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The electron solid, originally postulated by Wigner as the low-density limit of the hypothetical electron
plasma, is shown to be unstable against breakdown of uniformity in the background charge distribution
for r,)6.4, where r, is the radius of the unit sphere in Bohr radii. The eGects which arise when the back-
ground charge is lumped into homogeneous ion cores of fixed size are then considered, and it is shown that
the diGerences in the correlation energies and equilibrium densities of the alkali metals can be qualitatively
explained by this model. Since the melting "criteria" which have previously been applied to the electron
solid are independent of the question of stability, the two principal criteria are next critically reviewed, and
it is demonstrated that an improvement of the argument of de Wette leads to a predicted melting density
which corresponds to «, =27. The improved melting condition is applied to solid hydrogen at zero tempera-
ture and is shown to agree quite closely with an explicit thermodynamic calculation of the melting point for
this case. The predicted melting density is 4.5X10 g/cc.

1. INTRODUCTIOH

F RHK electron plasma is a theoretical abstraction of..the metallic solid state. It consists of a collection of
electrons in a uniform, neutralizing background of
positive charge. At zero temperature, the properties
of the plasma depend only upon the density or speci6c
volume, which is conveniently parametrized by the
dimensionless variable r, . This is defined to be the
radius of the unit sphere in Bohr radii. That is,

fair(r, ae) '=0„
where ao is the Bohr radius, and 0, is the average volume
per electron of the plasma. At high densities, the energy
of the plasma per electron is given by an expansion
of the form

8~~2.21r, s—0.916r, '+ ~ ~ ~ Ry, (2)

where the first term represents the average kinetic
energy of a noninteracting Fermi gas, and the second
term is the exchange energy, which gives the entire
electrostatic contribution in this limit. For r.((2.41,
the Coulomb correction is small compared to the
kinetic term, and the plasma behaves like a gas of
weakly interacting fermions. In this limit the plasma
is referred to as the "electron gas."

For low densities, on the other hand, the situation is
reversed, and the Coulomb forces dominate the motions
of the electrons. This fact led Wigner' to postu1ate that
the appropriate form of the ground state in the low-
density limit' should be that of a perfect lattice rather
than that of a gas. This is the so-called "electron solid. "
In this case the expansion for the ground-state energy
assumes the form

E~—1.79r, '+2.65r, st'+ ~ ~ Ry, (3)

where we have used the numerical values derived by
Carr, ~ in place of the somewhat less accurate numbers

*This work was supported in part by National Science
Foundation Grant No. GP 6174.' E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).

i W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
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which had earlier been used by Wigner. The first term
in this expansion is the Coulomb energy of a body-
centered cubic (bcc) lattice of electrons in the positive
background' and the second term represents the contri-
bution from the zero-point vibration of the electrons
about their lattice sites. The expansion (3) is evidently
self-consistent only for r,))2.19.

In order to investigate the nature of the effects due
to the higher terms in the expansion, 4 which have been
neglected in Eq. (2), Wigner devised an approximate
interpolation formula for the correlation energy, which
he used to span the interesting intermediate region of
normal metallic densities (2 &r, &6). The actual ex-
pression which Wigner used' was designed to reproduce
the leading term of the low-density expansion for
r,))1;to take on the value of —0.1 Ry, which he derived
from a variational calculation, at r, =1; and to reduce
to a constant for r.((i.When the resulting formula was
included in calculations of the binding energies of the
alkali metals, very good agreement with experiment
was achieved.

In spite of this apparent success, however, Nozieres
and Pines' have expressed the opinion that the electron
solid does not oGer a particularly illuminating guide
to the understanding of electrons in metals. A similar
comment was made by Brout and Carruthers, 7 who
pointed out that the estimate' of r, 20 for the "melting
density" of the electron solid implies that it is of little
help in devising interpolation formulas to be used at
metallic densities. In any event, the validity of a
continuous expression for the correlation energy as a
function of density is questionable, since a transition
from an electron liquid with no long-range order to

~ The particular choice of a bcc lattice is common because it
has the lowest electrostatic energy of any of the simple space
lattices.

4Collectively, all corrections beyond the Hartree-Fock ap-
proximation are termed the "correlation energy. "

D. Pines, Elementary Excitahonsin SolHs (W. A. Benjamin,
Inc. , New York, 1963), pp. 91—95.

i P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).
'R. Brout and P. Carruthers, Lectures on the Many-Electron

Problem (Interscience Publishers, Inc., New York, 1963), p. 151.
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an electron solid with complete order may be expected
to lead to a discontinuity at the transition density.

