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pure Abrikosov mixed state (having no surface sheath)
is energetically less favorable in these cylinders than
the lowest energy of a new state (called the giant-vortex
state) which is very similar to a superconducting sheath.
In this case, they predict only two critical fields H.
and B,3, which is consistent with the data of Fig. 1.
The magnetic properties of this predicted state are
hysteretic, and large field trapping should be an in-
trinsic characteristic. However, trapped fields presently
observed (at zero applied field) are about 50% larger
than predicted for the cylinders.

In conclusion, we have presented experimental evi-
dence that intrinsic size effects occur in type-II (s 1)

superconducting films as thick as sixteen coherence
lengths, the magnetic properties of such Alms difkring
appreciably from bulk behavior. Some aspects of recent
theoretical predictions on thin superconducting cyliners
appear to be consistent with the present experimental
results.

The authors acknowledge fruitful discussions with
T. G. Berlincourt, A. C. Thorsen, R. R. Hake, and
L. J. Barnes. They also wish to thank W. M. Robertson
for film-thickness measurements, K. R. Gertner for
his assistance in data acquisition and sample prepara-
tion, R. R. Hargrove for the preparation of some of the
films, and J. Savage for material preparation.
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This paper reports the results of an experimental and phenomenological investigation of the static and
dynamic behavior of weakly connected superconducting rings. The configuration is essentially a macroscopic
superconducting ring of inductance L incorporating a point contact as a weak link which determines the
critical supercurrent in the ring, i,. A phenomenological model for the stationary quantum states of the
system as a function of an applied field is developed. The dynamic behavior is obtained directly from the
time dependence of the applied fields. Experiments demonstrating both the stationary and the time-de-
pendent magnetic behavior are described. The stationary behavior was obtained with a magnetometer
incorporating a weakly connected ring as a sensor to measure the Aux through the ring under test. The ex-
perimental results confirm the phenomenological model if the critical current i, is greater than 40/2L(1+y),
where Co=h/2e is the tiux quantum and v is a material and geometric parameter which is usually small
compared to unity. In the regime Li,)CD/2(1+p), the quantum states are discrete, and the transitions
between states are well defined and irreversible. If the critical current is not too large, the transitions gen-
erally occur only between adjacent states; that is, Ah=&1. At large critical current, multiple quantum
jumps are observed. On the other hand, if L~;(Cs/2(1+y), the quantum states merge into one another
continuously and reversibly. In this case the magnetic behavior in the neighborhood of the half-quantum
points is related to the depairing or gapless regime in superconductivity. Measurements of the ac properties
of the weakly connected ring at 30 MHz are interpreted directly in terms of the static properties under the
inAuence of a time-varying applied field. In fact, no qualitative corrections to the theory are expected up to
frequencies of the order of the superconducting energy gap.

I. INTRODUCTION

t THIS paper reports the results of an experimental.and phenornenological study of weakly connected
superconducting rings. The system under study is a
macroscopic superconducting ring incorporating one
weak link which closes the circuit. We present a phe-
nomenological model which describes the electromag-
netic properties of this ring as a function of an applied
external Geld. The model is first presented as a linear
theory and later we show the nonlinearities which
must be introduced to be in agreement with the data.
We present data showing the electromagnetic behavior
of the ring as a function of applied field including a
measurement of the magnetic Aux or magnetic moment

in the ring and direct observations of the transitions
which the system will undergo.

In his phenomenological theory of superconductivity,
London' first proposed that the Quxoid was a constant
of the motion for a superconductor. He also proposed
that the constants which the fluxoid would assume
might be quantized in units of h/e. This ultimately led
to the discovery in 1961 of the Aux quantum by Doll
and Nabauer' and by Deaver and Fairbank, ' with the
one modification that the flux quantum was h/2e

' F. London, SNperguids (John Wiley L Sons, Inc. , New York,
1950),Vol. 1.

2 R. Doll and M. Nibauer, Phys. Rev. Letters 7, 51 (1961).'B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters '7,
43 (1961).
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FIG. 1. Topology of a weakly connected superconducting ring.
The inductance of the ring is L and the weak link has a length t,
cross section cr, and maximum supercurrent i,.

rather than Jt/e as proposed by London. This experi-
mental discovery gave strong support to the micro-
scopic theory of Bardeen, Cooper, and Shrieffer in
which the fundamental particle is believed to be a pair
of electrons, a Cooper pair, with mass 2m and charge 2e.

These original experiments' ' showed only that if a
superconducting cylinder with a radius of the order of
microns was cooled below the transition temperature in
an arbitrary magnetic field, the enclosed Qux would be
some integral multiple of te/2e. The experiments of
Parks and Little4 and of Meyers and Little~ on similar-
dimension superconducting cylinders showed that the
resistance of such cylinders was a periodic function of
the magnetic field at the transition temperature. The
period of this resistivity was again Jt/2e.

The concept of a weak link, as we shall use it in this
paper, stems historically from the theoretical discovery
by Josephson' ' that two superconductors separated
by a thin enough tunneling barrier would have co-
herent phases in the superconducting wave functions
and therefore a supercurrent could be made to Qow

from one superconductor to the other through the
tunneling barrier. This prediction was shortly verified

by Anderson and Rowell. ' Rowell" then showed ex-
perimentally that Josephson's prediction led to a char-
acteristic maximum tunneling current as a function of
magnetic field which was analogous to a Fraunhofer
diffraction pattern. A second prediction of Josephson
was that if a dc voltage existed across a tunneling
junction, there would be an ac supercurrent Qowing in
the absence of any dc supercurrent. This effect was

' R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964).
'L. Meyers and W. A. Little, Phys. Rev. Letters 11, 156

(1963}.' B. D. Josephson, Phys. Letters 1, 251 (1962).' B. D. Josephson, Rev. Mod. Phys. 36, 216 (1964).
8 P. W. Anderson, Lectures on the Many-Body Problem, edited

by E. R. Caianiello (Academic Press Inc. , New York, 1964),
Vol. 2.' B. D. Josephson, Advan. Phys. 14, 419 (1965)."P. %. Anderson and J. M. Rowell, Phys. Rev. Letters 10,
230 (1963)."J.M. Rowell, Phys. Rev. Letters 11, 200 (1963).

erst veriled indirectly by Shapiro" who noted a change
in the tunneling characteristics of a Josephson tunnel-
ing junction when microwave radiation was allowed to
fall upon the junction. These earliest Josephson
junction experiments were performed on single junc-
tions and, therefore, on what would apparently be
singly connected materials. In this sense there is no
line integral which one can take completely in the
superconducting material which enclosed a nonsuper-
conducting area.

