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The configuration-interaction method is applied to the (right-angle) exchange interaction between
nearest-neighbor V2* ion pairs in MgO. Specific configurations under consideration are the ionic configura-
tion, all allowed anion-to-cation charge-transfer configurations, and the most important cation-to-cation
charge-transfer configuration. Numerical calculations are performed for the exchange interactions between
individual 3d-electron pairs. The exchange coupling constant J,4p associated with the exchange energy
—2J48S4-Sp between total spins of two V2+ions is deduced by projecting the single electronic spin onto the
total spin. Its value is found to be 8.2°K (ferromagnetic). The lack of orthogonality between neighboring
cation 3d orbitals is shown to be very important for the exchange coupling between two magnetic ions at
right angles to an intervening anion. The sign of the contribution to the exchange integral arising from this
nonorthogonality depends on the symmetry of electron orbitals. For the specific cases under consideration,
these contributions are found to be of overriding numerical importance.

L. INTRODUCTION

N our previous paper' (hereafter referred to as I)
we applied the method of configuration interaction
to investigate the exchange interaction between nearest-
neighbor V2* jon pairs in KMgF; and noted the impor-
tance of taking into account the overlap integral
between neighboring free-ion d orbitals and the cation
— cation charge-transfer excitations resulting from
this nonorthogonality. The primary objective of this
paper is to study the sign of the exchange interaction
between nearest-neighboring V2* ions and the relative
importance of various charge-transfer excitations for
V#+:MgO, using the same approach as adopted in I.
For the present case, the two V2 ions are at right angles
with respect to an intervening oxygen ion and are
separated from one another by 2.97 & only, as com-
pared to a nearest cation-cation separation of 4.00 A
in V2r:KMgF;. Consequently, nonorthogonality be-
tween the cation d orbitals plays a very important role
for the exchange interaction in the present case.

From the symmetry of electron orbitals, Kanamori?
has shown that, in the anhydrous chlorides where the
cations within a layer normal to the principal axis are
nearly at right angles with respect to an intervening
anion, the exchange interaction between two magnetic
ions of d® configuration is ferromagnetic. He further
pointed out that in the monoxides, direct interaction
and electron-transfer excitation between the cations
are important and that the latter will give rise to an
antiferromagnetic interaction. Up to now no experi-
ment has analyzed the exchange interaction between
two nearest d@® ions in the NaCl type of structure.
However, the intralayer exchange in CrBr., where the
Cr-Br-Cr bond is nearly a right angle, is in fact found
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to be +5.44°K (ferromagnetic) by Gossard et al3
Also, Baltzer ef al. recently reported that the exchange
interaction between nearest Cr®* neighbors in the
chromium chalcogenide spinels (the Cr-anion-Cr bond
is a right angle) is ferromagnetic, varying from 11.8°K
(CdACr,Ss) to 15.8°K (HgCr,Sey).

We shall consider the perturbation on the ionic con-
figuration caused by the anion—-cation and the cation—
cation charge-transfer excitations. Since these processes
are allowed only between the nonorthogonal orbitals,
it is necessary to observe first what these orbitals are.
Consider two V2* jons and an intervening oxygen ion
in the xz plane as shown in Fig. 1. Using the symmetry
properties, we list in Tables I and IT the nonorthogonal
2p-3d orbitals and the 3d-3d orbitals, respectively.
From Table I we note that the anion—cation charge
transfer processes are allowed for the configurations
shown in Figs. 2(a) and 2(b). In the former case, an
electron can be transferred from the 2p, (or 2p.)
orbital to the unoccupied V2*—d,, orbital at center 4
(or center B), while in Fig. 2(b) electron transfer is
allowed from 2p, orbital to the unoccupied d,, orbital
at center 4 or to the d,, orbital at center B. The cation
—cation charge transfer takes place from the d,, orbital
at one center to the d,,, d., or d,»,2 orbitals at the
other, also from the d,, (or d,.) orbital at one center
to the d,; and d,, orbitals at the other. Since the #,
orbitals are half-filled for a V**ion in the ground state
in an octahedral crystal field and the ¢, orbitals are
empty, it is clear that the electron transfer from d,, to
d. or d,2_,2 will result in a ferromagnetic interaction
due to the Hund’s rule, whereas the other cation—
cation transfers will give rise to an antiferromagnetic
coupling. In the following sections we shall consider
all the previously mentioned anion—-cation transfer
processes. As to the cation—-cation transfers, only the

3 A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev.
Letters 7, 122 (1961).

4P. K. Baltzer, P. J. Wojtowicz, M. Robbins, and E. Lopatin,
Phys. Rev. 151, 367 (1966).
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TasBLE 1. The anion 2p and cation 3d (centered at site 4 or B)
orbitals which are nonorthogonal.

3d orbitals centered

0o at cation 4 or B
2?2 dzl(A)) dz’(B)
2?1[ d]ll(A)’ d’ﬂ (B)
29, dz2(A), d..(B)

transfer between two d,, orbitals will be considered. The
significance of the other processes will be discussed in
Sec. IV.

Since the electronic orbitals involved explicitly in
the charge-transfer excitations in Fig. 2(a) are different
from those in Fig. 2(b), we can treat these two cases
separately to a good approximation. Moreover, we
found in I that the interaction between the anion—
cation and cation—cation charge-transfer excitations
is numerically unimportant, so that we assume here
that we can consider these two kinds of excitations
independently. We therefore solve the configuration
interaction problem for the following three excitations
separately: (i) charge transfer from the anion 2p, and
2p, orbitals to the cations, (ii) charge transfer from
the anion 2p, orbital to the cations, and (iii) charge
transfer between the cation d,, orbitals. A brief account
of the method of permutation degeneracy is given in
Sec. II. Expressions for the exchange integral between
two individual d electrons arising from each of the
above mentioned cases and the numerical estimates
are given in Sec. IIT A-C. Projection of the spin of a
single electron onto the total spin of the ion and estimate
for the exchange coupling constant between the total
spins of the V2* jons are given in Sec. III D.