The significance of these remarks derives from the
fact that the electron solid does not represent a physi-
cally attainable state of normal matter. In Sec. 2 we
show that it is, in fact, a thermodynamically unstable
system in the limit of low densities, and we point out
that the random-phase approximation (RPA) for the
ground state is of lower energy throughout the normal
metallic range. We go on to argue that the source of
this instability is the assumption of a uniform back-
ground charge density, which we show to be untenable
for r, &6. Accordingly, in Sec. 3 we make use of a
simplified model to calculate the changes in the cor-
relation energy which are produced by replacing the
uniform background charge with a collection of discrete
ion cores. The extreme case in which the cores are
taken to be point particles has been considered by
Bellemans and DeLeener, and we therefore examine
explicitly in this paper the eGects due to cores of
finite size.

In Sec. 4 we take up the question of the pressure-
melting of the electron solid. Although this is of no
interest for the theory of metals because of the reasons
given in this paper, the two principal "melting criteria"
which have been employed in the discussion of the

electron solid are not limited by this restriction. In
this section we therefore brie6y review the melting
criteria of Lindemann and of deWette, and we dem-
onstrate a somewhat more rigorous version of the
latter argument which leads to a shghtly diBerent
estimate of the zero-temperature melting density.
Finally in Sec. 5 the charge-conjugated model of an
'ion solid" consisting of a lattice of positive ions
immersed in a uniform sea of negative electrons is
discussed as a model of the state of matter in the
degenerate core of a white dwarf star. An explicit
thermodynamic calculation of the pressure-melting
phase transition is carried out for a composition of pure
hydrogen and is compared with the result predicted by
the melting criterion of Sec. 4.

g. INSTABILITY OF THE ELECTRON SOLID

The most comprehensive study of the ground-state
energy of the electron solid which has been made to
date is that of Carr and his collaborators, ' ' who con-
sidered not only the zero-point motion, but also the
corrections to Eq. (3) due to the anharmonicity of the
potential and exchange eGects in the overlapping tails
of the electron wave functions. Their expression for the
energy per electron is

E~ 1.792r '+2.65—r 'i' —0 73r 2+ ~ ~ ~ —(4.8r, ' '—21r, '+1.16r, ' ') exp( —2.06r, U )

—(2.06r, "4—0.66r, ") exp( —1.55r,") Ry. (4)

The third term in this expansion comes from the anharmonicities in the potential, while the two exponential
terms are due to exchange. At zero temperature, the pressure of the electron solid is simply given by

E= BE/BQ= —(—4~r,2aoa) '(BE/Br, ). (5)

Thus from Eq. (4) we have the pressure density relation

P~~—0.597r, '+1.33r 'i' —0 49r '+ ~ ~ ~ —(1 65r, "i4 7.2. r, ri'+1—.6r, "i —7 Or, +0.48r, '~"). exp( —2.06r, 'i')

—(0.54r, "4+0.69r, "' 0.39r, "') exp( —1—.55r, '') Ry/Bohr volume, (6)

where one "Bohr volume" is the volume of a sphere
whose radius is equal to the Bohr radius. This equation
is plotted in Fig. 1.

Now in order for any system of particles to be stable
against collapse, it is necessary that the pressure of the
system be non-negative. For the electron solid, this is
the case only for r,(5.2. The value, r, =5.2, for which
the pressure vanishes, corresponds to the minimum of
the energy, as is evident from Eq. (5), and. is the value
of r, which would characterize the system in the absence
of external forces. There may also exist additional
metastable states of the system, however, for which
the pressure is negative; i.e., the system may be under

tension rather than compression. These states are
characterized by the further inequality

BP/BQ, (0; (7)

where Eq. (7) fails, the system is no longer capable of
any physical realization. For the electron solid this
condition is satisfied only for r,(6.4. For all r,&6.4,
the system is completely unstable, indicating the total
breakdown of one of the fundamental postulates upon
which Eq. (4) is based.

