purpose
PrimakoG and Porter construct a two-parameter varia-
tional wave function, designed to take account of screen-
ing and correlation eGects and adjusted to minimize
the energy of the initial electronic con6guration. They
then calculate the momentum spectrum for the ejected
electrons, the total ejection probability per E-capture
event and the probability, per E-capture event, for the
production of two holes in the E shell of the atom.

Primakoff and Porter published their theory in 1953.
Since then a number of experimental observations have
been reported' "on various aspects of the problem. The
experiments are rather dificult to perform, and as a
result, the errors associated with many of the early
attempts are so large that a detailed quantitative com-
parison with the PrimakoG-Porter theory is not justified.
However, during recent years experimental techniques
have improved to the point where a quantitative com-
parison with the PrimakoG-Porter theory is now mean-
ingful. In particular, Lark and Perlman" have measured
the probability for the production of two holes in the

' H. PrimakoG and F. T. Porter, Phys. Rev. 89 930 (1953).
4 The presence of electrons in all shells above the E shell is

ignored. See Sec. V for a discussion of effects due to these electrons.
~ I'. T. Porter and H. P. Holz, Phys. Rev. 89, 938 (1953).
6 G. Charpak, Compt. Rend. 237, 243 (1953).
& J. A. Miskel and M. L. Perlman, Phys. Rev. 94, 1683 (1954).
s M. Langevin, Compt. Rend. 245, 664 (1957);J.Phys. Radium

19, 34 (1958).
9 R. W. Kiser and W. H. Johnston, J. Am. Chem. Soc. 81, 1810

(1959).
'OH. Daniel, G. Schupp, and E. X. Jensen, Phys. Rev. 117,

823 (1960).
"N. L. Lark and M. L. Perlman, Phys. Rev. 120, 536 (1960).
'~ J. G. Pengra and B.Crasemann, Phys. Rev. 131,2642 (1963).
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X shell during E capture in Cs"'. They reported an
experimental value which was about a factor of two
less than that predicted by the Primakoff-Porter theory.
Most recently, Pengra and Crasemann" have measured
the energy spectrum of the electrons ejected during E
capture in Fe". For low ejection energies, their results
differed from those predicted by the Primakoff-Porter
theory by factors of from 2 to 5.

It has been suggested" that the apparent discrepancies
between the experiments and the PrimakoG-Porter
theory reQect inadequacies in the structure of the two-
electron variational wave function chosen by these
authors to represent the initial state of the system. The
use of such a wave function can be avoided by including
the initial-state electron-electron interaction in the
perturbed part of the Hamiltonian (rather than in the
unperturbed part as Primakoff and Porter have done).
This approach is equivalent to performing a perturba-
tion expansion on the exact two-electron wave function
where the perturbation is taken to be the electron-
electron interaction. " The problem of E-electron
ejection during E capture is then one in third-order
perturbation theory and involves a sum over inter-
mediate electron states. However, due to the work of
Glauber and Martin it is now possible to represent this
sum in closed form, and it is this simplification which
makes a more exact analysis possible at the present
time.

In~Sec. II.we develop the basic equations of the
theory. It is shown that by restricting the analysis to a
nonrelativistic description of the electrons, two signi-
Geant simpliGcations result in the structure of the matrix
elements. One is due to the vanishing of retardation
effects while the other is due to a partial cancellation
between the two matrix elements which contribute to
the process. Section III is devoted to a review of the
Primako8-Porter theory and a discussion of the dif-
ferences between that theory and the theory presented

here. In Sec. IV, we carry out the detailed calculations
of the theory and obtain the formula for the ejected-
electron momentum spectrum, In Sec. V, the results of
the theory are presented and comparison is made with
the results of Primakoff and Porter and with recent
experimental observations.

II. MATRIX ELEMENTS AND TRANSITION RATE

The theory presented in this paper is based on treat-
ing the electron-electron interaction along with the beta
interaction as perturbations on the nuclear Coulomb
interactions of the system. Accordingly, the unperturbed
electron field P, (x) satisles a Dirac equation containing
the Coulomb Geld of the nucleus, "

In this representation, the interaction Hamiltonian
density is

xr (x) =x,(x)+xp(x), (2)

where R~ represents the interaction of the electron
field with the radiation Geld and Kp represents the beta
interaction, for which we use the usual V—XA coupling.
The probability amplitude for the process may then be
obtained from the appropriate terms of the expansion
for the scattering matrix. In the lowest order, the two
terms in the expansion which contribute to the process
correspond to the diagrams shown in Fig. 1.