II. THE METHOD OF PERMUTATION
DEGENERACY

We use the Dirac-Van Vleck—Serberper mutation de-
generacy method® to solve for the spin-dependent part
of the perturbed ground-configuration energy. The wave
function describing a configuration is taken to be the
product of atomic orbitals and the exclusion principle is
taken into account by using only the physically allowed

X
yat 02~
o > Z

cation A

Fi1c. 1. Positions of the
cations and anion under
consideration.

cationB vat

5 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren-
don Press, Oxford, England, 1900).

6 J. H. Van Vleck, Phys. Rev. 45, 405 (1934).
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Fi6. 2. (a) Configuration in which the charge transfer from
anion 2p, or 2p, to cation is allowed. (b) Configuration in which
the charge transfer from anion 2p, to cation is allowed.

spin states in constructing the matrix representation of
the permutation operators. The matrix element which
connects configuration R; to R; is expanded into the
matrix representation of the permutation operators
as follows :

(gc._.W) R:R;

=V2ri D (Se— W) pFRICRES  (ri2ry), (1)

P
where 3C is the sum of the total kinetic energy of the
electrons, the electron-nuclear potential energy, and
the Coulomb interaction energy between the electrons,
W is the unknown energy to be solved for in the secular
equation, r; equals the number of pairs of filled orbitals
in configuration R;, and the sum is carried over the
n!/27 permutations which differ by more than an inter-
change of identical orbitals in R; (z=number of elec-
trons under consideration). It can be shown’ that the
coefticient (3C—W)p®iBi of the matrix representation
of the permutation operator 2 is given by the expres-
sion

(3C—W) pFifi= (PYRilse— W [y*i)

=SepRI— T (PYRYE),  (2)

YRi= i (1)) i (L) * + (1) 3)

is the product of the one-electron orbitals specifying
configuration R;.

The construction of the matrix representation of the
permutation operators will be demonstrated in Sec. IIT
for our specific case. Obviously, such construction
depends upon the relative spin orientation of the d
electrons. Hence by using (1) and (2) to set up the
secular equation for the energy eigenvalues, we are able
to solve for the strength of the interionic exchange
interaction.

where

TasLE II. The nonorthogonal 34 orbitals centered
at cation 4 and B.

3d orbitals centered
at cation B

3d orbitals centered
at cation 4

du; dz2y dzz_yz
df’ll’ dﬂﬂ

dxz, dz’, dy2—-22
dzy; dya
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III. CONTRIBUTION TO THE EXCHANGE INTER-
ACTION VIA THE ANION—CATION AND
CATION—CATION CHARGE-TRANSFER
EXCITATIONS

A. Charge-Transfer Excitations from the 2p, and 2p,
Orbitals to the Cations

The configurations under consideration are shown in
Fig. 3, where A is the ionic configuration, B and B’
are the excited configurations in which an electron is
transferred from the anion 2p, and 2p, orbitals to the
e, orbital of cation 4 and B, respectively, and C and C’
are the excited configurations in which an electron is
transferred from the 2p, and 2p, orbitals to the d..
orbital at center 4 and B, respectively. Clearly, since
the ionic configuration is even, it connects only with
the following even combinations of the excited con-
figurations:

Yo (1/V2) (WP +¢7),

Yo~ (1/V2) (W0497). 4)

The energy matrix to be solved is then given by

(JC—' W)AA (JC—W) Gi14 (3(3__W)G2A

(e—W)46:1  (3e—TW)%G1  (Je—W)G1| =0, (5)

(C‘C—W)AG2 ("}C_W)GIG2 (R_W>G2G2

Using symmetry properties we can show that
(50— )11 = (5C— W) 204 (s — W) 22,
(30— W) 0202 = (30— TV €0 (3 W)

(3e— W) @Gz = (30— W) BC (50— W) B, (6)
Detailed calculation indicates that the exchange inter-
action between two d electrons belonging to two
neighboring cations contains, to the lowest order in
overlap integrals, only the parts in JC®1¢1 3CG2G2 and
3C¢1@2 which depend upon the relative spin orientation
of these two electrons. We find that the dominant
terms of such spin-dependent parts are contained in
(3c—W)BB, (3¢—W)CC, and (3C—W)EC; hence we can
ignore the elements (3C—W)BB' (3c—W)C¢’  and
(3c—W)BC¢’. Accordingly, only the electron on the 2p,
orbital takes part in the charge transfer, and the six-
electron model shown in Fig. 3 can then be replaced by
a four-electron one. In other words, we shall consider
those two electrons belonging to the 2p, orbitals im-
plicitly by choosing a proper effective nuclear charge
in solving for the interaction between configurations
A, B,and C.
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Construction of the Matrix Representation of the
Permutation Operators

The eigenfunctions for the total spin of a four-electron
system consist of a quintet state, three triplet states,
and two singlet states. However, because of the presence
of identical orbitals in configurations 4 and C, the
exclusion principle restricts the spin s; associated with
the electron on the orbital a; (or ¢1) to be antiparallel
to the spin s, associated with the electron on the orbital
as (or ¢s). In configuration B, the electron being trans-
ferred from the anion to the cation cannot change the
direction of its spin, because our Hamiltonian is taken
to be spin-independent. Thus we have again s; anti-
parallel to s; for this configuration. This requirement
turns out to be consistent only with one of the three
triplet states and one of the two singlet states for all
three configurations 4, B, and C. The quintet state is
clearly inconsistent with the above requirement. Ac-
cordingly, the matrix representation ®%i¥i is independ-
ent of the configuration indices R; and R;. Moreover,
since any permutation operator P;; is related to the

cgcg=dyz ¢4 =Py

c3=P;
(d)

”
] :c2:dxz

Fic. 3. (a) Ionic configuration 4 is considered in Sec. IIT A.
(b) Excited configuration B in which an electron is transferred
from 2, to the 3d,; orbital of cation 4. (c) Excited configuration
B’ in which an electron is transferred from 2p, to the 3d,» orbital
of cation B. (d) Excited configuration C in which an electron is
transferred from 2p, to the 3d,, orbital of cation B. (e) Excited
configuration C’ in which an electron is transferred from 2p, to
the 3d.. orbital of cation 4. ’
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spin variables by the expression®
Pyj=—3(1+4s:-s)), (7)

which is obviously invariant under a rotation of the
spin axes and commutes with the total spin, the per-
mutation operators then have no matrix elements
between states of different total spin S or M. Further-
more, for each value of .S, we obtain a representation
of P which is independent of Mg, as pointed out by
Serber.” Therefore, the ®’s are one-dimensional for
S=1or §=0.