The first experiments using Josephson junctions in a
multiply connected superconducting system were re-
ported by Jaklevic, Lambe, Silver, and Mercereauts'4
using two Josephson junctions in parallel in an other-
wise superconducting circuit. These experiments showed
that the maximum supercurrent for such a junction
pair was periodic with the external magnetic field;
the period was equal to the flux quantum h/2e for the
enclosed circuit. Simultaneously, Lambe, Silver, Mer-
cereau, and Jaklevic" showed that the microwave
impedance of a superconducting thin film ring incor-
porating two narrow bridges was periodic with the
same Qux quantum over a very large range in external
magnetic field. Although this system was composed of
continuous metallic film, the experimental results could
be qualitatively interpreted by using the theory already
proposed by Josephson, ' ' and treating the metallic
bridges as Josephson junctions. Similarly, Zimmerman
and Silver" showed that a superconducting ring which
contained two weak links or point contacts exhibited a
periodic behavior as a function of the external mag-
netic field, the periodicity again being in units of
Jt/2e for the flux enclosed within the ring.

The measurable macroscopic variables of a super-
conducting ring are essentially the enclosed magnetic
Qux, the circulating current, which is linearly related
to the magnetic moment of the ring, and, for rings with
two or more links or junctions, the total supercurrent
which can pass through the two halves of the ring in
parallel. In the above experiments on two Josephson
junctions, "' or two point contacts, "'~ the quantity
measured was the total external supercurrent which
could pass through the two links in parallel. In terms of
the internal coordinates, i.e., the magnetic Qux and
circulating current, these measurements always showed

"S.Shapiro, Phys. Rev. Letters 11, 280 (1963); S. Shapiro,
A. R. Janus, and S. Holly, Rev. Mod. Phys. 36, 223 (1964)."R.C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,
Phys. Rev. Letters 12, 159 (1964); 12, 274 (1964); in Proceed
ings of the Ninth International Conference on Lore Tentperatnre-
Physics, Columbus, Ohio, 1964, edited by J. G. Daunt, D. V.
Edwards, F. J. Milford, and M. Yaqub (Plenum Press, Inc. ,
New York, 1965), p. 446.

'4 R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver,
Phys. Rev. 140, A1628 (1965)."J.Lambe, A. H. Silver, J. E. Mercereau, and R. C. Jaklevic,
Phys. Letters 11, 16 (1964)."J.E. Zimmerman and A. H. Silver, Phys. Letters 10, 47
(1964).

~7 J. E. Zimmerman and A. H. Silver, Phys. Rev. 141, 367
(1966).
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the boundary between the normal and superconducting
regions of the link in a phase-space defined by the Qux
and circulating current as a function of magnetic field.
In this paper we are concerned with superconducting
rings containing one weak link. The methods of the
previous experiments are not applicable in this situ-
ation. We now require direct measurements of the
enclosed magnetic Qux and the time rate of change of
the magnetic Qux as the external field or externally
applied Qux is varied. In accomplishing this we are
able to make measurements completely within the
superconducting domain of the ring and are not limited
merely to this phase boundary.

We will show that a comparison of the data with our
phenomenological model allows us to differentiate
between various types of weak links, the Josephson
tunneling junction being one specific type. Further-
more, by utilizing the quantization properties of the
ring, the experiments provide a method of studying the
detailed properties of these weak links. The remainder
of these macroscopic rings merely serve to provide the
boundary conditions on the quantum states. The sys-
tem under study will be generally characterized by two
parameters: one, the inductance of the ring, which is a
purely geometrical factor, and two, the critical current
i, of the weak link. From the detailed experimental
behavior one can deduce the functional form of current
density as a function of particle velocity. In terms of the
microscopic theory this is related to depairing in super-
conductors. These experiments have direct bearing on
the problem of resistive loss effects in type-II super-
conductors and we show the criterion for the appear-
ance of loss in these ring superconducting systems
associated with the motion of Qux. It seems appropriate
to also include some discussion of the technological
potential of this basic unit as far as instrumentation is
concerned. This is included in the experimental section.

II. PHENOMENOLOGICAL THEORY OF
STATIONARY STATES

A. Linear Theory

1. Quaetization of the Phase INtegrat

The theoretical treatment we provide is based upon
the quantization of the phase integral, i.e., the closed
line integral of the canonical momentum along a path
in the superconducting material. This is a necessary
condition for the system to be described by a single-
valued coherent wave function. Thus we have

p dx=kh

where the canonical momentum of a Cooper pair is
given by p=2mv+2eA, h is Planck's constant, m and
e are, respectively, the mass and charge of the electron,
and k is an integer. Referring to Fig. 1 which shows a

simple schematic of such a weakly connected super-

conductor, the line integral of Eq. (1) is to be taken
around the enclosed nonsuperconducting area. The
weak link is of thickness small compared to the London
penetration length such that the portion of the line

integral through the weak link will necessarily have a
nonvanishing value for Jmv dx. The remainder of the

ring is assumed to be sufficiently thick compared to the
penetration length so that we can always find a path
in the bulk portion of the ring where Jmv dx vanishes.
In this case Eq. (1) can be written as

2mv dx+ f 2eA dx=22e.
weak link

(2)

Throughout this paper we use the rationalized mks

system in all equations. Recognizing that the complete
line integral of the vector potential A is equal to the
magnetic Qux enclosed by the path of integration,
independent of the choice of gauge, and defining the
quantity Cp ——h/2e 2.07X10 'P Wb, we can rewrite

Eq. (2) as

f
1S .—,j dx+C =hCp,

weak link +&
(3)

'8 A. H. Silver and J. E. Zimmerman, Phys. Rev. Letters 15,
888 (1965)."J.E. Zimmerman and A. H. Silver, Solid State Commun.
4i 133 (1966).

where j is the current density given by ceo, e being the
number of superconducting electrons per unit volume.
The total expression on the left side of Eq. (3) is the
London Quxoid. ' At this point let us assume e is a
constant. However, the treatment is not limited to this
approximation and we will show later that it can be
generalized to include Josephson tunneling and de-

pairing in the same framework. It is instructive to see

the predictions of this simplest approximation. ' "
We further assume that the current density j is uniform

over the entire cross section of the weak link, 0.. If
the effective length of the weak link is taken to be t,
Eq. (3) can be rewritten as

(m/ee') (t/o L) Li+C = hC2p, (4)

where I. is the total inductance of the superconducting
ring and i is now the total current Qowing through the
weak link. Let us define the dimensionless parameter

gas
y= (m/rde') (t/aL),

which is a characteristic parameter which combines the
properties both of the weak link and of the bulk super-

conducting ring. Equation (4) would be valid in general

for a p defined by the ratio of the complete line integral
of the mechanical momentum to the line integral of the
electromagnetic momentum for the superconducting
electron pairs. For most macroscopic superconducting
rings y is vanishingly small. In rings whose dimensions

are comparable to the penetration length, such as
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FIG. 2. Magnetic Aux C, circulating
current r', and) free energy G of a weakly
connected ring as functions of the ex-
ternal Aux C, in the linear approximation.
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studied by Little and Parks, 4
& will become appreciable

compared to unity. The weak-link. geometry actually
used in these experiments (described in Sec. III) is a
small area contact for which t and o- are not independent
parameters. In analogy with the "spreading resistance"
of normal metal contacts, one expects a-~t'.