The first diagram represents the effects on the motion
of the uncaptured E electron due to the sudden change
in the nuclear charge as a result of the E-capture process.
The matrix element for this diagram comes from the
6rst-order term in the scattering matrix and is given,
in configuration space, by"

3E,=GL1—Pisf draff (r)I'„g, (r)g" (r)A„pits&(r)

ef Nf e&

where F„=y„(1+)ys), A„=y„(1+ps), and G is the.
vector coupling constant of the beta interaction.

(r) and @r (r) represent the initial and final states
of the nucleus, respectively. "

Similarly, P" represents the

ez N;

(b)

ep

FIG. |.Feynman diagrams for E-electron
ejection during IC capture.

"See, for instance, Ref. 12, p. 2648.
'4This approach has also been suggested by Primako6 and

Porter, Ref. 3.

'6 We employ units in which m=c=A=1, (m is the electron
mass), and s =a=1/137. x„=(r, 8) and the Dirac matrices are
defined as'= —ipe and y4=p. Also p~=yiy2yay4 arid @=pty4."Although this term is formally of the first order, it is actually
of order e' because of the near orthogonality of the initial and
final states of the ejected electron; see Sec. III.

"In the nuclear wave functions, the coordinates of all the
nucleons except the one involved in the capture process have been
suppressed. It is understood that an integration over this co-
ordinate implies an integration over the coordinates of the other
nucleons as well. A summation over all the protons in the initial
nucleus is also implied.
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Section IV will be devoted. to the evaluation of M.
Here we simply note the connection between M and the
ejected-electron momentum spectrum. The total
transition rate for the ejection of a E electron into the
momentum range dP is

dw = 2m.P'dP dop dP„-', P ~
M ~'

Sf, S», S1,S2

X5 (W+E. DE —Er E—2), —(21)

where the spin states of the two emitted particles have
been summed over and the spin states of the two initial
E electrons have been averaged over. A summation
over all 6nal nuclear spin states and an average over
the initial nuclear spin states are also implied. P and
P„represent the momenta of the ejected electron and
the neutrino, respectively. E„ is the energy of the
neutrino and AE is the energy released in the nuclear
transformation. Anticipating the results of Sec. IV
which show that P ~

M
~

' is independent of P„and thus
depends only on

~ P~, we can easily perform the inte-
gration indicated in (21).The result is

dw=87r'(hE+Er+E2 W)'P'dP—+~M~' (22)

III. RELATIONSHIP TO PMMAKOFF-
PORTER THEORY

Primakoff and Porter treat E-electron ejection
during E capture by means of first-order time-depend-
ent perturbation theory. Since the beta interaction is
assumed to take place instantaneously, the method is
in fact a sudden perturbation approximation. These
authors work in a representation in which the inter-
action Hamiltonian consists solely of the beta interac-
tion; all correlation effects between the two initial E
electrons are included in the initial unperturbed wave
function of the system. In this representation, the
matrix element for E-electron ejection during allowed
E capture is

Hylleraas's variational nonrelativistic wave function
for the problem of two electrons in the ground state
about a nucleus of charge Ze.'

Using the wave function (24) to represent the two
initial electrons, the appropriate Coulomb eigenfunction
for the ejected electron and a Dirac plane wave for the
neutrino, these authors calculate M by means of (23).
Here we simply wish to quote their final result for the
relative probability per E-capture event for the ejec-
tion of the uncaptured E electron with a momentum in
the range dI',

dw„16n'a'P expL —(4a/P) tan '(P/a) j
dI (&2+P2)4(1 &

2wsl p)—

where a=Zan.

A@2 -2
X (25)

2 (BE+1)

1
X d&1 d&2

~12

The only difference between the theory of Primakoff
and Porter and the theory developed in the present
paper is in the method of construction of the initial
two-electron wave function. Whereas Primakoff and
Porter use a variational method, we calculate the wave
function from perturbation theory. In particular, we
treat the electron-electron interaction as a perturbation
on the nuclear Coulomb interaction of the electrons.
Since the exact wave function Pr, m(rr, rm) satisles

fZ, (rr)+H, (r2)+e'/rr2$&r, 2(rr, r2) =Et,2yr, e(rr, re), (26)

the unperturbed wave function is simply the product of
two hydrogenic wave functions. A standard. perturba-
tion calculation then leads to the following expansion
for the wave function,