Demanding that s; to be antiparallel to s,, the physi-
cally allowed eigenstates of the total spin are found to
be

Y1=(1/V2) (c1B2—Brorz) asaus

for
S=1 and Mg=1 (8a)
and
Yo=%(cuBa—Pros) (asBs—Bscts),  for §=0. (8b)
Thus the @’s are simply given by
®={|PlYr)  for S=1, (9a)
= (Yol Plo) for S=0. (9b)

One way to determine the exchange coupling constant
J between two d electrons belonging to two cations is
to solve for the energies E, and E; for the singlet and
triplet state, respectively, and then calculate J from
J=3%(E,—E;). An equivalent, but more convenient,
method is to determine the ®’s using only the singlet
state for s; and s, and leave the directions of s; and s4
completely unspecified. The solution to the secular
equation is then expressed in terms of the inner product
S3+Sy, and J is determined. The latter procedure is
adopted in this section. Decomposing the permutation
operators involving more than two indices into products
of P;’s and using (7), (8), and (9), we obtain the
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following expressions for the @’s:
er=1,
Pz =Pos=Pra=Poy=—3,
Pr31=Pr34= Pri3= Pogg= — 5 P34,
C1,20=Cru,23=3(1+Cu), (10a)
and .
Pr2=1,
Pro3=Pras= P32 =CPrao= —13,
®12,3= P34,
Pro31=Proa3= Pras0= Prazo = — 5 P34,
P1324= Pras =3 (1+®s4), (10b)

where the first group, given in (10a), is for the twelve
permutations which differ by more than an interchange
of orbitals “1” and “2,” while the twelve ®’s in (10b)
correspond to the permutation operators which are
related to the first twelve by a multiplication of Pj,.

Solution to the Secular Equation

We define the following overlap integrals:

Sz=(P:|dz+(B) ), Se=(p:ld2(4)),
T1=(des(4)|dez(B)),  To=(ds(4)|des(B)), (11)

and approximate the orbitals d,,/, d..”, and .’ shown
in Fig. 3 by d,, and p, (i.e., we take a=bs=cs,
az=bz=c1, and as=bs=c,) because the high-frequency
character of the virtual excitations prevents the charge
redistribution to be fully developed, as discussed by
Simének and Tachiki® According to (1) we need to
consider the 4! permutations entered in (10a) and
(10b) for the expansion of (3¢—W)53 in terms of the
@’s, while for the other matrix elements only the twelve
@’s in (10a) are required. Upon substituting (2), (3),
(10), and (11) into (1), we obtain

(e—W)A4 = (5044 —TW) — (301544 —TW S,2) — 3C1at4+4-3C13 04244+ Paal (a4 — W T'?) — (3C1au44-5C1u324) +3C13 2444 ],

(30— W)BB= (5C/BB— W) — % (3C13B8 — W T 5>+ 3C14BB+3CosPE — W S*-+3C2455)
+ (30158 — W S,2) 41 (313 9458+ 30y 2558+ H1aoB P+ 301425PF)
— 1 (3013558 50145BB~4-5C105PB+ 3010 BB — 2W S, S, T2)
+ @34 (3C3,BB—W T12) + (3C12,38B— W S2T1%)
— 1(3C134PB—+ 3014558+ 3Ca3 BB+ 3Coss B4 301542P8 - 5C143:PF )

(30— W) CC = (3¢,CC— W) — (3C13CC— W S,2) — (5C1CC— W T'2) 4 (3Cy3 24°C — W S2T12)

(12a)
— 1 (3193488 +3C 124558 — 3C12 0455 — 3C14 2558 — 130455 — JCra0sP8) ],  (12b)
+ @34 303400 — 3C1340C — 5C1450C+ (3013 2°C— W S22 T12) ],  (12¢)

8 E. Simanek and M. Tachiki, Phys. Letters 21, 625 (1966).
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(3C—W)4B=V2[ (3C/AB—W S,) — 3 (3CisAB— W Sz T2) — 3 (3CosAB—W S,.5,2)

43 (3C13,2448 4 3C14 2348 — 301448 — 3CoiAB) ]

FV2Z@3[ (3C34AB—W S, T1%) 43 (3013 244843014 2545) — 2 (3C1344 8+ 3C1434 5+ 3Cosa4 B+ 3Cos34B) ],

(3C—W)4C= (3er4¢— W S,®) — (3012° — W Sz) — 3C14"C+3Cus,264¢

(3C—W)BC =V2[ (3C/BC— W S;2T3) — % (3B — W S,.S7) — 3 (3CosBC— W T22)

— 2 (3C14BC+3Co4C — 5Cy5,248C — 3C14,055C) ]

FV2@34[ 3C34BC — £ (3C1345C + 3Co345C — 3C13 2456 — 3C14 235€)

(12d)
+ @sa[ 3C344C — 3013440+ 3013244 — (HresC—~ W S, T12) ], (12e)
- % (3@143190__ WS,Sngz) - ‘% (%24330‘— WleTz) ] (12f)