For r,(6.4, the situation for the electron solid is not
improved. Although the solid now satisfies the stability
condition (7), it is not the state of lowest energy in

8 A. Bellemans and M. De Leener, Phys. Rev. Letters 6, 603
(1961).

'W. J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein,
Phys. Rev. 124, 747 (1961).
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FIG. 1. Pressure of
the electron solid as
a function of the
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P(r) = —(e/r) exp( —sr), (8)

where the screening parameter in inverse Bohr units is

.=—~.56' -U2. (9)

At the boundary of the unit sphere, therefore, the
exponential factor in Eq. (8) becomes

exp (—1.56r, Us) (10)

At very high densities this factor is essentially unity,
showing that the inhuence of a given electron is felt
far beyond the boundaries of its individual cell. The
screening is weak in this limit because the electrons are
not localized, but are spread out throughout the entire
volume of the plasma, so that the average charge
density in which a given electron moves is vanishingly

IJ. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957)."D. Pines, Phys. Rev. 92, 626 (1953).
~ R. Brout and P. Carruthers, Lectures on the Many-Electron

Problem (Interscience Publishers, Inc. , New York, 1963), p. 101.

this range of densities. In Fig. 2 we plot the total
energy of the electron solid as given by Eq. (4) (dotted
curve), together with the results of the calculations of
Hubbard' and Pines" (dashed curve) in the randorn-
phase approximation (RPA). The RPA has equally as
much theoretical justification as the electron solid in
this intermediate density regime; Hubbard and Pines
have estimated their errors as being no worse than 10%
of the correlation energy for r, &6, and according to
Carr' the uncertainty in Eq. (4) is of the order of 10 /o
throughout most of the metallic range. Clearly, the
RPA calculation leads to a state of lower energy than
the electron solid throughout the range of metallic
densities, and this both justifies the applications of
RPA to real metals and supports our contention that
the electron solid does not correspond to any attainable
state of matter.

The nature of the instability of the electron solid
can best be understood physically by considering the
eGects of screening within the plasma. At high densities,
the self-consistent potential of an electron is given
approximately by the Thomas-Fermi screening for-
mula"

3. THE EFFECT OF DISCRETE ION CORES

As a first approximation to the inhuence of the ion
cores upon the correlation energy, we consider the
changes produced in the electron gas by the replace-
ment of the uniform positive background charge with
a collection of uniformly charged positive spheres.
Each sphere is assumed to contain a total charge +e
within a fixed radius 8 cp where a,&r„and the average
number of spheres per unit volume is taken equal to
the average number of electrons in order to maintain
over-all charge neutrality. Since our aim is to re-
calculate the correlation energy at densities appropriate
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FIG. 2. Total energy
of the electron plasma
in the solid-state and
random-phase approxi-
mations.

small. In fact, as we have pointed out before, the only
electrostatic contribution at these densities comes from
the interaction with the "exchange hole, "which is the
region about a given electron in which there is a
deficiency of electrons of parallel spin, due to the
action of the Pauli principle.

At low densities, on the other hand, more and more
of the charge of a given electron is cancelled by the
positive background charge in its own inimediate
neighborhood. Thus, although the total electrostatic
energy is larger than the kinetic energy in this limit,
it is due almost entirely to the interaction of each
electron with the positive charge in its own unit cell.
The electrons thus become increasingly highly localized,
and the binding energy of each electron to its own
unit cell increases at the expense of the cohesive forces
between the cells. According to Fig. 1, the limit is
reached for the electron solid at r, =6.4, at which point
98% of the charge is screened by the positive back-
ground within a single cell.

Because of this decrease in the cohesion of the electron
plasma, an increase in the tension beyond the limit
of r, 6 will cause the system to break apart into
separate, neutral pieces. The assumption of uniformity
of the neutralizing background charge is therefore no
longer tenable beyond this point. The failure of this
approximation thus demonstrates the importance of
the structure of the positive charge distribution in real
metals. For this reason we turn in the following section
to the study of a model in which the discrete nature
of the positive ion cores is explicitly taken into account,
and we investigate in particular the change in the cor-
relation energy which is produced by the simple
structure assumed.
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=+2r '+r, 'r' 3r. ', —

=0)

a,(r(r,
r&r„

where p is in units of Rydbergs per unit positive charge,
and all of the radii are in Bohr units. The total Coulomb
energy per particle E, is then obtained by integrating
this potential over the distribution of positive and
negative charge within the cell:

E =-:a 'L1—-'(a/r )+-'(a/r )'I Ry (12)

The first term on the right-hand side of this equation
represents the self-energy of the positive charge
distribution, which must be subtracted off and replaced
by the (fixed) value of the internal energy of the ion
core in an "exact" calculation. The total Hartree-Fock
energy per electron is then given by the sum of the
remaining terms in Eq. (12) together with the Hartree-
Fock energy of the electron gas, as given by Eq. (2).

