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Ultrasonic Attenuation in Dirty Superconductors*
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The attenuation coeKcients of acoustic waves have been calculated for small-gap superconductors for
the case where the electron mean free path t is much smaller than the pure superconductor coherence length
(fi. The emphasis in this paper is placed on a study of longitudinal acoustic waves. It is shown that attenu-
ation in this case arises from both electromagnetic absorption and the collision drag eGect. In the transverse
case the electromagnetic absorption is negligible in the low-frequency limit

~
6 ~/ca))1. The results of the

calculation have been applied to the Abrikosov mixed state and the superconducting surface sheath. Meas-
urement of the attenuation in these regimes will determine the upper critical fields P,2 and IJ,3 as well as
the averaged amplitude of the energy gap.

I. INTRODUCTION
r 1HKRE has been considerable interest recently in.. the possible use of ultrasound as a tool to investi-
gate the nature of type-II superconductivity. In con-
trast to ordinary electromagnetic waves, which are
damped out in the skin depth region, a sound wave
penetrates into the bulk of a metallic sample. Thus, in
principle the study of ultrasonic absorption should
yield detailed information on the structure of the mixed
state.

The problem of ultrasound absorption has been
studied theoretically by several authors. Caroli and
Matricon' treated the absorption due to a single vortex
line in the field region II,~&II&&II,~. Cooper, I.ee, and
one of the authors' considered the absorption of longi-
tudinal waves in a model impurity-free type-II super-
conductor for T~T, and H near H,&. They suggested
the possibility of resonance absorption when the sound
wavelength matches the spacing between the Aux lines
of the Abrikosov' mixed state. More recently, the
attenuation of transverse waves in the dirty limit, that
is, l/$s((1, where f is the electronic mean iree path and
$s is the coherence distance in a pure superconductor,
has been discussed by Maki. 4 He concludes that
measurement of the attenuation serves to predict the
averaged amplitude of the energy-gap parameter as
well as to determine the upper critical fields, H, 2 for
the mixed state and H, 3 for the superconducting surface
sheath.

In order to discuss the feasibility of experimental
detection of the structure in the attenuation discussed
by Cooper et u/. ,

' it is important that a self-consistent
calculation of the ultrasonic attenuation be carried out
which includes the effects of impurities. In this paper
we calculate the longitudinal attenuation coefficient in
the dirty limit; a self-consistent generalization of the
model calculation applicable for all / will be presented

elsewhere. We have also calculated the transverse
attenuation coefdcient in the dirty limit and have
obtained results which agree with those obtained by
Maki. 4 We present these results here both for com-
pleteness and to clarify a point of formalism which
occurs in the calculation of transverse transport coeffi-
cients in the presence of a self-consistent electro-
magnetic field.

The assumption that l/(s((1 allows considerable

simplification in the calculation of the properties of
the superconductor. First, the important electronic
distance parameter is now f rather than (s. Since the
energy gap varies over distances of at least (l(s)'~', it
may be treated as essentially constant in integrals
involving electronic Green's functions. Second, for
magnetic 6elds of interest, ~,r&&1, and therefore the
effects of the magnetic field on electronic Green's
functions may be neglected. It is important, however,
to consider the effect of the field in causing a spatial
variation in the energy gap. Finally, as l«)s we have
Tv«1, where in the superconducting state T is a
temperature less than the transition temperature T,
and r in the electron collision time.

In the next section we give a brief review of the
general formalism of ultrasonic attenuation as devel-
oped by Tsuneto, ' Kadanoff and Falko, ' and Maki. '
In Sec. III we indicate how this formalism may be
applied to small-gap type-II super conductors. We
expand the correlation functions and attenuation co-
eKcients to second order in the energy gap, h(r), and
include the effects of impurity scattering. In the next
section we calculate the necessary correlation functions
in the dirty limit using the technique of thermal
Green's functions. Finally, in Secs. V and VI we give
the longitudinal and transverse attenuation coefFicients
in this limit. These results are applied to the Abrikosov
mixed state and the superconducting surface sheath.
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where p;.„ is the ionic mass density, zi, the sound where the density operator I (r, t) is defined in terms
velocity, and N(r, t) is the velocity field of the ions. of the Heisenberg field operators in the usual way:
Q is the power dissipated by the sound wave per unit
volume and is given by gaza(rr ~) [pa (r r ~)fa(rr ~) ]r'zr. (7)