The secular determinant (5) involves a cubic equation in W. In order to simplify the algebra, we use the same
procedure adopted by Keffer and Oguchi® by replacing W everywhere except in the term 3¢/44—W by its zeroth
order approximation 3Cz44. This is adequate since we are only interested in the perturbed energy of the ionic

configuration involving the sz s, terms. Thus we find,

W =3C144 — (301544 —3Cr44.5,2) — 3C1t44-3C15,0444 + Paa[ (3CaeA4 — FCrA4 T'i2) — FCy5ud4 — FC1452 44 3Cs5,0444 ]
2 (GC—ZC[AA) AB[ (5(3"-3CIAA) AB (5@'—5(31‘4‘4) cc_2 (GC'—:}C[AA) AC (gc_JCIAA)BC]_i_Z (gc_chAA)BB[(sc_chAA) AC]z

_|_

[ (5e—5CA4)BCTa— (30— 30 A4) BB (30— CA4) CC ’

(13)

where the matrix elements contained in the last line are given by (12) with W to be replaced by 3¢;44. Expanding
the denominator into power series in the overlap integrals, we find that the dominant terms for the spin-dependent

part of W are

AW = —2s;¢ 54{ (3Ca424—3CrA4 T1?) — 3C1asA4 — Casst 4+ 3C15 2414

4(3C3AC—3C44.S,)
30,6C — 50,44

8(3CAB—3C44S,)
GCIBB__GCIAA

2(301AC— 5044 S, )2
(30,60 — 50 A44)2

' 4(3CAB—3044.S,) 2r

iR (30BB—3044)2 L

3C34CC

[[3C15,244€ — 3C1344C+-3C344C — (3C1434C— 31445, T12) ]

[ (3CsAB—3Cr44.S, T1?) — 331454843014 2545

(3C34BB—3CAAT ) +35C14 2355 ]

4(3Cr4B—3Cr44S,) (3C134C —3CrA4S ) (3C134BC —3Cu4,955€) }
(5CBE —5erA4) (30,00 —geAA)

=—2 ]34’83' S4.

The exchange integral, Js/, between the electrons
occupying the d,. orbitals at center 4 and B due to
the anion—-cation charge transfers is then given by the
terms in the curly brackets of (14). We note that the
ionic configuration alone contributes to the super-
exchange interaction also, because of the lack of ortho-
gonality of the electron orbitals, as pointed out by
Yamashita and Kondo.!?

We shall evaluate the matrix elements in (14) by

9 F, Keffer and T. Oguchi, Phys. Rev. 115, 1428 (1959).
10 J, Yamashita and J. Kondo, Phys. Rev. 109, 730 (1958).

(14)

following the procedures adopted in I and in the calcula-
tion for the cation (3d)—cation (4s) transfer integral
for KMnF; and MnO." Consider the spin-independent
Hamiltonian

K= o () 2m) Vi T (Zactfri) + 3 (&r5)

= > 5ei+ ZZ, (¢¥/rsy), (15)

1 Nai Li Huang, R. Orbach, E. éimének, J. Owen, and D. R.
Taylor (to be published).
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where Z, is the atomic number of the nucleus at the
point g and 3C; the one-electron part of the Hamiltonian.
Using (2), (3), and (15), the matrix elements in (14)
are written in terms of the one-electron and two-electron
integrals in Appendix A. Observing these expressions,
one can interpret some of the terms in (14) as follows.
Comparing the expression given by (A1) in Appendix
A with the exchange integral for a H, molecule,? we
identify 3C;44—3C44 T2 as the direct exchange integral
between two electrons on the 3d.,(4) and 3d,.(B)
orbitals in the presence of an O*~ jon. Contributions of
configurations A4 and C, which involve only the p,
orbitals and are independent of the cation-cation
overlap effects, are given in (14) by the following
terms:

2(3Cy52¢—5Cr44 Sy)
JC[CC—-(}C[AA

Jug' (AC) =303 0444 — 3Cy342€

(gclaAC_chAA Sw)z
30, CcC
(50,6C —3044)2 3.

From the expression (A4), we identify

(14°)

(JcmAC_ 3@1‘4‘4 ST) (JCIAA — 3(3100) —1

as the covalency parameter B, entering in the bond-
ing orbital p,(|)—B.d..(B) | (we assign a spin
direction T to the electron on the occupied d,, orbital
of cation B). Using (A3), (A6), and (A13), we reduce
(14’) into the simple form,

J34I(A C) = (Bw+ Sw)2<d4('11[ |01(14>
:fr (a4a1|\a1a4>,

where fr is the unpaired spin density of the anion
coming from the overlap and charge transfer effects
between p, and d,.(B) orbitals.®~® Thus (14’) repre-
sents the superexchange interaction arising from the
direct exchange between the electron on the d..(4)
orbital and the unpaired spin density f» on the p, orbital.

Numerical Estimates

Using the O¥~ 2p orbitals® and the V*t 3d orbitals?
calculated by Watson, the one-center and two-center
two-electron integrals in Appendix A can be accurately
evaluated using the modified version of the Switendick-
Carbato MIDIAT program,® whereas the three-center
integrals are roughly estimated by using an overlap
charge model. It is important to point out that a

2 W, Heitler and F. London, Z. Physik 44, 455 (1927).

1S, Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).

14 E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251 (1964).

R, E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
(1964).

16 R. E. Watson, Phys. Rev. 111, 1108 (1958).

7R, E. Watson, MIT SSMTG Technical Report No. 12,
1959 (unpublished).

18 A, C. Switendick and J. J. Carbato, MIT SSMTG Quarterly
Progress Report No. 34, 1959 (unpublished).
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TasirE III. The two-electron integrals

(6192 || paa) = (b2 | €2/7:; | dacpa)
involved in Appendix A. The values are given in atomic units.