Let us now consider the energy arising from cor-
relations and fluctuations produced within the distribu-
tion of electrons by the potential (11).In the limit of
extremely high densities this change in the electron
density may be treated as a perturbation, and we shall
therefore calculate the resulting changes in the kinetic

to the metallic solid state, we further suppose that the
ion cores are fixed at the sites of a perfect lattice, and
we consider the effects arising from the change in the
positive charge distribution within a given unit cell.
Finally, we shall replace the unit cell by the equivalent
signer-Seitz sphere, in the usual way.

The electrostatic potential function for the given
distribution of positive and negative charge can be
easily shown to have the form

g(r) = —(a, ' r. ')r—-'+3(a, ' r, ') —r&a.

oE,=—2&&-', P(r) 6n(r) d'r Ry, (15)

where the factor of 2 is necessary to take account of the
interaction of the first-order difference in the potential
function with the unperturbed charge distribution.
Substitution of Eqs. (11), (13), and (14) into Eq.
(15) then gives for the resulting Coulomb perturbation

and Coulomb energies by means of the linearized
Thomas-Fermi approximation. ' Since we are interested
in this calculation for application to the alkali metals,
with fairly large values of Z, there actually are many
electrons present within a volume of radius a„so that
this approximation can be used. According to this
method, the local change in the electron density is
related to the potential energy and to the shift in the
Fermi level by the equation

8N(r)/ts s I (bE&/E&) LV(r)/—Er jI. (13)

Here rI, is the uniform approximation to the electron
density, E& is the Fermi energy, and V(r) is the
potential energy, which is equal to —p(r) in Rydbergs.
Since the volume integral of the density fluctuation
be(r) taken over the unit cell must vanish, we obtain
from Eqs. (11) and (13) the result

BEr ——,'r,—'(1———(a,/r, )') Ry . (14)

This decrease in the Fermi energy results from the fact
that the introduction of the attractive potential (11)
makes available more energy states within the unit
cell than were present without the potential, while on
the other hand the total number of particles remains
unchanged.

Let us now consider the change in the Coulomb
energy produced by the perturbation (13). In Bohr
units this is evidently given by

9 4 )'2/&

6E,= sEp ' (6Er)' ri V'(r) d'r—
350 9~)

&s a)' (a, '
144—360 —+252 —

I

—361 — Ry.
r8 r, )

(16)

Although this expression contains terms involving powers of r, ' greater than two, which would appear to dominate
in the high-density limit, the assumption that the ion cores have fixed radius is invalid in this limit, and the ap-
proximation may therefore be used only for r,& a, .

The perturbation in the kinetic energy may be calculated by first noticing that the average kinetic energy per
particle at the point r is given by

Er(r) =-,st(r) =zest E&+oE& V(r)]. — (17)

Since the number of particles in the volume element d'r at r is e(r) d'r, the total change in the kinetic energy
due to the density fIuctuation is therefore

"oEr= —(9/10) E& '(SEE)'—I V'(r) d'r =——-ss8E, . (18)

Thus that part of the correlation energy which is due to the electron density fluctuations produced by the in-
homogeneties in the positive charge distribution is approximately given by

6E,+6E&= —0.28L1.44—3.60 (a,/r, ) +2.52 (a,/r, ) '—0.36(a./r, ) '] Ry.

» E. E. Salpeter, Astrophys. J. 1M, 669 (1961).

(19)
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In addition to these terms, there is also a correction
to the correlation energy from the perturbation in the
exchange energy caused by the introduction of the
positive ion core. This correction should be small, how-
ever, for the following reason. As we have seen, the
electrons become increasingly localized each to its own
particular unit cell throughout the range of metallic
densities. Because of exclusion, however, each electron
creates around itself an "exchange hole, " within which
other electrons of parallel spin are unlikely to be found.
Since the radius of this excluded volume is of the
order of r, in Bohr units, "it follows that the exchange
energy will be relatively insensitive to the actual
structure of the positive charge distribution within the
unit cell, and we shall therefore neglect this correction.
It must be borne in mind, however, that some quantities
may be especially sensitive to the actual form of the
correlation energy, and the exchange correction can
therefore lead to sizeable uncertainties in such cases.