M=GL1 —Pre dr/~& '&t(r)g" (0)~»i 1(0,r), (23)

where Pr, e(rr, r2) represents the space and spin de-
pendence of the initial two-electron state including
correlation effects between the two E electrons. To
represent this two-electron state Primakoff and Porter
construct an approximate wave function of the form

The prime on the summation implies that the term for
which the energy denominator vanishes is omitted from
the sum. Let us now insert (27), rather than (24), into
(23). An integration over r and the introduction of the
Green's function by means of the eigenfunction expan-
sion then leads to the result

gt, g(rr, rm) =E@r(rr)y2(r2)e ""+''e '"") (24) M GLi Pt,j~.(0)~tizl(0) drpf&z '&t(r)pmiz)(r
in which gr and qh2 are ground-state hydrogenic wave
functions for a nuclear change Ze and E is the appro-
priate normalization factor. The factor e 2"» accounts
for the correlation due to the electron-electron inter-
action and the factor e '&"'+"» accounts for the partial
screening of the nuclear Coulomb interaction. The
values of the parameters o.1 and o.2 are chosen such as to
make this wave function a reasonably good Gt to

+GnL1 —Prm)p" (0)$ drr dr,
~12

XGz(0,rr)pr(rr)pgt(r~)$, (re). (28)
20 See H. A. Bethe and E. E. Salpeter, in Huedbuch der Ehysik,

edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 55, p.
232.
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With the introduction of (5) and (13) into the first
term of (28), it is then easily seen that (28) becomes
identical with (17).

The advantages of the perturbation method are well
known. Generally it provides us with more accurate
wave functions than does the variational method. Most
important, however, it allows us to make a reliable
estimate of our error; this, of course, is not possible
with the variational method.

This representation proves to be a convenient one for
carrying out the spatial integration.

Ke begin our evaluation of 3I by performing the two
spatial integrations appearing in (20). This involves the
evaluation of the following four integrals:

(32a)

IV. DETAILED CALCULATIONS AND
FINAL RESULTS

BIy
~p —— drys (r)yp(r)e ' '=i

Bk
(32b)

In this section we wish to evaluate M in detail and
obtain a final formula for the relative differential
transition rate. Ke begin by introducing the appropriate
representations for the wave functions and Green's
function appearing in the matrix element. For the initial
and Anal electron states these are the familiar Coulomb
eigenfunctions,

dr
~ = —G.(0, )~ () "",

BIG
I4= drGs(0, r)pi(r)e'p"= i-

Bk

(32c)

(32d)

(ap 1 /2

e'(r) = I—
ZQ

(r) &m al2PP (1+ )&iP ~ r

(27r)'" p
(33)

Xp(—ia/P, 1, —ip r —iPr)xf, (29b)

To evaluate Ii, we introduce the representations (29)
(29a) for the wave functions along with the well-known inte-

gral representation for the conRuent hypergeometric
function,

G (o,r)=
—I'(1—it) *K„,itu(2pr)

(30)

with ti= $2(1—E))'" and g=a/ti. From the defining

equation for Ewe see that j E~ &1—a' and consequently
0&~&1/v2. In this case we can make use of a real
integral representation for the Whittaker function,
which is valid for 0(g(1, to rewrite the Green's

function as

in which the Pauli spinor X determines the spin de-

pendence of the state and F(c,d, s) is the confluent
hypergeometric function.

In considering the form of the Green's function, we

observe that since we are working in the nonrelativistic
limit (P(&1), the condition

~
E~ &1 is always satisfied.

In this case the Green's function does not represent a
freely propagating wave but rather is a function which
decreases very rapidly away from the nucleus. The
Green's function with these particular properties has

already been studied by Glauber and Martin" in con-
nection with the problem of radiative E capture.
These authors have shown that this Green's function is

simply related to the Whittaker function, 'H„, it2(2pr),
and. , in the nonrelativistic limit, is given by

dt P«&—i(t—1)—'~»—iX, (34)

~ ~

(t—tp)

with tp (tp+P ia)/2P——. In orde—r to ensure convergence
of the radial integral, it is necessary that the contour
C satisfy the requirement, Imt) —a/2P. To evaluate
Ip, we introduce the representations (29a) and (31)
into (33c). This leads, after completing the spatial
integration, to the result

g3 1/2

I3= —4p — Xy
1+s) " 1

ds (35)
p s i (a+p+2ps ik)'—

By inserting (32b), (32d), (34), and (35) into (20)
we then obtain the following expression for the matrix
element:

in which the path of integration encircles the branch
cut extending from 0 to 1 along the real axis in the
positive sense. The spatial integration in I& may then be
carried out by elementary methods. The result is

e-"~I'(1 ia/P)—a')
Ig —— ~&x,&x,

(2~)"2iP' ~i

p
G~(0,r) = ——e-~"

7r

1+s
e 't- - — ds.