Q= —-', Re[F I*], (2)

where F(r, t) is the force per unit volume on the ions

F,(r, t) = i&—a(h;(r, t) ). (3)

The brackets ( ) denote a statistical average and also
an average over the random placements of any im-
purities in the system. The operator h, (r, t) is defined as

h, (r, t) = (q;/~) r,,(r, t) —mj, (r, t), (4)

where the current operator j;(r, t) and the electronic
stress field operator r,;(r, t) are given by

j,(r, t) =p[(V —V'),/2im]e. (r, r), (5)

Following Tsuneto, ' the force F(r, t) is calculated most
conveniently in the reference frame 6xed to the ions.
The transition to the moving frame introduces an
effective interaction between the impressed sound
wave and the conduction electrons described by the
Hamiltonian

Hl ———~ d'r, r, 3 h, r, t .

In this expression the ion displacement field P(r, t) is
given by

Q(r, t) =Q(%, co) exp[i(% r—cot)],

and

7 „(r,&) =g[(V—V');/2im][(V V')—j/2i]s. (r, f),

where or is the frequency and q the wave vector of the
sound wave which we take from now on to be in the s
direction. The attenuation coefficients can now be cal-
culated to first order in the ion displacement field and

(6) are given by

for the longitudinal wave, and
nz, = Re(aP/mp;, v,) ([hzL, hzL])(il, co)

tx2' —Re (oP/i~p;, „v,) ([hzr, hP)) (g, &a)

for the transverse wave. Here h~~ and hq~ are

and
hzL = (q/(u) r„(r, t) —(mo)/q) zz (r, t)

hz = (q/cv) r„(r, t) —mj (r, t),

(12)

and the retarded product is defined as usual by

t

([A, B])(q, a&) = —~ Ch' d'r exp{ —i[ti (r—r') —co(t—t') ]I ([A (r, t), B(r', t') ]). (14)

The above retarded products are true electronic correlation functions and include the eGects of electron-electron
Coulomb interactions and current-current interactions. These interactions are treated in the random phase approxi-
mation, which amounts to treating the long-range electromagnetic fields generated by the sound wave in a self-

consistent manner. For a longitudinal wave, the retarded products may be written6

where the subscript zero denotes the fictitious system without electron-electron interactions. When the frequency
co((10' we have almost complete screening, that is

(4~e'/q') ([e, e])0(q, M) ))1, (16)

and the longitudinal attenuation coefFicient takes the form

cxL Re(q'/i~p;»vz) ([7'zz Tzz]) (q0, ~) (17)

Similarly, when the current-current interaction is taken into account, the attenuation in the transverse case,
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in the low-frequency limit co((10, is given by

[&[r.*,j*7)s(tI, ~)7ar = Re(q'/sa p;.„e,) ([r„,r.,7)p(tl, ce)—

This expression differs from that given in Ref. (4) by replacement of ([j„j,7)s(tl, es) by the total linear current
response function in the presence of a transverse electromagnetic field. A discussion of this point is given in the
Appendix. It should be noted that in the presence of a dc magnetic field such that or,7- &1 this simple procedure
for treating the screening in the transverse case is no longer valid for arbitrary direction of propagation of the
sound wave.

III. APPLICATION TO TYPE-II
SUPERCONDUCTORS

In this section we apply the general formalism
developed in Sec. II to calculate the attenuation in a
type-II superconductor. Using the definition of the
retarded two-particle Green's function

G y"~(r, r'; t —t')

= —ie(t —t') ([~.(r, t), ~, (r', t) 7), (19)

we rewrite the correlation functions as

([A, B7)(tl, ~)

dt' d'r' exp I
—s[tl (r—r') —a&(t —t') 71

&& V~ (r) V~(r') QG p"~(r, r'; t—t'), (20)

where V~(r) and V~(r') are the vertex functions
associated with the operators A(r, t) and B(r', t),
respectively. In Eqs. (19) and (20), ( ) indicates an
average in the fictitious system without Coulomb or
current-current interactions; the subscript zero will be
dropped from now on. Following the usual convention
we go to the temperature representation to evaluate
correlation functions of the form ([A, B7)(q, es) using
the fact that

contribution to the correlation functions ([A, B7)(tl, res)

is depicted graphically in Fig. 1.
Using the condition that the static magnetic field

varies slowly in distances of the order /, and is suffi-

ciently weak that or,r((1, we neglect the magnetic field
dependence of the normal-metal Green's functions. Of
course, we must include the effect of the field on the
energy gap, as the momentum associated with the
electron pairs is small. It should be noted that the
e6ects of the dc magnetic field should also have been
included in writing down the force density on the ions;
but under the conditions given above, this eBect is
negligible.