Finally, Eq. (19) must be augmented by the energy
contribution due to the inherent correlation in the
electron motions produced by the exchange forces
already present in a homogeneous electron gas. To the
accuracy in which we are presently interested, this
effect is unchanged by the replacement of the back-
ground with the nonuniform distribution due to the
ion cores, and we may therefore use the result of Gell-
Mann and Brueckner" for the uniform case:

E,», =0.0622 lnr, —0.096+ ~ ~ ~ Ry. (20)

'4 R. Brout and P. Carruthers, Lectures on the Many-Electron
Problem (Interscience Publishers, Inc., New York, 1963), p. 97.

"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

'6 C. Kittel, Introduction to Solid State Physics (John K'iley R
Sons, Inc., New York, 1953), p. 81.

The total correlation energy for the system of electrons
and finite ion cores is the sum of Eqs. (19) and (20).

In Fig. 3 we plot the correlation energy in the region
of metallic densities as given by the approximation
derived in this section (solid curves) for values of
u, chosen to correspond to the ionic radii" of sodium
(a,=1.9), potassium (a, =2.5), and rubidium (a.=2.8).
Also shown are the approximations provided by Eq.

TABLE I. Equilibrium values of r, .

Metal o, (exp) r, (exp) r„( dmelo)

Ll
Na
K
Rb
Cs

1.3
1.9
2.5
2.8
3.2

3.2
4.0
4.9
5.1
5.6

2, 6
2.7
2.9
3.2

3.5

"D. Pines and P. Nozieres, The Theory of Qreoragm Lirfuids
(W. A. Benjamin, Inc. , New York, 1966), Vol. I, p. 330.

"Reference 17, pp. 334, 335.

(20) alone (dotted curve) and by the RPA calculations
of Hubbard' and of Pines" (dashed curve) . The RPA
result may be given as"

E,», "——+0.0311nr,—0.115 Ry. (21)

The direct experimental values' for the alkali metals
are indicated as open circles. YVhen r, decreases to the
radius of the uniform ion core, the simple model con-
sidered in this section becomes equivalent to the uniform
background model, and the extra correlations produced
by the core must disappear. The vertical bars in the
figure mark these limits for each of the simple core
models.

As is evident from the figure, the extra correlation
energy due to the perturbations in the electron density
produced by the discrete ion cores provides a reasonably
good account of the actual correlation energy of the
heavier alkali metals. The agreement is not so good
for sodium, and is quite bad for lithium, however, which
probably reQects the breakdown of the Thomas-Fermi
approximation for small values of Z. Against this, one
must measure the success of the RPA, which provides
good approximations for the correlation energies of all
the alkali Inetals, but at the expense of an explanation
for the observed differences between the individual
elements. The latter effect on the other hand, is
qualitatively well accounted for by the discrete core
model. A comparison of the two sets of results, with
special attention to the deficiencies of each calculation,
suggests that the difhculties can probably be resolved
by considering the higher-order effects of screening
and exchange, which are included in the RPA calcula-
tion but absent in the discrete core model of this
section.

A second prediction of the discrete core model which
does not exist for the homogeneous case, is the de-
pendence of the equilibrium radius r. at zero pressure
upon the radius a, of the ion core. In Table I we compare
the calculated values of r„which were obtained for
values of a, equal to the known ionic radii of the alkali
metals, with the measured values of the equilibrium
r, for each case. In all cases the calculated value of
the equilibrium r, is of the correct order of magnitude,
although it is consistently smaller than the experimental
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r, =0.4054W4. (23)

If one makes the assumption that the value of 8 for

"D.Pines, Elementary Excitationsin Solmls (W. A. Benjamin,
Inc. , New York, 1963), p. 34.

"R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math.
Phys. 1, 395 (1960).

result. The systematic variation with u„however,
is in each case in the right direction. Thus the two
principal results of the discrete core model provide an
indication of the importance of the structure of the
positive charge distribution in the metallic density
regime. A careful calculation, in which the structure of
the charge distribution within the ion core is explicitly
taken into account along with the screening and ex-
change corrections, should therefore provide a very
good account of both the correlation energy and the
equilibrium density of a typical alkali metal.