—O.Gpa3e"'~'J M
I'(1——)L1—Pip j2312p2 Vi'2 p

"Glauber and Martin, Ref. 1, especially Sec. 6. Xf"(0)SXiXgtX2I „(3ti)
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where

1 " dk dt t' ' -'(t—1)-"—'

2ip „(k—ip) u (t—tp)

(1+s)" 1
dsl

s J (a+ti+2ps —ik)2

Combining (22), (38), and (39) and neglecting terms
of order (Zn)', we then obtain for the relative differen-
tial transition rate per E-capture event,

dm n'u'(P'+ 2a')

e PS~4(1. e 2yya/P)

I'2 -2

X iI.i'dp. (40)
2(SE+ 1)

To complete the analysis, we must still evaluate the
integral I . This is done in Appendix 8 and leads to the
final results given by (814), (815), and (816).With the
aid of these results we then obtain for the differential
transition rate per E-capture event the formula,

dw„64n'a4pe 'aa'~ exp((4a/P) tan 'f(2a+ti)/Pj)

(y+ a)'$(2a+ti)'+P' j'(1 e~ )—
P2 -2

P, (41)X
2 (hE+ 1)

where I is defined by (813) and (814).

X + . (37)
(a+ti,+2ps ik—) (t—tp)

The squared absolute value of the matrix element
must now be surrmied over the spin states of the two
emitted leptons as well as over the spin states of the
two initial E electrons. These calculations are carried
out in the usual way by introducing the positive-energy
projection operators (1+y4)/2 and (n P„+E.)/2E.
for the electrons and neutrino, respectively, and extend-
ing the surrnnations over all states. The result of the
calculation is

nPGP+Pa7 (B.Bay8~ a)
fM['= fI.['. (38)

yf Sy 81 s2 8PP&P (1 e 2yyalP)—

An inspection of (37) and (38) confirms our earlier
statement that P ~

M
~

' depends only on P.
In order to obtain the relative rate for E-electron

ejection, we also need to know the transition rate for
ordinary allowed E capture. This is easily computed
by the same method with the result,

G'a'
w~= (AE+Ei)'(B B*+8484*).

x'

Fn. 2. Theoretical
energy spectrum of
E electrons ejected
during X capture by
Fet'5. The solid curve
represents the result
of the present calcu-
lation. The crossed
points where com-
puted from the Prim-
ako6-Porter theory.
The theoretical end
point is at E=0.425.
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V. DISCUSSION OF RESULTS
AND COÃCLUSlONS

It is clear from Fig. 2 that the theory developed in
the previous sections predicts an ejected-electron spec-
trum which is virtually identical with the Primakoff-
Porter spectrum for almost the entire energy range of
the ejected electrons. This is rather surprising in view of
Primakoff and Porter's simplified description of the
initial two-electron state. In Sec. III it was shown that,
for the nonrelativistic two-electron problem, the per-
turbation treatment neglects terms of order Z—'. That
Primakoff and Porter's variational wave function should
yield a result which is this accurate is more than one
would normally expect.

The most recent and extensive experimental study on
the spectral distribution of the ejected electrons has
been that of Pengra and Crasemann" on Fe". These
measurements covered the range of ejected-electron
energies from 30 to 190 keV. and showed serious dis-
agreements with the predictions of the Primakoff-
Porter theory for energies below about 60 keV. The
only comparable previous experiment, that of Daniel,
Schupp, and Jensen, 'P also showed large deviations from
the theoretical curve at low energies. Several experi-
menters have also measured the total relative E-electron

As pointed out in Appendix 8, the series representa-
tion for I is expected to converge quite rapidly. The
error introduced by terminating this series after a finite
number of terms is of the order of the next successive
term in the expansion. In particular, detailed numerical
evaluation for the case Z= 26 shows that retaining only
the first two terms of the expansion leads to an error of
order Zn, whereas retaining the first three terms reduces
the error to order (Zn)'.