4&= C,+Li, (6)

describing the total fl.ux enclosed in the ring in terms of
its two sources, the external Aux C and the circulating
current i Combining . Eqs. (4) and (6) and using the
de6nition of y, we can then write

Z. Stctioeury Magnetic States

Equation (4) relates two internal variables of the
superconducting ring, the current i and magnetic
Qux C in a given state k. For comparison with experi-
ment one would like to write both i and C as separate
functions of the externally applied magnetic 6eld. Let
us de6ne the applied 6eld in terms of the Aux inter-
cepted by the ring, C,. We write the load line equation

We need to introduce one further concept at this point.
As is well known every superconducting element has a
maximum or critical value for the allowed supercurrent
which can Row. Obviously the weak link, which has
a small cross section o., determines the maximum super-
current which can circulate in this macroscopic ring.
If this value is i,=j,o-, then Li has a maximum value
Li, and for a given value of k there is only a certain
range for C, which will satisfy Eq. P). Similarly, for
any value k, the Qux C will have a limited range. Figure
2 is a plot of the magnetic Qux 4 and the current i as a
function of an externally applied 6eld 4, for several
arbitrary values of critical current i,. For convenience
currents are specified in units of (Cp/L). It might
appear at first glance that the weakly connected super-
conducting ring system is now specified by three in-
dependent constants: i„y, and L. However, since
i, ~ o ' and y cc (o.I.) ', these three parameters are not
independent. We have previously shown" that the
maximum supercurrent through a small area contact
can be given approximately as

and
Ii= —(C —kCp) /(1+y),

C = (kCp+yC, )/(1+y) .

i, 6/R,

where 6 is the superconducting energy gap in volts,
(8) and R is the resistance of the weak link in the normal
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state. In terms of this parameter y can then be re-
written approximately as

purely magnetic term ~Xi', and a mechanical term
—,'yLi'. Substituting for p from Eq. (5) the free energy
is

(m/est, ') (6/pi, L), (10) hG= —,'Lip+-'(eto) mv' (13)

DG= — idC„

where the integral is taken over a reversible process.
If we evaluate the change in Gibbs free energy in the
state k from an initial point C,=kCO to some anal ar-
bitrary value of C defined for the state k, the result is
given in Eq. (12) in two different forms,

EG=-', L(1+y)i',

ZLG= (C,—kCp) '/2L(1+ y) .

(12a)

(12b)

Since the circulating current has the limiting value
i„ the maximum change in the Gibbs free energy is
given from Eq. (12a) as ', I.(1+y)iP. We—further note
that the change in free energy is a sum of two terms, a

where p is the normal-state resistivity of the weak link.
One can see that y is a parameter which contains in-
trinsic properties of the material, namely the energy
gap, the density of superconducting electrons, and the
resistivity, and also contains some constants which can
be computed from the geometry of the weakly con-
nected ring, namely, i, and the inductance L. For the
purposes of computing the curves in Fig. 2 we have

taken& tobe 10 "(Li,) 'as typical of a wide range of
superconducting materials well below the transition
temperature.

3. Free Energy

At this point we have overed a description of the
time-independent or stationary magnetic states of the
weakly connected superconducting ring in terms of the
macroscopic variables i and C as functions of the ex-
ternal magnetic 6eld. Each state labeled by a value of
k has a limited region of existence in this description and
if we are to understand the motion of the superconduct-
ing ring in this generalized phase space, we need to
consider the energy of the system as a function of the
external Aux. One additional state of the system which
we need to consider is the state in which the super-
conducting ring is open or singly connected; i.e., the
weak link is in the normal state. The time-independent
description of this state is C=C and i=0. Since the
only parameters of the ring which we are discussing
are the magnetic parameters, we will be concerned
with the magnetic Gibbs free-energy diGerence be-
tween the various superconducting states k and the
normal or singly connected state. Since the generalized
displacernent variable for this ring is the circulating
current i and the generalized magnetic force is the
external Qux C„ the change in Gibbs free energy is
given by

where neo. is the number of superconducting electrons
in the weak link. This expression is just the magnetic
energy of the current Qowing in an inductance I. and
the excess kinetic energy of the electrons in the weak.
link associated with this current. The maximum free
energy arises because of a maximum or critical velocity
beyond which the super conducting pairs become
unstable. The critical current is related to this maximum
velocity through the geometry of the weak link. Be-
cause of this limit on the free energy it is convenient to
define the zero so that

or

G= ', L(1—+-y) i,'+-', L(1+y)i'

G= —~~L(1+y)i '+t (C —kCp)'/2L(1+y) j. (14b)

The function G for the various k states is plotted in
Fig. 2 below the corresponding graphs for the Aux and
circulating current. The line G=O represents the open
or singly connected ring. One can imagine reaching
this state by letting 0- and hence i, approach zero.
There is presumably a continuum of values for G above
this representing excited states of the singly connected
superconducting ring.

We can notice immediately from the behavior of the
free energy that the superconducting ring falls into
two distinct classes depending on whether the critical
current i, is ) or ( Cp/2L(1+y). For the regime
i,)Cp/2I(1+p), the superconducting ring beginning
in some state k at C,= kCO should proceed in the state
k with increasing energy as the magnetic Aux is varied
continuously in one direction. When the circulating
current reaches the critical value, we see that the free
energy has gone to zero and the system is in contact,
energetically, with the normal or singly connected
state. If it is to make a transition to another super-
conducting state k' there must be a change in the
Gibbs free energy, and therefore, irreversible transition.
On the other hand, if i,( Cp/2L(1+y) when the cir-
culating current reaches i, and the superconducting
state is energetically in contact with the normal state
there is no other state available to which a transition
can occur. This model, therefore, predicts that for the
critical current less than Cp/2L(1+y) a transition to
the normal state will occur at i =i„and at some later
point as the external Aux is varied the reverse transi-
tion can occur to another superconducting state k'.
For precisely i,=Cp/2L(1+y) adjacent states
k+1 have the same free energy at i=i, although
dG/dC, is discontinuous. Hence the transition k—4&1
would be similar to a first-order transition if it were to
occur as predicted in this model.
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B. Joseyhson Tunneling Theory

One probabfe weakness of this model is that the dif-
ferent states k are essentially disconnected one from the

, t ere is no continuous function describing
the Qux or the circulating current as a function of the
external magnetic field. That this approximation is
probably not correct can be appreciated from con-
sidering a weak link in the form of a Josephson tunnel-

ing junction. Josephson' has given an analytic ex-
pression for the current density as a function of the
velocity in the form of

lt'

j=j.sinll fi ' 2' dl),

where the constant j, is the maximum supercurrent
which can Qow through the junction and the line
integral is taken across the junction from the super-
conductor on. one side to the superconductor on the
other. If for simplicity we assume the Joseph son
junction to be suKciently small in area so that the
current density is uniform, we can write

the free energy for the Josephson junction in a super-
conducting ring as

ig4'p 28

2~
cos —(C —kC p)

2e Cp2
+-,'(Li.') sin' —(C —kCp) — —-'(Li ')

fi
'

4 I.
ic)C'p/27rL (20a)

i Cp 2t,'
G= — cos —(C —kC p)

2~ A,

+-,'(Li,') sin' —(C —kCp) 2~'

i.&C p/2tr L. (20b)