4. MELTING CRITERIA FOR THE
ELECTRON SOLID

In spite of the fact that the electron solid is a theo-
retical abstraction which cannot be realized in nature,
it is nevertheless of some interest to study the pressure-
melting phase transition which would occur if it were
a stable system. One reason for this interest lies in the
application to solid hydrogen which is made in the
following section. Because this is a physically realistic
problem, we therefore undertake in this section to carry
out a critical review of the two principal melting criteria
which have been applied to the electron solid.

One of the first estimates of the melting density of
the electron solid was that made by Nozieres and Pines,
who made use of the semiempirical Lindemann melting-
point formula" for the alkali metals. This relation is
based upon the not unreasonable assumption that a
solid melts when the rms vibration amplitude of the
constituent particles reaches some fraction 8 of the
radius of the unit sphere. The parameter 8 is not
provided by theory, but must be obtained from experi-
mental determinations of the melting point. The
success of the theory lies in the fact that among the
metals of a given class, b is in fact almost constant
from one metal to another. For the alkali metals, the
value

(22)

predicts the correct thermal melting points.
In the case of the electron solid, the rms vibration

amplitude is determined by the zero-point motions
rather than the thermal motions of the electrons. Since
the normal mode frequencies have been computed for
this case, however, the mean vibration amplitude as a
function of density can be obtained in a straightforward
way by averaging over the individual modes. This has
been done by Coldwell-Horsfall and Maradudin, 20

who find the relation between the parameter 8 and the
value of r, at the melting point to be

5E 0.2/r, Ry. (24)

Finally, de Wette assumed that the energy of the
bottom of the band could be approximated by re-

placing the interstitial sites with a linear array of
parabolic wells, for which the band structure had
already been calculated. In this way he obtained the
result r, 47 for the upper limit on the density at which
the energy of a particle in the central Wigner-Seitz
sphere first exceeds the energy at the bottom of the
band of interstitial levels.

As it stands, this argument is oversimplified, and
does not resolve the uncertainty in the melting point. In
particular, the approximation of treating the level in
the Wigner sphere as discrete is incorrect, since it will

be broadened by precisely the same sort of effects as
are responsible for the broadening of the interstitial
levels. Thus, not all of the particles in the central cells
can escape to interstitial positions even when the
energy of the original zero-point, level exceeds the
energy of the bottom of the interstitial band. In fact,
by making use of the Thomas-Fermi statistical mode1

"F.W. de Wette, Phys. Rev. 135, A287 (1964).

the pressure-melting of the electron solid is the same
as the value of 8 for the temperature-melting of the
alkali metals, the predicted melting density from Eqs.
(22) aud (23) becomes r,~104. This value for r, is
about five times the lower limit of r,~20 derived by
Xozieres and Pines on the basis of a simplified model
for the zero-point vibrations. On the other hand, as
Coldwell-Horsfall and Maradudin pointed out, the
true problem is a reliable estimate for 6, since an
increase of only a factor of 2 to 8 =—,'leads to an
estimated melting density which corresponds to r,~6.5.

This large uncertainty in the melting point predicted
by the Lindemann formula led de Wette" to re-
examine the problem. He argued that the lattice
structure cannot persist when the radius of the unit
cell becomes too small to contain any bound states,
and by considering two extreme assumptions for the
shape of the potential within a given cell, he was
able to show that the value of r, at the melting point
should lie between the limits r, =6.3 and r, =97. Since
this represented no improvement over the uncertainty
in the Lindemann prediction, he then went on to
consider a more detailed estimate for this lower limit.
As he correctly pointed out, at sufficiently high densities,
the electrons can begin to escape from their stable
lattice positions into nearby interstitial sites. Because
of the accessibility of many interstial positions there
is a band of energies available to the electrons at these
sites. The bottom of this band lies above the bottom
of the central Wigner cell by an energy difference AE,
which is the energy required for the formation of an
interstitial-vacancy pair. On the basis of a simple
model, de Wette estimated this energy to be of the
order of
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FIG. 4. Schematic dis-
tribution of electrons in
the central and interstitial
cells. EJ is the Fermi
energy and h, E is the acti-
vation energy given by
Eq. (24).

iV; =,' $r,»'(E,, SZ) j', — Ep&AE,

Ep( AZ (26)

where we have assumed that the potential in both the
central cell and in the interstitial sites may be repre-
sented by a harmonic-oscillator potential of the form