The inhuence of impurities is included under the
assumptions of elastic and isotropic scattering (in the
reference frame moving with the ions), and it is
assumed that no magnetic impurities are present. The
eGect of impurities on the normal-metal Green's
functions' is incorporated simply by making the
replacement

&u~o) =co+ (1/2r) (a)ji (u i) .

Following Maki, ' the energy-gap function is modified

GIIR(ZM ) GII(M ) (21)

where ~s=2m7rT(m=0, 1, 2, ~ ~ ~ ), and Grr denotes the
thermal two-particle Green's function. To obtain
Grrs'(~), we must analytically continue off the points
or=ioro in such a way that the resulting function is
analytic in the upper half or plane.

The Gor'kov7 factorization procedure is used to
expand G"(r, r'; r 7'), and the r—esulting one-particle
Green's functions are Fourier analyzed in (r r'). It-
is assumed that the energy-gap parameter is small,

a(r) /~T', «1;
consequently, the superconducting Green's functions
may be expanded to second order in the energy gap by
making use of the Gor'kov~ equations. The second-order

r L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 505 {1958)j.

(c)
FIG. 1. The second-order diagrams in the expansion of the corre-

lation functions in powers of d.

See, for example, A. A. Abrikosov, L. P. Gor'kov, and I. E.
Dzyaloshinski, methods of- QNantum Field Theory in Statistical
Physics (Prentice-Hall, Enc., Englewood ClifFs, New Jersey,
1963).

~ K. Maki, Physics 1, 21 (1964).
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in the following manner:

A(r)-+a„(r) =g„h(r),
where

))„=L1—(1/2
I

pp
I r) (1—2&mr)) . (23)

The Landau- Ginzburg eigenvalue n = 3v-vg'eIIO, where

Bo is the external magnetic field. This renormalization
includes all effects of the dc magnetic field to order //$p

We now include impurity corrections to the electro-
magnetic vertices V~. To do this we must sum the set
of ladder diagrams bridging the single vertex, or what
is equivalent, solve the integral equation'

V-(p) = Vp(p)+ 2, d'p'
I N(p —p') I'G-'(p')G- '(p' —q) V-(p'), (24)

where N(q) is the Fourier component of the scattering potential, n is the impurity density, and G„(p) is the
normal-metal Green s function. Here Vp(p) is the vertex function in the absence of impurities, p) = (2e+1)prT,
where I is an integer and pp =p) —p)p. Solving Eq. (24) under the assumptions listed above, we write the results
in the form

V~ = V~'+ V~'&-

where the impurity corrections Vz' for the longitudinal vertex functions LV„P=1 and V„,P= (PpP/m) cos'8$ are
found to be

and

where x=q1 and

V„= tan-'x/(x —tan-'x)

V...'= (pp'/m) (1/&')

(26)

(27)

For isotropic scattering, all -vertex corrections to the transverse correlation functions vanish.
In addition to impurity renormalization of the single vertex functions, V& and 6™„,we must also take into account

the series of ladder diagrams which bridge two vertices. In the graphs of Fig. 1, this corresponds to impurity lines
running both horizontally and vertically across the boxes. After solving an integral equation similar to (24), we
find that we can take into account impurity lines bridging two superconducting vertices Lwhich occur only in
Figs. 1(a) and 1(b)j simply by replacing the electron Green's function joining the two vertices by

G--'(p)- G--'(p) —(p/4 ') ( /I I). (2g)

In a similar fashion we find that impurity lines bridging an electromagnetic vertex V& and a superconducting
vertex h„can be accounted for with the replacement

Gl GO Z

V~G„P(p —q)-+ V~G.P (p —q) — —V~' (29)

if G„P(p—q) is the electron line joining the two vertices. This contribution enters in all three diagrams of Fig.1
for the longitudinal case. Again, if isotropic scattering is assumed, all impurity corrections to electromagnetic
vertices vanish for transverse waves.