We see in Fig. 3 that in those states for which s(C,~

an ~ ~ are multiple-valued, the free energy is also
multiple-valued. That is, if one stays in a state k and
varies C, over the full range from C,=-C=kCp to

2mv dl=h sin—'(s/i, ).
junction

(16)

Using Eq. (16) in conjunction with Eqs. (2) and (6),
the equations for the current and the Aux as functions
of the external magnetic Qux C, are' "

C+Li, sint (2e/fi) (C —kCp) I
= C„

Li = —Li. sinI (2e/fi) (Li+C,—kCp) I. (18)

Figure 3 gives a graphical solution of the analytic ex-
pressions in Eqs. (17) and (18) where again z, is chosen
to ave several values for purposes of illustration. We
see t at in this case C and i are continuous f t'unc ions
o t e external Qux although these functions are not
necessarily single-valued even for a given 1 k.va ue

e s ould point out that in Eq. (15) the argument of
the sine function extends only over the principal range

( —x-, +~); hence a single value of k will now allow us
to generate the complete curves as shown in Fig. 3.
The state k and k+1 are always connected at the point
C'.=C'=(k+ —',)Cp. Equations (17) and (18) for the
Josephson tunneling junction in a single ring can be put
precisely in the forms of Eqs. (7) and (8) if, in ac-
cordance with our definition of y, we write

p= (Cp/2trLi) sin '(i/i, ), (19)

where p is not a constant but is a function of the cir-
culating current. In a manner similar to that applied
to the linear model presented above, we can compute

6
4()

es

4w

Li

p~p
I/2

l/2-

0

Q2

2

2 c'x

+0

20 EJ. E. Zimmerman, &n ProceeChmgs of the Stjtth Beemrteot Gus
Dynamics Conference, edited by A. B. Cambel and T. P. Anderson
(Northwestern University Press, Evanston, Illinois 1967) .

"A. M. Goldman, P. J. Kreisman, and D. J. Scala ino Ph s.
Rev. Letters 15, 495 (1965).

FIG. 3. Magnetic Aux C, circulating current i, and free energy
6 of a superconducting ring incorporating one Josephson tunnel-
ing junction as functions of the external Aux C . The three sets

i,=C p/4n-L.
of curves correspond to (a) e, =C /rrL (b) =4& 2 L, d
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4', =4'= (k+&) 4'p, the free energy increases contin-
uously, reaches zero when dC/dC, =&~ and then
becomes a positive maximum at the half-quantum
values. Presumably at the points where (dC/dC )
diverges, the Josephson junction ring would make a
transition to an adjacent or neighboring state
For those cases in which i,( Cp/2 zr L, the values of 4
and i as functions of the external Qux are continuous
and single-valued. Therefore the expectation is that the
ring can pass continuously from one state to the next,
crossing the lines C=C andi=0 at both C,=AC0 and
4',= (k+ —,) Cp. This is a significant difference from the
linear model because it indicates that the ring can pass
continuously from one state to the next. There is no
change in free energy or in the derivative of the free-
energy curve.

Let us formally compare the Josephson and the
linear expressions for j. If we allow n to vary, we can
solve for e as

e= j, sin 25 ' mv. dl ee. 21
)

The effective or average density of superconducting
electrons in the tunneling junction varies as the central
maximum in a di6raction pattern and goes to zero when
25 'fzzzv dl= &zr. It is evident at this point that if one
wishes to connect the various states in terms of the
Qux and current as a function of the external Qux, one
has to introduce some sort of variation of the number
of superconducting electrons with pair velocity. This
is one mechanism for depairing. ""We will return to
this point later in discussing the experimental data.
It would appear that in considering the linear model and
the Josephson tunneling model, we have taken the two
extreme possibilities, i.e., in the linear model n is not
a function of current or velocity and there is no depair-
ing permitted. The Josephson junction is in a sense a
limit of weak coupling in that there is depairing or a
decrease in n as soon as the current Qows. In other
words, there can be no current supported by a Josephson
tunneling junction without some depairing occurring.
Presumably all real physical situations will lie some-
where between these two extremes. We see from Figs.
2 and 3 that the general nature of the Qux and the
current and the free energy is similar for the two cases
depending upon whether the maximum supercurrent is
less than or greater than 4 p/2La, where u is (1+y) for
the linear model and zr for a Josepshon junction. The
superconducting ring in the presence of a variable
applied Qux may be expected to make transitions
among the superconducting states either reversibly or
irreversibly. Thus we expect a discussion of the dy-
namics of the system to be able to say something about
the nature and appearance of loss eGects in a super-
conducting ring. This will be done in the next section.

"J.Bardeen, Rev. Mod. Phys. 34, 667 (1962).
2' P. Fulde and R. A. Ferrell, Phys. Rev. 132, 2457 (1963).

RCONDUCTOR

WEAK LINK

Fio. 4. Diagram of a weakly connected superconducting
ring with directly connected current source I.

To this we add

and

yLi&+4 = kCp.

I= zz+zz,

C = —Lzg,

(22)

(23)

the negative sign arising because of the choice of direc-
tion of iz Combin. ing Eqs. (22), (23), and (24) we have

and
Lzz (LI+kCp——)/(1+y),

Lip (HALI
—kC——p)/(1+y) .

(25)

(26)

Under the transformations

Lig~Li,

LI~—4~,

LZ2~ —4~

(27)

Eqs. (25) and (26) are identical with Eqs. (7) and (8)
and the behavior of the ring in Fig. 4 is identical with
the ring in Fig. 1. Therefore the magnetic behavior,
including the free energy, is given by the curves of
Fig. 2. It is somewhat surprising that the lower-energy
state for

~
LI

~
) (k+-', ) Cp is for current fiowing

through the inductance L rather than the weak link in
the case i,)Cp/2L(1+y). However this can be under-
stood if we consider the source of C, in Fig. j. as a single-
turn coil supplied by current 1. If the coil is shrunk
(or expanded) until it eventually becomes identical

C. Current-Connected Ring

Before proceeding to treat the dynamical behavior we
consider one further configuration shown in Fig. 4.
An external current source is connected directly across
the weak link such that the input current I divides into
i~ Rowing through the weak link and i2 through the
inductance L. The inductance of the link itself will be
neglected. Computing the phase integral around the
ring we have from Eqs. (4) and (5)
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with the inductance L of the ring, then C,= —LI and
we have generated Fig. 4 and a directly coupled ring.

yLi(t)+C (0) — Bdt=kCp, (28)

and

C (t) = C (0) — ddt= C,(t)+Li(t), (29)
0

in place of Eqs. (4) and (6). Equations (7) and (8)
wouId still apply with the understanding that i, C,
C, and k are time-dependent. If we diRerentiate with
respect to time, we have

and

d4~ C'p dk

(1+y) dt (1+y) dt'

di dC, Cp dk

dt dt (1+y) dt'

(3o)

(31)

where we have assumed y=constant as in the linear
model.