V(r) =r. 'r' Ry. (27)

This potential represents an isotropic oscillator with
frequency equal to the plasma frequency divided by
the square root of three. The Fermi energy is then
determined by the condition

Ep+ +1V;=1, (28)

where the sum runs over all of the appropriate inter-
stitial sites. In a body-centered cubic lattice, the
interstitial sites lie either in the center of a cube face
or the center of a cube edge. For a given lattice site,
there are 24 nearest stable face sites and 24 nearest
stable edge sites which must each be shared with 8
other lattice points as nearest stable interstitial posi-
tions for the latter sites. If only these nearest interstitial
positions are considered, therefore, there are —,'&48=6
interstitial sites which must be included in the sum in
Eq. (28).

An upper limit to the stability of the lattice on this
version of the de bette model is therefore obtained
when Pdt;= ~~, i.e., when there is an equal probability
of 6nding an electron in an interstitial position or at a
lattice site. This condition leads to the value r,~~27 for
the melting point, instead of the value of r,~47 cal-
culated by de Wette. This value is still uncertain by
perhaps a factor of 2, however, because of the un-

certainty in the precise numerical factor which should
be used for the number of interstitial sites per lattice
site in Eq. (28), and also because of the uncertainties
in the potential function and in the value of AE. The
corrections for each of these effects should only be of
the order of 20—50%, since the calculation is not especi-
ally sensitive to any of the factors, and within the limita-
tions of the assumption that g;X;~-,' at the melting
point, the result r, 27 should represent an improve-
ment over earlier estimates. Within this context, we

may also note that when the melting criterion is
relaxed to g;X;~x' the result only changes to r, 65;

(see Fig. 4) one can estimate that the fraction of ions
in the central cells is given by

1Vp
——(1/24) (r,"Er)' (25)

and that the fraction in each interstitial position is

i.e., if melting occurs when only one-fourth of the
particles instead of one-half have escaped to stable
interstitial sites, the value of the parameter r, at the
melting density is increased only a little more than a
factor of 2.

—e~+Ze,

m,~AMp,

ap~*=—apm, /AMpZ',

Ry~E*=Ry A MpZ'/me—, (29)

where Z is the atomic number of an ion, A is the cor-
responding atomic mass, and Mp ——1.66X10 "

g is
the atomic mass unit. Thus, if lengths are expressed in
units of r* and energies in units of E*, all of the cal-
culations of the ground-state energy which have been
done for the electron plasma carry over into the ion
case merely by the replacement of r, with the cor-
responding dimensionless parameter for the ion plasma,
which we shall call R, . By analogy with the electron
case, E, is defined by

-s'~(Z, r*)p=n, , (30)

where 0; is the volume per ion of the plasma, and the
two parameters r, and E, are related according to

~p AZ»3 AZ7/3
(31)

' S. Chandrasckhar, Stellar Structure (Dover Publications,
Inc. , New York, 1957), Chaps. X, XI."E.E. Salpeter, Australian J. Phys. 7, 373 (1954).

5. PRESSURE-MELTING OF SOLID HYDROGEN

In the interior of a white dwarf star, the density is
sufficiently great so that the ions are completely
pressure ionized. Furthermore, at these densities
(p~10Pg/cc; r,~0.02) the Coulomb interactions be-
tween the electrons may be neglected, so that the
electrons may be considered to comprise a noninter-
acting Fermi gas. These facts have been known for a
long time. "More recently, Salpeter" has pointed out
that under these conditions the electron density must
be uniform to a high degree of approximation, so that
the plasma in the degenerate core of a white dwarf is
in actual fact a charge- (and mass-) interchanged
version of the hypothetical electron plasma. There is
an important distinction between these two cases, how-

ever. In the stellar plasma, the main contribution to
the pressure is provided by the degenerate electrons,
and this pressure is entirely sufficient to stabilize the
plasma at all densities of astrophysical interest. The
neutralizing background charge thus plays a central
role here, in contrast to the passive inQuence of the
positive charge in the hypothetical electron plasma.