We now return to the correlation functions incorporating the above remarks. We use the condition that the
energy gap A(r) varies slowly over distances of order / to remove it from the integrals. After Fourier expanding
the Green's functions and making the replacement dPP~mPpdQd& in the usual way, we find

(L4, ~j)(q, M.) =(I:~,K)~(q, ~p)+(L~, ~j).(q, M.), (3o)

where the normal-metal correlation function is

(L&, p])~(t), ~o) = ~, &Z &p)'~va'f &k&'(p)&.-'(p —t)) (31)
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and the lowest-order superconducting contribution is

(P &])s(q «) = —(~pp/~') I ~(r) I'2'ZZ[R"(~ «, q)+R' '(~, » q)+R' ' (~, «, q)], (32)

where

dQ OO

Rt'(pp, », q) =rf. ' —V~Vn d& G.'(y)G. '(y —q)G- '(y —q)G- (y —q) (33)

dQ OO

RP(~, », q) =~„' —V&V& dl G. '(y)G.'(y+q)G .'(y+q)G. '(y+q),
4x

(34)

and

dQ CO

Rs (& «q) =rfru geo '4-V&V& 4 G-P(y)G=P(y)G- '(y —q)G= '(y —q). (35)

The functions R; ', which describe the corrections due to impurity lines bridging two superconducting vertices
(for i =1, 2), are obtained from RP by making the replacement of Eq. (28); similarly, the functions R; ', arising
from the ladder series bridging an electromagnetic vertex and a superconducting vertex, are obtained from E; by
the replacement given by Eq. (29).

Since we have expanded ([A, 8]) to second order in A(r), for consistency we must also expand the attenuation
coeKcients to order

l h(r) j'. For the longitudinal wave we may write

and

~r. =~r."+~r.',

nr. = Re(q'/mp;, „v,) l [r„,r„]~ [r... n]rr'/—[n, n]~I,

(36)

(37)

g2
~1.8= Re .

ROPionVe

[r„,n]~[r.„r,.]s ' —2[r„,n]s-
ny n

[r„,n]~[n, n]s
[n, n]~

where the brackets ( )(q, «) have been dropped for
brevity. It is implicit in these equations that we

spatially average at the end of the calculation to ob-
tain the experimentally measurable coefficients. This
just amounts to replacing

~
h(r) l' by (l h(r) P). In

the next section we proceed to explicitly calculate the
correlation functions occurring in'Eqs. '(37) and (3&) .

I.O

0,8

L(P)

0.6

IV. CALCULATION OF THE CORRELATION
FUNCTIONS

The calculations proceed in a straightforward
manner. It is important to remember that, in expres-
sions such as Eq. (31), the sum over tp and the integral
over $ are only conditionally convergent. It turns out'
that the sum must be done first, for only then are the
integrals over $ rapidly convergent near the Fermi
surface. It is well known, ' however, that it is still
possible to do the integral first if we subtract from the
correlation functions terms which account for the
spurious high co and $ contribution. These high-energy
factors can be safely estimated from the normal-metal
contribution alone, and are given by

0.4 PS) S ~ —m 0 X p (39)

0.2 ([ „,n])„=X, (40)

'o 0.4 0.8 l.2 1.6 2.0 2.4
([r„,r„])„=3(Vpp'/5m,

Ftr, . 2. The function L(p) is plotted against p=a/2wT.
where E=P /3 psis rtrhe electron density.

The normal-metal correlation functions are now



ULTRASONIC ATTENUATION IN D IRT Y SUP ER CONDUCTORS

easily obtained. Integrating over $ we have

([A, B])~(q, coo) =, TQA dQ V~VgP —([A, B])„,4x' co +—iv q

but in the dirty limit &o u—=coo+7 '=r ' and consequently the a& sum is trivial.
After doing the angular integral and performing the analytical continuation, we obtain

(42)

and

([N, e])~(q, a) = (mpo/s') {i(sr[tan 'x/(-x tan——'x) ]—1},

([ ...~])~(q, ~) = (po'/~') [(i~r/x') 3], —

([.*, .*]) (0 )=(po'/3 ' )L( /')-l]

(43)

(44)

(45)

The evaluation of the superconducting contributions is conveniently divided into three steps: (1) the $ integra-
tion, that is, calculation of the R, (M, ~0, q); (2) the angular integrals; and (3) the frequency sums. The functions
R,o(co, coo, q) are found to be

and

err dQ —A+Ro= —V~Va . +~—
2()(o )

yn)' 4n 1+ixN

err dQ —A+
R2' —— —VgVg . +A

2() (u
~
yn)' 4~ 1—ixm

x'r ~~~a
R3' ——

(i (o
i +n) (i o)

i +n) 47r (1yx'u') '