(@01 || @1 )=0.63901
(@mas || mas)=0.24371
(ma4 || mas)=0.27035
(@01 H aaq)=0.00360
(asar || azas)=0.03171
{(@mar || @sa1)=0.03418
(asaq || azas)=0.17130
(@304 || @4a3)=0.00042
(@ma1 || brai )= —0.06283
(@1a4 || bras) = —0.04996
(may || @1y )=—0.00379
(b1 || b1a1)=0.27670
(s || bras)=0.02102
(ash H aza4)=0.00097
{@sby || asb1)=0.00820
(@4b1 || azas)=0.00035

(aas “ a124)>20.008
(@301 || @104)=20.0003
{@4a1 || @304 )=20.0001
(@104 || a304)20.02
<aad1 ” a3ty )zO .002
(54(11 | | a3as )EO .001
((]4(14 l ‘ blag;)ﬁ—'o .001
(04(11 ! | b1a3 )20 .003

rotation of coordinate axes by 7/4 is necessary in com-
puting the two-center integrals which involve both
cations, because these ions are aligned off a symmetry
axis of the cubic crystal field by =/4. This rotation
mixes the ¢, orbitals with the £y, orbitals and complicates
the evaluation of the two-electron integrals to a great
extent. The values of the two-electron integrals are
listed in Table IIT.

The effects of the electrons other than those con-
sidered in the four-electron model can be approximately
taken into account by assuming the following one-
electron Hamiltonian to be used in (A1)-(A17):

$y=— (7/2m) Vi+Va(V¥) + V5 (V) +V(0), (16)

where V4 (V3t), Vp(V3) and V(0O) are the effective
one-electron potential energies arising from the V3
ion at cation A site, the V3* jon at cation B site and
the O atom, respectively. The ionicities are chosen in
the above manner such that the interactions between
the four electrons under our explicit consideration are
not doubly counted in our Hamiltonian (15). Evalua-
tion of the one-electron matrix elements in Appendix
A is carried out by following the same procedures used
in our previous calculations."'!! We list the results in
Table IV, where we also list the values of the overlap
integrals defined by (11).

Using the values listed in Tables IIT and IV, the
matrix elements entered in (14) for the exchange
integral are evaluated. Their values are listed in Table
V. The denominators 3C2B—jCr44 and 3¢,°C—3CrA4
entered in (14) are the energies required for the virtual
process of transferring an electron from the O*~—2p
orbital to the V2*—3d,: and 3d,. orbital, respectively.
Various contributions to these transfer energies have
been discussed in our previous calculations.'!! Follow-
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TasLE IV. The one-electron integrals entered in Appendix A
in atomic units. The overlap integrals defined by (11) are also
listed.

(011301 | @)= —2.25381 S»=0.08202
(aa | 501 | as)=—0.05568 Sp=—0.10426
(as | 30 | as)y=—1.61690 71=0.02300
(a1 | 501 | @)= —0.20609 T5=0.00588

((Zl I 3¢ [ b1>=0.32035
(04 I 3¢y l b1)=0.00307
(b1 3C | b1 )=—1.61340
{1 l 3¢y l l14>_’\’_~—10—4 2

& Since a1 and as are orthogonal, (a1 |3C1 | a4) reduces to (a1 | Ve(vet) | as).
We are unable to estimate this matrix element, but we believe it is of the order
of —10™ a.u.

ing the identical procedures, we find
JCBB—30r44=0.59 a.u.,
3¢ —3044=0.69 a.u. (17)

Substitution of (17) and the values listed in Table V
into (14) yields the exchange integral arising from the
direct exchange interaction between two cations and
the superexchange interaction via one of the two inter-
vening anions (cf., Fig. 3). However, the other inter-
vening anion plays an identical role to the super-
exchange coupling; hence the anion-dependent terms
in (14) should be multiplied by a factor of 2, whereas
the direct exchange coupling, given by the terms which
depend only on the cations in (A1), enters only once.
In this manner we obtain

Jul =91.8°K. (18)

In arriving at this result, we note that a contribution
of —163.8°K comes from the direct exchange between
the electrons on the d.,(4) and d..(B) orbitals, and
255.6°K  from superexchange interactions via the

TaBLE V. Values of the matrix elements, in atomic units,
entered in (14) for the exchange integral.

3Caud4 —3CrAAT»= —0.00031
JCi3444 =FC14344 =0.00002
3C13,2444 =0.00002

JC34C—3C 448, =—0.03210
3C13,244C=0.00017
3C1344¢=0.00030
3C344C>20.000002
JC1434C—3C 44 S, Ty = —0.00005
3C[AB—5C1AA50=0.0702]
JC3u4B —3C 445, T2=0.000006
3Cis4B =0.00008

3C14,2548 = —0.00003
3C3,¢¢=0.00360
3C3BB—3C A4 T 2= —0.00590
3C14,0388=0.00014
3C134BC¢=—0.00031
3C14,258C=0.00045

NAI LI HUANG

157

anions. The strong antiferromagnetic direct exchange
coupling is a result of using nonorthogonal cation
orbitals in our formulation. This nonorthogonality
allows for the attractive nuclear potential to contribute,
in addition to the ferromagnetic Heisenberg exchange
integral, (pip;le*/reldip:). It should be emphasized
that Js¢ is the strength of the exchange interaction
between two electrons, each occupying the d., orbital
of the cation A or B. To determine the coupling con-
stant between the total spins of cation 4 and cation B,
it is necessary to project the individual spins onto the
total spin of a cation. This process will be discussed in
Sec. III D.