An alternative approach is to consider the dynamical
behavior in terms of the stationary behavior derived in
the previous section. Again we let C „as the independent
variable, vary with time and consider the motion of C

and Li in terms of the previously defined stationary
states. This method gives a more physical picture of the
nature of the expected transitions and will be adopted
in this paper. The most important function which is
introduced and which one can hope to measure is the
voltage associated with the time dependence of C and
Li. From Figs. 2 and 3 it is clear that the greatest
voltages should accompany the transitions at the
critical current. To carry out this calculation two things
must be said about the nature of the transition. First
we assume that transitions will occur only when the
circulating current equals the critical current. By
some mechanism a sufhcient perturbation occurs to
drive the system from one state to another. The nature
of this transition could take one of several forms. We
could assume that the link goes normal, the free energy
is thermalized and that the ring will reset itself in the
lowest superconducting free-energy state. An alterna-
tive approach is to assume that if the critical current is
not many times Cp/L, the perturbation is not very

III. DYNAMICS OF WEAKLY CONNECTED RINGS

A. Method of Calculation of Spectrum

Thus far we have examined the time-independent
solutions of Eq. (1). Time-dependent effects can be
treated in one of two standard methods. One method
is to let C be a function of time and recognize that if
C changes with time there will be an emf 8 correspond-
ing to —dC/dt. Hence we write

Li,/A. (34)

When Li,~CO, which is the region of interest in this
paper, the time constant will be of the order of Cp/6
and is therefore essentially constant for a wide range of
materials, varying only with the gap parameter A.
For a typical value of 6 taken as 10 'V, the time con-
stant 7- is approximately 2&10 " sec. Hence we can
expect that an emf will be induced in the closed circuit
given by

8= E dl= BC./Bt, — (35)

which for this case will be approximately given by
8 WCph/Li, (1+y). For Li, of the order of Cp, this
is approximately the gap voltage A. One should not
expect that as the critical current gets larger (in units
of C p/L, ) the voltage will get smaller. We have used for
the 6t, the time constant r. Although r increases as
Li„presumably the circulating current is decaying
toward zero current, and the time to reach the nearest
quantum state will be of the order of (Cp/Li, )r. The
maximum emf therefore remains approximately A.

For the other case, i, (Cp/2L(1+y), the transition
at the critical current shown in Fig. 2 will be between
the quantum state k and the normal state designated by
the line C =C, i.e., the circulating current will decay
completely to zero. The system is then assumed to

large and the energy is not thermalized. Since the
system is a quantum-mechanical system, the transi-
tions should be directly from one state to the next.
We will assume here that for small values of i,L/Co
the transition will occur to the adjacent state, that is
Ak= ~1.

From the phenomenological curves in Fig. 2 we can
see that when the circulating current reaches the
critical current the nature of the transition involved
will depend upon whether the circulating current is
greater or less than C/o2L(1+y). Let us, therefore,
consider these two cases separately. Consider first
i,)Cp/2L(1+y) . If the transition occurs to the
adjacent state, there is a change in Qux and a change in
the circulating current given by

&C'p ~c——~C'o/(1+y), (32)
and

5(Lt) p,~i= WC'o/(1+v) (33)

These changes are independent of the critical current
except for the dependence of y on i,. In order to com-

pute the emf associated with this change in Qux, we
need to estimate the time in which the change occurs.
We assume that the current through the inductance L
decays exponentially with some time constant r given

by L/R, where R is the normal-state resistance of the
weak link. From Eq. (9) the normal-state resistance is
given in terms of the critical current of the ring and
therefore the time constant can be written as
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B. App1ied Field Linear in Time

If the applied flux 4, varies as Eq. (40), this is
equivalent to an applied emf, 8 = —Cov. The Qux C

will have a staircaselike time dependence and the
circulating current will have a sawtooth waveform.
These predicted waveforms are shown in Fig. 5 for the
linear stationary states of Eqs. (7) and (8) and for the
critical currents of Fig. 2. The emf, dC—/dt, is also
shown irI Fig. 5 and has the obvious fundamental
period. The spectrum of 8 can be represented by

FIG. 6. Spectra of the response 8 for a weakly connected ring
as a function of the harmonic number n (a) .Normalized response
( S /S, ) for 4,=C'pvt and (1+y) Ls,)Cp/2. (b) Normalized re-
sponse for C,= (1+y) Li, si n&A +Cp/2 and (1+y) Lp, =5Cp/4.

G(t) = P G„cos(na&f)
n=o

(42)

if we set ai=27rv and C,P=Li, (1+y) for (1+y)Li,&
Cp/2, or 4,'= Cp/2 for the case (1+y) Li, &Cp/2. The
dc component is readily calculated asreset in the next )'p+1 as 4, is advanced. Therefore the

total transition can be calculated from the two inde-
pendent parts. During the transition itself the changes
in Qux and change in circulating current are given
by

(43)Gp ——(2s.) 8(t) d(~f),

N = Li, &Co/2L(1+y),

8(Li) = Li,&4 p/2L(1 +y). (37)

(36) which yields Bp———vCp, the applied emf. The amplitudes
of the ac components are given by

Again we estimate the induced emf as approximately
the gap voltage h.

The distribution of voltage in the ring as a result of
this Qux change can be calculated from

2 'BA
E dl+ —dl,

1 Bt

8(t) cos(ntpf) d(rot).

8(f) cos(naA) d(ppt) =co cos(n&ot;) 8(f) df (45).

Consider first (1+y) Li,)4 p/2. For frequencies
nai«(A/Cp), the reciprocal of the pulse width, the
integral over the voltage pulse at time t;, can be com-
puted as

pulse pulse

This is readily shown to be —a&Cp/(1+&) since
cos(ruat, ) is unity for all t; and fg(t)dt= —84. The
integration over the remaining portion of the cycle is

+40v
cos(nppt) d(a~f)

(39) (1+7)Vi,s~~ l94/Bf~k)

which is invariant under time-independent gauge trans-
formations and independent of the path of integration.
If the points 1 and 2 are directly across the weak link,
then calculating t/'&, 2 by integrating the second term
in Eq. (38) around the bulk portion of the ring we will
have

(a)

(b)

4,=4pvt+C, P,

4', =4,' sinppf+O', P,

(40)

(41)

where C is a constant. Furthermore we will restrict
ourselves to frequencies v and co, much smaller than
(~/4.).

as. calculated above. Integration across the weak link
shows that this voltage must be supported by an
electric field E in the weak link. Hence we can speak of
the voltage produced across the weak link due to a
change in Qux in the ring and this may be visualized as
magnetic Qux crossing the link in packets of size
approximately Co.

We now compute the expected voltage spectrum for
the stationary states of the type shown in Fig. 2.
Obviously this spectrum depends on the explicit time
dependence of C . Two cases will be considered:

Q)C'p QC'pM+ vent .
(1+v) (1+&)

(47)

Since y&2x and vbt((1, the second term is negligible
and the frequency spectrum is

24'OV

(1+v) ' n&0

for frequencies v«(1/bt). Figure 6(a) shows the pre-
dicted spectrum.