1

1+ixu (1+ixu) '+

1 1

1+ix@ (1jixu) '+

(46)

(47)

(48)

where again we have made the approximation Tr«1. When we add the corrections arising from impurity lines
bridging two superc onducting vertices, "R,' ', we find that they cancel the terms (1+ixm) ' in RP and R2O. Finally,
adding R, ', we 6nd the results

and

1 dQ
R&(a), MO, q) =

2(~ co
i
+a)'4~ 1+x'u' ~+[VA VB +VA VB ]+~ [V~VB VAVB ]})

mr 1 dQ
R2((u, (up, q) = 4[VA VB +VA VB ]+A [VAVB VAVB ]}q

2(l ~
I

+n)'4m- 1+x'u'

(49)

(50)

err 1 dQ
Ra(M& Mo& q) = , , {~[Vg'VIP+V~'V~']+A [Vga —V~Va']}. (51)

(I ~
I +~) (I ~-

I
+~) 4~ 1+x'~'

After doing the angular integrals and summing over ~, we find that the correlation functions involve products of
functions of x =q1 with one of the following sums:

S,=2TP~, 1 1 2

(g + & M A Gl Q CO CE

(52)

S2——2TQA, + +
1 2

M A M A (d CK

(53)

It is possible to express S; in terms of poly 7 functions; we can then perform the analytical continuation simply
by replacing coo by i~ Further, s.ince the usual experimental conditions are such that ~/n T,((1, we expand S; to
first order in co. The results are

Sg ——0,

S2= (2/~) [i~/(2~T) ']LP V'(P+k) —4"(P+k) ]
(54)

(55)

where P' and f" are the trigamma and tetragamma functions, respectively, and p=a/2m. T.
It is now but a simple matter to combine the results of this section to obtain'the leading order superconducting

"We wish to acknowledge an informative discussion with Professor Maki'on the importance of this contribution.
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contributions to the correlation functions. We list the results below:

&[I, N])s(q, ~) = —
~

d (r) ~' (mppr/4rr) [Ss tan 'x/(x —tan 'x) ],
&[r«, e])s(q, tp) =

I a(r) I' (pp r/47r) [5's(1/g') ]
&[r * r**])s(q, tp) = —

j &(r) ~s (ppsr/4rrm) [Ss(1/3xs) ].

(56)

(57)

(58)

V. X ONGITUDINAL ATTENUATION

From Eq. (37) we find the usual Pippard" result for the normal-metal attenuation

where x=ql and

The superconducting contribution is

nsri = (Nm/p;. .s.r) [h(x) —1],

h(~) =xs tan-ix/[3(* —tan-'~)]

(59)

(60)

sq' pp'r h (x) —1
(61)

2Gopion&s 4xsz 3$

Here, terms of relative order (s,/ss) have been dropped. Substituting for the sum Ss and taking the ratio
of the attenuation in the superconducting state to the attenuation in the normal state, we obtain

nL/nl" =1—
&~

t (r) I')/2(2sT)'IP 1 (P+s) 0' (P+s) I (62)

The result of Eq. (62) is valid in the small gap region for arbitrary magnetic field. In this form, comparison
with experiment will determine the average value of the energy gap. Using Maki's' results for

&~ h(r) ~') in the
high field region, we may express the attenuation in terms of the upper critical fields. Following Maki we con-
sider two cases, Abrikosov's mixed state and the superconducting surface sheath.

(a) The mixed state Hp &H,s. For this case Maki finds the average value of
~
A(r) ~s to be

&I ~(r) I') = (eT/a) L(H.s—Hp)/(2ss'(T) —1)P]LV(P+l)] ', (63)

where P= 1.16 and o = Ne'rt, ,/m is the normal-metal dc conductivity. The parameter ~s(T) is defined in Ref. (9)
and as pointed out by Caroli et a/. "its temperature dependence is almost identical to si(T), the usual Landau-
Ginzburg parameter. Thus the attenuation can be rewritten

where
nl/nr~ 1—(4rr) ——'(e/on) [(H,s —Hp) /P (2Ks'(T) —1)][1+L(p)],

L(p) = —p(a/Bp) lnit'(p+-', ) . (65)

(67)

The above calculations show that the attenuation in the longitudinal case arises from both electromagnetic
absorption and the collision drag effect. As in the case of the transverse wave, measurement of the attenuation
coefFicient at low frequencies in the dirty limit serves to determine both the average amplitude of the energy gap
and the upper critical field H,s and/or H,s. Note added iN proof: Since this paper was submitted for publication
the longitudinal attenuation coefficient has been calculated in the dirty limit by Maki and Fulde [See K. Maki

"A. B. Pippard, Phil. Mag. 46, 1104 {1955)."C. Caroli, M. Cyrot, and P. G. DeGennes, Solid State Commun. 4, 17 (1966)."D. Saint-James andIP. G. DeGennes, Phys. Letters 7, (19631 306.