B. Charge-Transfer Excitations from the 2p, Orbital
to the Cations

The configurations under consideration are shown in
Fig. 4. A is the ionic configuration, B and C are the

X
Y=dyz MP/
37y
C\g —>7

EZS
. Y, =7 =dy
% (¢}

8

Fic. 4. (a) Ionic configuration A considered in Sec. III B.
(b) Excited configuration B in which an electron is transferred
from 2p, to the 3d,, orbital of cation 4. (c) Excited configuration
C in which an electron is transferred from 2p, to the 3d,, orbital
of cation B.

excited configurationsin which an electron is transferred
from the 2p, orbital to cation 4 and B, respectively. As
far as the symmetry of the electronorbitals is concerned,
our present problem is identical to the anion—cation
charge-transfer excitations that we studied in I
Namely, we consider, in the ionic configuration, two
anion orbitals which are symmetric with respect to the
d orbital on each cation site. Charge-transfer excitation
occurs from the anion orbital to either cation. Keffer
and Oguchi® solved a similar problem for the exchange
coupling between the next-nearest Mn neighbors in
MnO. They neglected the overlap integral between the
3d orbitals and found that the contributions to the
exchange integral arising from the ionic configuration
as well as its interactions with the anion—-cation charge
transfer excitations are all antiferromagnetic. In our
previous calculation for KMgF;: V3t we allowed for
the' 3d-d overlap integral and found that it yielded a
ferromagnetic contribution, although the net exchange
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interaction due to the anion—-cation transfer was still
antiferromagnetic. In the present case, because of the
larger value for the d-d overlap integral, as compared
to the corresponding value in KMgF;: V) the con-
tribution to the exchange integral involving the d-d

T34 = 303444 —FCAA T 2 — 2 (3013444 — 3044 S22 ) + (3C3 244

4(3C1A8—3C44Sx)
e IBB — SCIAA

2 (3C14AB_ SWJCIAA) 2
(SC[BB—ZCIAA) 2

where S, is the same integral (p.|d..(B)) defined in
(11) and Ts=(d,.(A4)|d-y(B) ). Using (2), (10a), and
(15), we express, in Appendix B, the matrix elements in
(19) in terms of the one-electron and two-electron
integrals. Numerical computations for these integrals
and the resulting values for 3¢,®i are listed in Tables
VI, VII, and VIII. Direct evaluation of J3, indicates
that the sum of the terms in (19) which do not contain
the nonorthogonal effects between the d orbitals is
antiferromagnetic (—93°K), whereas the terms arising
from the cation—cation nonorthogonality (these terms
are, fOl‘ example, 3@34AA— T32-'.}CIAA, 3(3134‘4‘4— S,rzT:;GCrAA,
etc.) yield a ferromagnetic interaction of 108°K. Thus
we obtain a net ferromagnetic coupling of J3'=15°K.

There is an interaction identical to the one we have
just considered via the other intervening anion, i.e.,
the exchange coupling between the d,, orbital at center
A and the d,, orbital at center B via an intervening
anion, as shown in Fig. 5. For this case the strength of
exchange coupling is also 15°K.

C. Charge-Transfer Excitations between the d.,
Orbitals of Two Nearest V2+ Neighbors

We consider the ionic configuration 4, the excited
configuration B in which an electron is transferred
from the d,. orbital at cation 4 to the d,, orbital at
cation B, and the excited configuration C in which
charge transfer occurs from cation B to cation 4. These

Tasre VI. The two-electron integrals entered in Appendix B.
The values are given in atomic units.

{onau || anan )=0.63901
{aas || cues) =0.24371
(s || s ) =0.00333
(creu || a1 )=0.03418
(a0 ” sy )=0.03171
{ason || csas)=0.17538
(asrq || ouars ) =0.00006
{ouos ” ouos )=0.76501
{osas || ases ) =0.00204

(e || evsees )=20.002
{aras || cse y=20.002
(oz[oza H oo )20.003
(a4a; ” oy )20 .02

{aucs ‘ l agas y=0.0004
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overlap integral can overcome that involving merely
the p—d overlap integral and lead to a net ferromagnetic
interaction. In fact this will be shown to be the case.

The expression for the exchange integral is given by
Jion+ Jac derived in I. We have

A—GC[AA ST4)

[— (5C1454B—3Cr44 5,3) 4 (3Cy3 2448 — 30445 T55) ]

(19)

configurations are shown schematically in Fig. 6. Ob-
viously, these charge-transfer processes are allowed
only for the case of s; antiparallel to s;. The ground
configuration is only connected with the following even
combination of the excited configurations:

Yo (1/V2) (Ys+ie) - (20)

The secular equation to be solved for the perturbed
energy of the ground singlet is given by

(c—Ww)44  (3c—W)4¢
=0’
(5(1__.W)GA (gc._ W)GG

in which each matrix element is given by (1) and (10a)
with ®;=1, a relation appropriate to the case for s;
and sy in a singlet state. The interaction between con-
figurations 4 and G is given, to the lowest order in the
overlap integral, by

AW = '—4(:}CIBB-*3C[AAT1) 2/(5CIBB—~3C[AA) s

(21)

(22)

where T} is defined in (11). Assuming a four-electron
model, we find

JeBA—3CAAT = ((13]5@1‘ (l4>'— (a3[3C1[a3) T:
+2{a1as||mras)+ {asa3| | azas)
— (2{ar04]|@104)+ (asadl|asas)) T1,  (23)

where {aia;||ara)= {@ia;|e®/rz|arar). From Tables III
and IV and, in addition, using the value {asas||asas)=
0.00908, we obtain 3¢/84— 3044 T = —0.010. It is neces-
sary to consider also the contribution of the other
intervening anion which plays a role identical to the
one shown in Fig. 6. This contribution is taken into
account by doubling the terms in (23) involving the
anion. Doing this, we find 3¢/84—3C44T=—0.006.
The energy denominator in (22) is estimated to be
0.47 a.u., following the same procedures adopted
before.lt We thus find AW =—30.8%X10~® a.u. This
is the amount of energy of the singlet ground state
lowered by the cation—cation charge-transfer excita-
tions. The corresponding value for the exchange inter-
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TasLe VIL. The one-electron integrals entered in Appendix B.
The value for the overlap integral Ti={(d,.(4) |dzy(B)) is
also listed.