The theoretical forms of the ejected E-electron spec-
trum are plotted in Fig. 2 for Fe'5, which has a maxi-
mum ejected electron kinetic energy of 218 keV. The
soHd curve and crossed points represent plots, converted
to the energy scale, of (41) and (25), respectively.
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ejection rate obtaining approximate agreement with
the PrimakoG-Porter theory. However, such measure-
ments do not provide a sensitive test of the theory.
A summary of all experimental work. done prior to that
of Pengra and Crasemann, including their own observa-
tions, may be found in the paper of Lark and Perlman. "

It has been frequently suggested that the apparent
discrepancy between the Primakoff-Porter theory and
the experimental results is due to the inadequate
treatment of screening and correlation eGects in the
description of the initial two-electron state. On the con-
trary, the present calculation has shown that, in the
nonrelativistic limit such corrections are only of the
order Z ', which amounts to about 4% for Fe". The
greatest source of error in both the PrimakoG-Porter
theory and the present one is the neglect of relativistic
effects. Even at very low ejection energies there is a
relative error of order Zo. due to the neglect of relativis-
tic eGects in the initial and intermediate electron
states. For Fe's this error is about 20%. As has been
shown by Levinger, " nuclear recoil effects are quite
negligible in P-decay type processes, contributing cor-
rections of much less than 1%.One final source of error
which should be considered results from the modi6ca-
tion of the ejected-electron wave function as a result
of screening by electrons in shells above the E shell.
A rough estimate of this error may be made by taking,
as the correction factor to the transition rate, the ratio

in which rt), (r) and P, (r) are the screened and unscreened
one-electron wave functions for the ejected electron,
respectively. An approximate analytic expression for
4), (r), valid for r((1/a, has been derived by Good"
for a Thomas-Fermi potential. With the aid of Good's
results, the screening correction factor may be written
as

(W—6) (1—e ' /~)
p =

gT (1 e
—2mo/P)

in which 6= 1 795n'Z'/s and P=
l (W—tIi)' —1j'"

Numerical evaluation of Ii, for Z=26 shows that the
screening correction factor is never more than about 5%.

From the above discussion, it seems clear that the
predictions of the theory presented here, as well as
those of the PrimakoG-Porter theory, are correct to
within a relative error of order Zn. However, such an
error is far too small to account for the existing dif-
ferences between theory and experiment, where the
error is of the order of hundreds of percent (at low
energies). The present authors know of no other factors
which might seriously inhuence the theoretical results.
It may therefore be necessary to re-examine the experi-
mental situations to be sure that all possible processes

22 J. S. Levinger, Phys. Rev. 90, 11 (1933)."R.H. Good, Phys. Rev. 94, 931 (1954).

leading to electron production have been properly
accounted for.

APPENDIX A

In a well-known paper'9 on quantum electrodynamics,
Feynman has given a convenient method for separating
retardation eGects from the instantaneous Coulomb
interaction when applying perturbation theory to two
interacting electrons whose unperturbed states are
momentum eigenstates. For our purposes we wish to
generalize the result to include Coulomb field eigen-
states as the unperturbed states.

In con6guration space the lowest-order two-electron
interaction has the form

de pp(x )y„$,(x )e's'*' ~ ~

X d4»0e(»)vA. (*s)e "*',

where the P's represent the stationary states of a one-
electron Dirac Hamiltonian containing an arbitrary
external 6eld. We expand the stationary states in
momentum eigenstates

y;(x)= fBp a;(p)e' U(p)'
where U(P) is the usual free-particle Dirac spinor.
It is now a simple matter to prove that the matrix
elements of X=y„k„analogous to those of the y„'s
in the interaction term vanish. For example, using the
expansion in momentum eigenstates and the fact that
the Dirac spinors satisfy (PU(P) =iU(P) an'd U(P) (P

=iU(P), where /P=y„I'„, one easily proves that

d'xiy s(xi)Xy.(xi)e"*'=0.

Thus, for matrix elements of the type appearing in the
interaction term, the operator equation X=0 is satisfied.
It now follows immediately by Feynman's original
argument that for such matrix elements the operators
may be separated into the form (10).

APPENDIX 8
Here we complete the evaluation of the integral I,

defined by (37). The calculation is most conveniently
carried out by performing the integration over k first.
For this purpose, we rewrite (37) in the form

i/1+s
I,=2zP dt t~/i' —'(t—1) '~/i' ' dsl

c p ~ s

„(k—ie) (k—kp) (k—ki)'

2
X +, (B1)

(k—ki) (k—kp)
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p '
and & = z( +"+.with &s=2Pt —P+". '" ' o-ortional t» 'the integran is prolarge values of "

l ~ la„e we can c»seThus, if we go in
'

micircular contour

'
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residues with the result that