In the region (1+y) Li, &Cp/2, the ac spectrum de-
pends on the magnitude of Li, Evaluation of E.q. (44)

"j/4'pv
cos I (nacht, ) +rr I ain't, (46)

1+v
where the prime signifies integration from 0 to 2z
excluding that interval St during which the pulse occurs.
The complete evaluation of Eq. (44) is therefore
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can be accomplished in three parts, i.e., during the pulse when f 8 (t) dt= —Li„the interval when 8= —yC ov/(1+y),
and the interval when 8= —C pv. With this decomposition and the same assumptions as above, we have,

f 8(t) cos(met) d(oat) = 2—oaLi, cos(@cot;),
pulsea

(2x—a) t;) +C'pp

(1+&)
cos(tuA)d(ppf) = —$2pC'pv/(1+y)nj sin(npat;) (cosns), (49)

—4ov cos(tuvt) d(cot) = —(24'pv/n) sin(neet;) .
0

Now cut; can be calculated directly from Eqs. (7) and (40) with 4 =Co/2, giving the principal value

cot; = pr I 1—(2Li,/4 o) (1+y) I.
Combining Eqs. (44), (49), and (50) we have for the spectrum

8„= 4vLi, —cos(ns) cos(nba)+(24pv/ns) sin(nsa) fy/(1+y)+cos(nn) I;

(50)

(51)

where
n =—2Li, (1+y)/4 o.

as a function of C,' by

4, , ;„'=(1+y)Li,
~
(4,'—kC,) ~, (53)

The result of these calculations is that for a linear
variation of C„which is a constant applied emf, the
spectrum 8(v) is a zero-frequency term equal to the
applied emf and a discrete spectrum at all harmonics
of (1/Cp) (dC,/dt). If cx)1, the amplitude of each
harmonic is equal to approximately twice the applied
emf as shown in Eq. (48); if n(1, the amplitudes
diminish as a function of both 0. and e. Clearly all 8„
vanish as 0.—+0 for e&0.

For nonlinear behavior of j(o) as occurs with a
Josephson tunneling junction the general features will
be unaltered. The zero-frequency emf will always be
—Cps and there will always be a discrete spectrum at
multiples of v.

C. Applied Field Sinusoidal in Time

We now consider the spectrum for a harmonic vari-
ation of 4, as described by Kq. (41) . The amplitude of
the harmonic variation in C, designated C, is an
adjustable parameter. We compute this spectrum as a
function of both C,' and the bias or ambient external
Qux, C . In the case considered above the spectrum is
independent of C,' except for a phase shift of the
harmonic terms. This will not be the situation for an
oscillating C .

The variation of C with time can have numerous
forms depending on C,', C,P, and 0.. The emf can be ex-
pressed as

8(t) cos(rust) d((ot),

8(f) sin(npat) d(pat),
(55)

These coefficients can be evaluated as functions of
C,' and C,' with the same approximations about the
transitions 84 p p+~ set forth in Sec. III A.

As an example of a simple, yet nontrivial case, we will
illustrate the calculation and result for (1+y)Li,)
4,') I (1+y) Li,—Cp/2I and n)1. Figure 5(b) shows
C, (t), 4 (t), and 8(t) for 4,'= (1+y)Li, and for
several values of C,'. The significant variation of
4(t) represents the cycling of a single hysteresis
rectangle for each period of 4,(t), although the phase
varies with 4,' as evidenced in Fig. 5(b). The&first
transition in each period, 84'=4'o/(1+y) occurs at an
angle (cotq) given from Kqs. (7) and (41) as

where ——,'((4' '—kCp) (-,'. The spectrum of 8 is com-
puted from the more general expansion

8(t) = g 8„' cos(ncof) + g 8„"sin(no&t), (54)
n=l

where Gp=0 from symmetry and the Fourier coef-
ficients are given by

dC dC, , dC
8(t) =— = —o&4 ' cos(ot,

dC dt dC
(52) (56)

(1+y) Li, (4,'—kCp)—
sin(atty) =

@ I

where dC,/dt has been evaluated from Eq. (41) . Unless
transitions are eGected in C —C space, the form of
8(t) will not differ from 8,(t). Referring to Fig. 2(c),
we see that no periodic transitions will occur if C is
smaller than a minimum value C.. . which is given

if C,'&C, ; . Similarly the second transition in each
period, 84 = —Co/(1+y) is given by

—(1+/)«.—(C.'—(k+1)4,)
sin(a&tp) =

@ I (57)
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.The Fourier coefficients are then evaluated as

8 '= —L~Cp/m (1+y)jf cos(nrem~) —cos(rubato) I
—LooC', 'y/2~(1+y) $8~,„,

8 "=—
LAC o/pr(1+y) )f sin(n~t~) —sin(ruotp) I,

where the second term in 8 represents a direct contribution of 8, and occurs only for n= i. The total amplitude
of each harmonic of 8 without regard to phase is

~
8„~ =

f &uCo/7r(1+y) ](2—2 cos(not~ —mAp) + f (C,'y/2C o) '+ (C,'y/2Co) (cosoot~ —coscvto) }8~,„)'
1

Equation (59) can be expressed in terms of C,' and C,' directly for m= 1,

0
i

zcaCo ( (4 ')'—f (1+y)Ii, /C—go —kCp )
I' '~'

pr(1+y) k (@1)2

(59)

alld

(C.')' —f (1+~)Li.y
~

C '-uC,
~

—C, I
'

& ~C &
(6o)

.(C"')' ' j 2m (1+y) '

cvCp 2L,i,(1+y) —Co

(1+&)
(61)

if (1+y) Li,)C ') C, , ;„'; for C,'&C, , ;„', 8q' ———a&C,'y/2'(1+y), and 8q" ——0. The result of this calculation is
shown graphically in Fig. 7(a) as a function of C o. 8&" is a rectangular function of C',o whose amplitude and duty
cycle depends on C ' and Ii,. The dependence on C, is implicit in the dependence of C,, ; ' on C,', and hence in
the region of validity of the solutions obtained. In the case of F» there is an additional explicit dependence on
C,o. Both components are periodic with the period Cp and invariant under the ' transformation (C, —kCp) —&

f C'p —(C','—kC'p) I, i.e., they are symmetric about C,'= (k+—,') Cp.

The maximum variation in 8~' and 8~" as functions of C,o occurs when C,' approaches (1+y) Li. and then we

have the difference in extreme values

8g'(C, '= loCo) —8g'(C, '= (k+g) Cp) = f2')Co/m (1+y)jf 2u—1j'"/u,

8~"(C.'= &C'o) —8i"(C"= (&+p) C'o) = L2~C'o/~(1+V) 7(u-1) /u (62)
with e&1.

We can compute the work done per cycle of the applied flux. The power absorbed is (C,—l'pCp) (8,—8)/L.
When integrated over one cycle of C, we obtain

which from Eq. (61) gives
C

W= —. C,'8y"n-/Lco,

(u —1) Cp'

L(1+V) '

(63)

(64)

(65)

'This is precisely the area of one hysteresis loop in (i—C,) space. As we might have expected 8&" is linearly related
to the net power absorbed; for ca&1, 8&"———0 and there is no net power absorbed. In the cyclic processes described
the anal and initial states of the ring are identical so that the work is either dissipated as heat or radiated as electro-
magnetic energy. This work is'just the irreversible change in free energy, QG;„, , at each transition.