(o | 5C1 | &z )= —0.20609
(o | 3C1 | an)=—2.25381
{as |3C1 |aa>=—-1.61690
{as | 301 | ) =—0.02129

T5=0.00971

action is —15.4X107% a.u., or —48.2°K. Combining
this with the value of J3’=91.8°K, estimated in Sec.
IIT A, coming from the ionic configuration and the
anion—cation charge-transfer excitations, we obtain a
net coupling of 43.6°K between two electrons on the
orbitals d,.(A4) and d,.(B).

D. Exchange Coupling between Total Spins of
Two V2 Tons

We have estimated the strength of exchange coupling
between pairs of individual d electrons. The exchange
energy coupling two ions is given by the sum of the
coupling energies between all pairs of electrons (the two
electrons in a pair belong to two different cations),
i.e., we have

n ng
WAB'_—"‘Zi 2 Jisis;,

=1 =1

(24)

where 74 and #np are, respectively, the number of
unpaired spins for cation 4 and B, and J;; is the ex-
change-coupling constant between the ¢th unpaired
spin of one cation and the jth unpaired spin of the other
cation. However, the quantity of interest to us is the
coupling constant J4p associated with the exchange
energy —2J45S4+Sg, where S, and Sp are the total
spins of cation 4 and B, respectively. For the case of
half-filled shells and also for ions with @ or d® configura-
tions in an octahedral field, Van Vleck® has shown that

_2112 nz: JiSit8j=—

=1 j=1

2 n4a NB

SA'SBZ Z Ji (25)

=1 =1
=—2J4854Sp,
assuming the intraionic couplings to be small compared

to the Russell-Saunders energies of individual ions.
Hence, summing over our previously estimated

nanp

AX

—>Z Fic., S. A four-electron
A model which leads to an ex-

y change interaction identical to
g
; B

the one arising from Fig. 4.
¥ 7J. H. Van Vleck, Rev. Univ. Nac. Tucuman, Ser. A 14,
189 (1962).

Py
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X
ag=ag=Py

Fic. 6. (a) Ionic configuration 4 considered in Sec. III C.
(b) Excited configuration B in which an electron is transferred
from the 3d,.(A4) to the 3d,.(B) orbital. (c) Excited configura-
tion C in which an electron is transferred from the 3d.,(B) to
the 3d,,(4) orbital.

couplings, we obtain a ferromagnetic interaction be-
tween the total spins with a strength of

Jap=8.2°K. (26)

IV. DISCUSSION

We believe that we have demonstrated in this paper
the important one-electron transfer excitations for the
exchange coupling between two nearest V2* ions. Our
estimate of J4p=8.2°K seems to have the correct
order of magnitude, although there is no measurement
to be compared with. Clearly, our accuracy is restricted
by the following approximations: (i) We have neglected
the crystal surroundings of two V%t jons and two
intervening anions in evaluating the matrix elements
in the exchange integrals (but the whole crystal is taken
into account in estimating the transfer energies). (ii)
Rough estimates have been made for the three-center
integrals. (iii) We have assumed that no charge redis-
tribution occurs in the excited configurations. Improve-
ments to these approximations require difficult numeri-
cal work. This is even further complicated since the
electronic states which result upon charge transfer are
not known quantitatively at the present time. Never-
theless, we believe that the following features dis-

Tasre VIIL. Values of the matrix elements entered in (19),
in atomic units.

3Ca 4 — T23C 144 = —0.00003
JC1344 — S2T53C 44 = —0.00007
JCu3,2044 — S,23C 144 = —0.00009
301448 — §,3C 44 =—0.03696
314548 — §,33C A4 = —0.00077
3C13,0048 — S T'33C 44 = —0.00100
3CgsBB— S,23C 44 = —0.00233
3C13,248C — S:23C 44 = —0.00498
3C13BC— T3 44 =—0.00371
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played in our estimates are correct: (i) The direct
exchange interaction between two electrons on the
ds.(A) and d..(B) orbitals and the charge-transfer
excitation between them both give rise to antiferro-
magnetic coupling. (ii) The superexchange interaction
between these electrons is strongly ferromagnetic,
because the presence of two intervening anions provides
two “paths” for superexchange coupling. A net ferro-
magnetic interaction is thus obtained. (iii) The super-
exchange interaction between electrons on the dy.(4)
and d,,(B) orbitals is ferromagnetic because of a rather
significant overlap between these orbitals. Ignoring
this overlap would lead to an antiferromagnetic cou-
pling.

In our estimate of J4p we have ignored charge
transfers from the d,, orbital at one center to the empty
e, states at the other. These excitations give rise to a
ferromagnetic interaction, for reasons pointed out in
Sec. I, but they are diminished by roughly a factor of
Jintra/ AE~0.1 [here Jintrs is the intra-atomic exchange
integral between the cation #, and ¢, orbitals and AE
is the energy required to transfer an electron from the
d.-(B) orbital to the empty d,2(A4) orbital ] as compared

NEAREST-NEIGHBOR ION PAIRS
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to the excitation from the d..(A4) to the d,.(B) orbitals.
The other direct transfers, for example, between d, (A4)
and dqy(B) orbitals or d.y(4) and d,.(B) orbitals, are
also unimportant because of the relatively small over-
lap integrals as compared to the overlap between
dz.(A) and d,.(B) orbitals. The 2s electrons of the
oxygen ion play an insignificant role to the super-
exchange because they are orthogonal to the #,, orbitals.

We conclude that it is necessary to consider the
overlap integrals between the cation d orbitals in
solving the exchange coupling between nearest neigh-
bors in NaCl type of structures. The charge-transfer
excitations that we considered in Sec. ITI together with
the ionic configuration contribute probably the ma-
jority of the exchange interaction.
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APPENDIX A

In this Appendix we express the matrix elements in (14) in terms of the one-electron and two-electron integrals.