In Fig. 2, we plot L(p) for P =n/2rrT ranging between 0 and 2; in this case n= s7 t,sseH, s.
(b) Superconducting surface sheath (Hp &H,s). In this case we consider a film of thickness d) (leap)'Is in an

external field applied parallel to the surface. Mali' finds

(66)

Therefore, the attenuation coefficient in this case becomes

JI„—II,
1.18 H„i (2,'(T) —3.12)

where n was found by Saint-James and De Gennes" to be given by

0.59
Tt,rV &+ca~

3
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and P. Fulde, Solid State Commun. 5, 21 (196/) j who exploit the analogy with a thin-film superconductor in a
parallel magnetic field. Equation (62), obtained by direct calculation, agrees with their result.

VI. TRANSVERSE WAVE ATTENUATION

As mentioned in the Introduction, the attenuation in this case has been calculated previously by Maki. For
completeness, we briefly review the results here. Using Eq. (18), one finds that the normal-metal attenuation
for low frequencies co &10' is given by the familiar Pippard" result

where
n~r ——(Xm/p;, „i~,r) L (1—g(x) )/g(x) j,

g(x) = (3/2x') t (1+x') tan 'x —xj

(68)

(69)

We note that the diamagnetic contribution to the current response function exactly cancels the high-energy
factor arising from interchanging order of summation and integration.

In order to discuss the attenuation in the superconducting state it is instructive to write down the cur-
rent response function

(&/~)+&Lj*,j.l&(q, ) =(po'/3 '~) ( ) g(*)

&&{1+/h(r) ~'/2(2mT)']Lp 'P'(p+-', )+3/" (p+-', )j—Li
~
h(r) ~'/~T&o7$'(p+-', ) }. (70)

For very small energy gap or sufficiently high frequency such that
~

A(r) ~/co((1, we can consistently expand
Kq. (18) to second order in 6 as in the longitudinal case; we obtain for the ratio of the attenuation in the super-
conducting and normal states

~'/~~'=1 —
L&l ~(r) I'&/2(2~T)'j}C(x) Lp '0"(p+-') —lt" (p+-') &+(1—r(x) 7b '0'(p+-')+34 "(p+-')j}. (&1)

For low frequencies such that 6/~))1, the Meissner screening becomes very strong and the result found by Maki4
is obtained:

or/a~r=g(x) f1—
L&) A(r) (')/2(2vrT)2)Lp 'P'(p+2) —P"(p+,)7}

+L1—g(*)j&}1+PI~(r) I'/(~T)'~'3L4'(p+-') j'} '& (&2)

Finally, in the high-frequency limit, co) 10 and
~

5 ~/~((1, there is incomplete screening, and one obtains simply

O.r/~~r ——1—
L&~ A(r) ~')/2(2+T)')} p 'P'(p+ —') —P"(p+—)j. (73)

We note that in this case the normal-metal attenuation field. Then linear response theory gives
goes like 1—g(x).
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APPENDIX

The purpose of this discussion is to note a correction
to the expression of Ref. 4 when the effect of current-
current interaction on the transverse response functions
is treated. We consider the expectation value of an
arbitrary operator B(r, t) in the presence of a trans-
verse electromagnetic field described by the vector
potential A(r, t). If the operator B(r, t) has any
transverse components, then in general it may be
written in the form

B(r, t) =B,(r, t)+Bi(r, t)A(r, t)+0(A'), (A1)

where Bo(r, t) is the operator in the absence of the

where j(r, t) is defined in Eq. (5) .
The effect of the current-current interaction is

treated within the random phase approximation. The
results are essentially those listed by Maki4 except that
one must use the total linear response functions as
given by (A2) . In the problem of transverse ultrasound
attenuation, the only correction is the replacement of
the retarded product &Lj„j,)&(q, co) by the current
response function

(A3)

The constant factor in (A3) is just the diamagnetic
contribution to the response. As noted in the text this
constant term exactly cancels the high-energy factor
arising when the orders of summation and integration
are interchanged.