The calculation leading to Eqs. (60)—(63) demonstrates the dependence of the spectrum on C,o for a limited
range of C ' and o.& 1.Let us continue to restrict a& 1 and investigate the dependence on C,' over a larger region.
We note the principal e6ect of increasing C is that for each period of C, the system will traverse more than one
hysteresis loop. Inspection of Fig. 2 shows that for C, = kCp there will be an even number of hysteresis rectangles
enclosed; for C,o= (to+—,') Cp, there will be an odd number. In general the number of hysteresis rectangles enclosed

per cycle if C~ )C, ~j„ is given by
I

C,' Li,(1+y)+ )
C '—kC—o ).+Co C,'—Li, (1+y) —

)
C —N'o

(
+C'p

Cp C'o

where the square brackets indicate the largest integer contained in the argument. Thus in each interval

( ~/2&~t&7r/2) there—are N transitions, 5C = Cp/(1+y), followed by N transitions, M = —C'p/(1+y), during
(n./2&cA&3s. /2). With C, given by Eq. (41) we can compute the Fourier coefEcients 8„' and 8„"from Eq. (55).
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These are given by
8„'=—{(oCp/s. (1+y)]{g cos(~t;) —g cos(n~t;) }—LppC', 'p/2m (1+7)jb&,„,j
8„"=—L(oCp/s. (1+y)j{Q sin(wa)t;) —Q sin(no)t;) },

where the 2S transitions occur at the successive (ppt, ) given by

Li, (1+y)—{4,—(k+i) Cp}
sin(cot;) =

(66)

(67a)

with

and (cot;) given by

i = —pX-++ (-,'X—1)

i = —-,'(X—1)—+-', (N—1)

i = ——,'(Ã+1)—&-', (E—3)

for S even;

for X odd and (4,'—kC,))0;

for S odd and (4,'—kCp) &0;

—Li, (1+y) —{4 '—(k+1+j)4'p}
sin(ppt;) = (67b)

with
j=+ (-',X—1)—+—-,'1V

j=0% 1) — p(&— 1)—

i =k(& 3)~—p(&+—1)

for S even;

for E odd and (C,P—kCp))0;

for E odd and (4, —kCp) &0.

The solutions for 8&' and 8&" are plotted in Fig. 7 (b) for C,P equal to kC p and (k+ p) 4,.
We can appreciate that the amplitudes of all components in the spectrum are periodic with respect to both

C,' and C, ,' the period is'always Co, the fundamental Qux quantum. The relative amplitude of the eth harmonic
will be a maximum when P hysteresis rectangles are enclosed per cycle.

This above treatment for Li, (1+y))Cp/2 shows no voltages generated for 4,'&4, , ; '. Let us now consider
the situation n& 1.We can assume a spectrum of the form of Eq. (54) with coefficients again given by Eqs. (55) ..
The function 8(t) can be integrated in a manner similar to Eq. (49). Since there is no hysteresis, 8(t) will have the
same symmetry as 8 giving all 8„"=—0 for all 4,' and C,'. This means there is no power loss for all ca& j.. It is
obvious that the G„are periodic in C, with the period 4'p since dC'/dC, is periodic. Furthermore the periodicity in
4,' proceeds as before. Rq' measures dC/dC, if 4,'«Li, (1+y) and n & 1.For the linear model the extremum values
of 8&' can be calculated from Eqs. (8) and (52) as

gi'(4 '=kC ) =-~4 'v/(1+&)

8,'(C,P= kCp& Li, (1+y) ) o)(Li,—+,'4, ') . — (68)

At C,P= (k+pi) Cp, Gi' —— aiC,', wh—ich is intermediate in value in the limit of small 4,'.
This predicted behavior near 4, = (k+p) 4'p differs from that of the nonlinear Josephson tunneling junction.

For such a junction one can write 8(t) from Eq. (17) as

8 (t) =8,(t) (1+(2e/fi) Li, cos {(2e/t't) (4 —kC p) }) ' (69)

for (2e/fi) Li,& 1. If we let (2e/fi) Li,«1, then 4 4, and we can write the expansion for 8(t) in approximate form
as

2e . (2s ,i (2e
8 (t)~—a&4,' cosppt 1——Li, cos( —4,'

i Jp( —4,'
a

' I1' ')
4s-. . . (2e ) (2e+ —,Li, sini —CP

i g Jp„ ii
—4,' sin(2e —1)ppt

1 g &5

4e . /2e 2e——Li, cosi —4 g J2„ —4 '
i
cos(2ncot) , (70),. ), (. ,

where the J„are Bessel functions. The Fourier coeKcients are immediately available; in particular the funda-
mental terms are

F„' —uC, '{1—(2p/fi) Li, cos{ (2e/5) 4'I'j JpL(2e/5) 4', ') }

g ll 0 (71)
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Fzo. 7. (a) Graphs of 8~' and S~" as functions of 4,' for several values of 4 ' in the range (1+y) Li,&CO/2 where (1+y) Li,=34k/4.
The dashed line in the graph of 8~" is the envelope of the rectangular graphs as C ' varies over the prescribed region. (b) Graphs of
g&' and g," as functions of C ' for C '=AC and (k+sk)Ck and with (1+p)L$,=340/4.

Again we note the behavior is periodic in both C and
C ' with the fundamental period 40. The maximum
change in 8&' occurs between the values of C,' equal to
kCs and (k+—',) Cs and this value is

4e fr'2e
3S '= —AC '&e~ —C ' .

fc k fi

For (2e/Ii) C' '«1, Je is unity and we can expect 8~'

to vary linearly with C ' for small C '. This behavior is
in contrast to the case n&1 for which Gj' is essentially
constant for C,'& I (1+y) Li, (Cks/2) I. The a—bsence
of Qy for this case is expected for reversible single-
valued behavior of C.

screws which puncture the Mylar insulation and close
the ring electrically as a multiply connected super-
conductor. Two such screws were provided rather than
one for ease of construction and to provide an inde-
pendent measure of i„ the critical current of the weak
connection. Both screws could be adjusted at 4.2'K
by means of long wrenches, Consequently, the first
contact was set to the desired value of i, and the second
one closed tightly so that it would pass a much greater
supercurrent. The bulk portions of the ring were
further tapped for standard 2—56 brass screws for direct
electrical connection in the vicinity of the weak con-

IV. EXPERIMENTS

A. Weakly Connected Ring and Cryogenic Apparatus

The experimental configuration under investigation
is a superconducting ring containing one adjustable
weak link. These are constructed as previously de-
scribed by the authors' " and shown in I'ig. 8. The
bulk ring and the contacting screws are niobium.
The main portion of the ring is machined in two parts
which are insulated from each other with 0.0005 in,
Mylar and then held rigidly together with nylon thread
coated with Pliobond. The hole in the assembled ring
is typically 1 mm in diameter and j. cm long, correspond-
ing to an inductance I 10 ' H. One-half of the ring
has two holes tapped to receive the 000—j.20 niobium

p-COIL

IND TIGHTLY WITH
NYLON THREAD

2-56
BRASS

SCREws

OOO- l20 NIOBIUM
CAP SCREWS

SPRING WASHER

~O.OOO5" MYLAR

Fxo. 8. Drawing of the weakly connected ring showing construc-
tion details. The drawing is not to scale.
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tacts. Inductive coupling to the rings was accomplished
by copper coils wound on the assembly under the
nylon thread.