2.0-

I 0
V

I = —4xP dt t'"'~ ' t—1 'a]~
Q X

0
0

I

0.2
I

0.4
I

0.6
1

0.8 I.O

' u't' u'(u. —u,)

I,= (Jt+Js+J—s),
P

in which

sdt ps/P i (t 1)
—is—/P—i 00 1+s

dsJg= 4'

(84a)
(a+ +2„s)'

1 s

(t—t)', s

roceed with the t integration, wwe make use
and kq to rewrite I, asof the definitions of kp an q o

(83)

tion (x) de6ned by (814), for several
) i h Z=26.values of the momentum (in rwe uni s

evaluation of Ji, it is advantageousp

hih Jb
te ration varia e o

introduce )!.= (tu
—a)/(ti+a in w ic c

—32zrP'e " ' (2ai (
(P'+a') (/+a)'

(86)
' dx x—

&(1—x)

(1+Xx)'

artin'4 have shown how to evaluate
b ddis t e. The integran m

hof th lti i tin partial fractions and each o e
t rms of the function,expresse in terms

I

(84b)
(a+p+2ps)'

1+s)"
ds

0 s
dt p'a/P i (t 1) iu/P i— — —

0

z() )=)

means of the identity,and its derivatives by means o

n

~

)'—z()).
Q 1 xX )"+' n!X"+'!, dX)

(8&)

is way after algebraic reduuction, we obtain$—P(2Pt+2i a+i/i+ 2z/zs P—

—32xP' —(2a
e eTN/P exp

~

tan i

P(Ps+a') P

(85.)
s / (a+@,+2/zs)'

allration we observe that, sinceT erform the t i teg ation we oope
nish at least as rapi ytg

ppo yt the origina con
~ ~

p y" contour C' consis ing
lus a circular contour a

ion The integration overd to.
J the only residue come

d. ".h. -.-l.attpan i scd 't ontribution lea s o

16zrP'e ~' — (2a) ( a
exp

~

—
~

tan '—
(P'+a') (t +a)'

X +— . (89)
(1+X)

in which case J3 can be written as

dt pu/P I (t 1) iN/P i'—— —

4P2 g t—tp' t—tg'
(810)

!! (1+px)'

'a lewe a ain change ethe integration variabTo eva te J3 g
to x=s/(1+s) and introduce t e

2P; ts ——P' —i(2a—tz))/2P;ti= LP z(2a+tu))/

J2=0. (85b) Ref. 1, Sec. 8.~ Glauber and Martin, R
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With the aid of (87) and (88) this expression can be reduced to

dt tis/P 1(—t 1)—is/P —1 1 dx x—t) dt tis/P 1(t—1)—ts/P —1

4t" (t —tt)~a (t—t )' (t—t ) 4t" t (1—t;) tt (t —tt}' (t—tt) (t—t )
(811)

where we have introduced t4=(t1—t2x)/(1 —x). The t integration can now be carried out as before. The
result, after algebraic reduction with (87) and (88) and the use of (85), is

8nP—'e ss/P
exp{ (2a/P) tan 'L(2a+/4)/Pj)IJs--Jl

where
/ ( +~)'L(2~+/ )'+P'3

I=1+)t Cx x ~'L1—(1—x)4f(x)j (813)

exp{—(2a/P) tan 'L(2a+/4)/P)) exp{ (2a/P) tan '((2a/P)+/4(1+x)/P(1 —x)j)
f(x)=

(1+Xx)'(1+~x)(1+~*x)

and 0 = (/4
—2a—iP)/(/4+2a+iP). Combining (84), (85b), and (812), we obtain for I, the formula

8n'P'e —s'/ exp{ (2/J/P) tan 'L(2a+/4)/Pg) I
/ ( +~)'L(2~+/ )'+P'7

(815)

The integral I deined by (813) and (814) cannot be evaluated in closed form. A rapidly converging series
expansion is however obtainable. The appropriate expansion becomes apparent when we consider a plot of f(x)
for typical values of a and P. Such a plot is shown in Fig. 3.It indicates that f(x) is a slowly varying function over
the interval 0&x& 1. An examination of (813) reveals that most of the contribution to the integral comes from
the region in the neighborhood of x=0. This suggests that, if f(x) is expanded in a Maclaurin series, then the re-
sulting series for I will converge quite rapidly. Performing such an expansion in (813) then leads to the following
series for I:

f(s) (0)— 6 4 1
I=1/ P +

n! (n —)/) (n+ 1—)/) (n+2 1/) (—n+3 1/) (n+—4 1/)— (816)