Under a change from negative electrons to positive
ions, the physical parameters transform according to
the relations
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Even for hydrogen at a density characterized by E,=10,
the electron gas is already quite relativistic, " so that
the general, semirelativistic expression for the kinetic
energy of the electrons, must be used. This is,"2'
per sOB~

E=Zm, c'L((1+x') '~' —1)—(Sx') '(2x' —3) (1+x') '"
—(3/Sx') sinh '(x) j (32)

where the "relativity parameter" x depends upon the
density according to

x = (~7r) '~'(n/r, ) =0.0140/r, =25.5 (AZ7~s/R, ) . (33)

The total energy of the ion plasma is then given by
the sum of Eqs. (4) and (32), or Eqs. (3), (21), and
(32), depending upon the density regime considered,
the former corresponding to the total energy of the
solid and the latter to the total energy of the 1iquid in
the random-phase approximation.

Actually, Eqs. (2), (4), and (21) are based upon
the assumption that the particles are fermions of spin
one-half, so that the formulas derived in this section
really pertain only to a pure hydrogen plasma. In order
to extend these results rigorously to the more interesting
cases of He' and C", one would have to carry out
parallel calculations for a charged boson gas, and this
has not yet been done. Ke shall continue to carry
along the parameters A and Z explicitly, however,
since some of the results do not depend strongly upon
the statistics of the ions.

As is evident from our previous discussion, the range
of densities characteristic of the white dwarfs is
essentially an intermediate density regime, which may
be compared Lin the transformed variables of Eqs.
(29) and (30)j to the range of metallic densities in a
normal solid. For the "low" densities given by
R.(&1(p(&3X10'A'Z' g/cc), the argument of Wigner'
for the existence of a solid phase is applicable to the
ion plasma. The ions in the interior of a white dwarf
at zero temperature and suffj.ciently low density must
therefore be localized about the equilibrium sites of a
perfect lattice. " As the pressure is increased, the ion
lattice must at some point undergo pressure-melting to
a degenerate quantum liquid, and on the basis of
arguments presented in the previous section, we would

expect this to occur for

R,~27, or p~~1.5X10 A Z g/cc, (34)

with an uncertainty in the density of about an order
of magnitude.

In the case of the proton plasma, for which the
ground. -state energy is accurately known, however, it
is not necessary to rely upon this rough estimate. In
this case, the true melting density can be calculated
directly from the thermodynamic requirement that
the pressure, temperature, and chemical potential of

"The Fermi energy of the electrons exceeds the rest-mass
energy for r, &7.7)&10 ', corresponding to p&3&10'A4z' g/cc.

the liquid and solid phases remain constant during the
transition. The melting point calculated in this way
will still be somewhat uncertain, owing principally to
the uncertainty in the correlation energy. Since this
has been estimated" to be no more than 10'Po through-
out the range 2 &E, &6, the melting point calculated
in this way should represent an improvement over the
estimates predicted by the melting criteria of Sec. 4.

The pressure and chemical potential can be derived
for each of the phases by means of the thermodynamic
definitions (5) and. (35), respectively, where the
chemical potential at zero temperature is given by

p= E+I'Q;. (35)

The equality of the I"s and p, 's gives two equations
which can be solved for the densities of the solid and
liquid phases. In the present case, however, the extreme
dominance of the degenerate electrons gives rise to a
large change in both I' and p unless the density change
is very small. For this reason the equations can be
linearized in the density difference, and the resulting
linearized equations can then be solved quite simply.
%hen this is done the melting density of the proton
solid is found to be given by

E,~22~4,

and the density discontinuity by

(R;"—R,"o)/R;5. 7 X10-',

7.5X10'A 'Z ',

(36)

A=i
A) 1. (37)

Equation (37) clearly confirms the infinitesimal change
in the density during pressure melting~

It is very gratifying to note that the melting density
calculated by this thermodynamic method agrees
exactly with the estimate obtained in Sec. 4, to within

the uncertainty in the calculations. This agreement is
much better than has previously been achieved, and it
gives an independent indication of the reliability of
the two results.

Finally, we note that the melting density, p~4.5X
10' g/cc, which we have found for the hydrogen plasma
is appreciably greater than the density of 2X10' grn/cc
at which "pycnonuclear" reactions" wi11 rapidly deplete
the protons. Because of this, if a cold white dwarf
could be constructed of pure hydrogen, it would remain
crystalline at all densities which are low enough so that
nuclear reactions are unimportant.

"Calculations of the pycnonuclear rates for hydrogen have
been made by A. G. W. Cameron, Astrophys. J. 130, 916 (1959);
R. A. Wolf, Phys. Rev. 13'7, 81634 (1965); and the author.
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