Using (2), (3), and (15), we obtain

30344 —JCrAA T2 = 2 (as]3Cs | as) T1— 2 as|3C1| as) TP~+4 (13| | a104) T1— 2 {aras| | aras) T

3C13AC—FCrAA S, = (@|3Ca|as)— (a|3Ca]a1) Sxt (st | asas )+ (@101 | asar)

FC1454C —3CrA4 S, To? = 2{aa|3C1| a3 ) S= T1+ (a1|3C1| a3 ) T2 — ({@a|3C1| a1 )+ 2{as]3Ca] a3 )) So 7o

FCrAB—3CrAAS, = (a1[3C1|b1) — (@1|3Ci|a1).S,+ {@rai||bra1 )+ (a1a3||bras)

GCMAB—GCIAAsaTl = <d1[3€1|bl>T12+2<03[3C1[d4>S,T1— (<01[561|01>+2<0313(31|(13>) S,le

—2(a104||0104) T*+ (@204|| 0403 ) — (as04||asad) T2, (A1)
FC1t4 = 3Cuu3d4 = (01)3C1|aa) Sz T1+ (@301||0104) T1+ {@4a1| as04) S, (A2)
313,064 = (@4ai||0204) S 2, (A3)
+(0104]|as04) — Sz {maa||a101)— Sz (@105]| @10z )— Sx{mad||mas), (A4)
3Cy5,044€ = (@1]3C1|aa) T1+ (asa1||asas) T+ (@aan|| azas), (AS)
3@134‘40 = (a4a1||ala4>S,r, (A6)
3C3uAC = (a13C1| @4 ) S22 T1+ (@40s|| @104 ) S72+2 <0/1d4Hdsd1>S7rT1, (A7)
+2(aaml|asas) T1+2 (aatn| | a301) S« T1+ (0403]|0304) St (@ |asan ) T2,  (A8)
+ (@104 [bras) — (ma]|a1a1) — (aras||aas)— (mas] |aaas),  (A9)

+ (@1a1||bra1) T2+ 2 {a104) |b105) T14-2 (@103 | 0104) S o T1+- (asas| | azas) So
— (@101 || a1a1)+ (@304 || @sa4)+2(a10s || a105)+2(a104 || aras)) S, T2, (A10)
FCruxAB = (as | 5C1 | b1)SxT1+ (asas || b104)S++ {asan || bras) T, (A11)
3142548 = (@uay || 0104)S2, (A12)
3C346C = {aua H a104), (A13)
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FCayBB—3CAAT 2= (by | 5Cy | ba)T?+2(as | 51 | as)T1— ({ar | 301 | ar)+2{as | 3¢1 | @a)) T4
+ (Bias || b1a1) T2+2 (bras || braa) T1-+2{anas || @1a4) T1-+ (asas || azaa)
— ({a3a4 || @3a4)+2{a1as || @103)+2{tas || mas)) T2,
3Cya,2558 = (@b || 6104)SA2,
3C1348¢ = {a4ay || b1a4) S,
3C14,235¢ = (b1 | 5C; | @s) 1+ {asd1 || asas)+ {asbr || asa4) T
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(A14)
(A15)
(A16)
(A17)

The matrix elements in (19) are written in terms of the one-electron and two-electron integrals in the following:

30 A —GCAAT R =2{as | 30y | a) Ts— 2o | 51 | ou) Ts*+4 s || cncua) Ts—4{oners || crnrs) T?
+ e || cuas)— (s || ) T2,
30154 —3CrAAS 2 Ts= {ay | 301 | sy SaTs+ (o | 5€1 | a)SeTs+ s | 3¢t | ca)Sa2— (| 3C1 | 01) S22 T
—2{as | 3C1 | as)Sa2T 542 (ouau || asa)S»Ts+2{cuers || ctsoea) Sat oners || cson ) T
+ (onas || anaea) Sii— (esen || cron ) S, Ts— asan || asaa) S2Ts— et || cnes)Se2 T,
T3 264 — 30445 4 =4 {0 | 501 | a3} Sa2—2{aa | 3C | o) Sat—2{es | 301 | c3)Set+2 s || cvsrs ) Sy
+2{onon || asou)Se2+2{aas || @ ) S — (o || ann ) Sat— {sas || ascea) Sat—4{ones || s ) S,
FC1AB =304 S, = (o | 3C1 | au)— (o | 301 | e ) St {oniens || atsra)+ {cura || cuacrs)
+ (a0 || cwas)— (enen || a0n) Se—2 (e || cn03) S,
Hops AP — 5330744 = 3{ay | 31 | o) Sa2—2(on | 5C1 | 01) S — (ats | 30 | cus)S342 (osous || cusers) S
42 {asaua || creer) St {auson || asers) St s || ct104) S22 — (enen || e S8
— (ot || crsaus) Sxd—4{oues || oners) S22,
3013 04 B—3A4 S, Ty = {ars | 5C1 | a)Sat o | 301 | cs)Ts— {rr | 301 | au)SuTs— (s | 501 | ) S Ts
+ (ascus || ctaeea) St {sens [] ctars )+ Cson || cvann) St (ousons || cuacrs) T
- (usar || ) To— o || cnes) S To— (s || csers) S T 3 s || cse) S, T,
F0uPE—30rAAS 2= 2 {0y | 30y | ats)Se— 2 | 30 | an) S+ evacrs || cscrs) o244 (ouers || o )S
4 {asers || onas)— {asen || ano ) Sa2— {asaus || caus) Sa2— 4o || cners)S,2,
3013 05C — 304482 =2 (o | 3¢y | a3 )Se—2 (01 | 501 | o) S4-2 (oo || ctscrs) Sad-2 (onnens || crars) S
+ o || o) — (e || anon ) S2—4{ouas || cros ) Si2,
3C134BC —BCrAA Ty = (o3 | 3¢1 | a)— e | 3C1 | a1 ) T52 orgena || cvsous )+ {uaers || oserr )

- <a1a1 H a1a1>T3—2(a1a3 H oqa;;)T;;.

(B1)

(B2)

(B3)

(B4)

(BS)

(BO)

(B7)

(B8)

(B9)