The entire ring assembly was cooled by direct im-
mersion in liquid helium in the earliest experiments.
However, because of some noise effects due to bubbling
helium in the radio-frequency cables and to avoid
deterioration of the contacts from moisture on removal
from the helium Dewar, a closed sample-holder system
was developed. This over-all assembly is shown in
Fig. 9. Electrical inputs at the top of the assembly
are through vacuum-tight connectors; type-X for rf
cables and Stupakoff connectors for audio and dc
leads. The audio and dc leads were rf filtered at the top
of the assembly and consisted of shielded two-wire
pairs. The rf cables were coaxial brass tubing, —,

' and

8 in. diameters, assembled with Mylar spacers. The
sample rings were mechanically supported from the rf
cables. The 000—120 niobium screws with hexagonal
heads were adjustable from outside the Dewar by means
of socket wrenches whose long handles (of Micarta)
extended through 0-ring seals at the top of the as-
sembly. This sample holder and cable assembly were
enclosed in a long removable jacket which was sealed
with another quick-coupling to the assembly head.
After the assembly was evacuated, helium transfer gas
was admitted to ensure heat transfer to the sample
assembly. The jacket was type 321 stainless steel to
within 9 in. of the bottom where a brass section was
added. This section was then wrapped in lead foil to
provide a superconducting shield against Quctuations
in the ambient magnetic field.

In order to reduce microphonics due to vibration of
the sample located approximately 36 in. from the sup-
port at the top of the helium Dewar, the glass helium
Dewar was made re-entrant at the bottom and the
outer metal jacket fashioned to fit snugly on this
support. The ambient magnetic field was reduced and
its magnitude stabilized by using four nesting Mu-
metal shields. Each shield can was closed at the bottom
and was shorter than the one immediately outside it by
approximately one diameter. Each can was demag-
netized in place. The apparent Quctuations in field
inside this assembly, as detected in previous experi-
ments, was not due to incomplete shielding of stray
fields, but apparently to Quctuations in the domains in
the inner can. For this reason the inner shield was placed
in the liquid-N2 reservoir and the lead superconduct-
ing shield was used.

B. Radio-Frequency Experunents

l. Iridial ObservatiorIs

This maintains actual experimental chronology and
provides the proper background for the instrumentation
used in obtaining the stationary Inagnetic data.

The first radio-frequency experiments were per-
formed with rings directly connected as shown in Fig.
4. The motivation for this experiment was a direct
extension of the previous work of the authors using two
weak links in a superconducting ring. "' In those ex-
periments, and the work of JLSM on parallel Josephson
tunneling junctions, "' the quantization of the ring
was measured by detecting the dc voltage which
resulted when the two links became resistive as a result
of exceeding the maximum supercurrent. When similar
experiments were attempted using 30-MHz currents
and two parallel weak links, the voltages observed at
30 MHz were observed to be periodic in the applied
Qux as before when the current amplitude reached some
critical value. However, upon increasing the rf current,
the field-periodic component of the rf voltage amplitude
oscillated in amplitude up to some second critical
current value and then disappeared abruptly. The
relative values of the onset and disappearance of this
periodic voltage was found to depend on the relative
values of the critical currents for the two weak links;
specifically the periodic voltage appeared when the
rf current was equal to the critical current of the weaker
link, and the signal disappeared when the rf current
exceeded the sum of the critical currents for the weak
links. Between these values the periodic voltage oscil-
lated in amplitude with a monotonically decreasing
envelope, .

These preliminary results indicated the desirability
and feasibility of studying rings with only ore weak link
by using this rf technique. With the previous low-fre-
quency methods one cannot expect to observe any
signal using one weak link in a superconducting ring.
However, as indicated by the calculations of the pre-
ceding section, one can expect to observe an emf associ-
ated with a change of Qux in the ring. Therefore we are
concerned with measuring the voltage V across the
weak link which from Eqs. (38) and (39) is equivalent
to the emf induced in the ring. For a harmonic current
source at a frequency of 30 MHz the predicted funda-
mental voltage is ~C'0/m (1+y) 1.2X10 ~ V for

0. Although this voltage is very small, the current
amplitude is of the order of (Co/L) and therefore the
power involved is of the order of (vC '/L) ~(10 "/L)
W, and the corresponding impedance is about coL.
Since a cylindrical ring 1 mm in diameter and 1 cm
long has 1. 10 " H, the impedance at 30 MHz is
about 10 0 and. the available power is about 10 ' W.

Z. Radi o-Freqlerrcy Measmrememts

Although we have presented the phenomenological
model as a description of stationary states from which
we calculated the dynamical behavior, it seems pre-
ferable to report the experiments in the reverse order.

The experimental arrangement for the direct-coupled
or current source radio-frequency experiment is shown
in Fig. 10. A resonant I.OC circuit is used to transform
the impedance and voltage to a level where detection
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—16

15
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FIG. 9. Over-all assembly showing the general features of the
rf cables, shield configuration, Dewar construction, sample posi-
tion, and control rod access. Only one of the two rf cables and
resonant circuits is shown (2); the loop coupled circuit is con-
nected to the hidden cable. (1) Superconducting ring with ad-
justable point contacts. (2) Resonant QC circuit directly con-
nected to superconducting ring. (3) Radio-frequency coaxial
cables. Two cables are placed behind each other so that only one
is shown in the drawing. (4) Control rods used to adjust the
point contacts. (5) Radio-frequency interference filter in the
audio and dc measuring leads. (6) Stupakoff connector for audio
and dc leads. (7) Liquid-helium glass Dewar with re-entrant
stub to hold the bottom of the sample assembly. (8) Liquid-
nitrogen glass Dewar. (9) Three concentric Mu-metal shields at
room temperature. (10) Inner Mu-metal shield at liquid-nitrogen
temperature. (11) Type 321 stainless-steel jacket around sample
assembly. (12) Brass section in sample jacket covered with
superconducting lead magnetic shield. (13) Vacuum-tight type
E connector for rf coaxial cable directly connected to the super-
conducting ring. (14) Vacuum-tight type P connector for rf
coaxial cable connected to coil wound directly on the ring. The
leads to the ring and the coil are not shown. (15) 0-ring coupling
seal to stainless steel sample can. (16) Brass assembly head.

with standard low-noise preamplifiers is possible. This
is similar to the technique previously employed in
studying Josephson tunneling junctions. '4 This resonant
circuit serves the dual purpose of coupling in the source
current I and amplifying the signal voltage V. The
30-MHz voltage across the resonant circuit V~ is
amplified, recti6ed, and then displayed on an oscillo-
scope or recorder. The rf source was a Hewlett —Packard
Model 606A signal generator. This 50 0 voltage source
was coupled to the I.C circuit with a very small coup-
ling capacitor in order to supply a constant radio-
frequency current. The resonant circuit had a
characteristic impedance Zs equal to 100 and a Q 200.
The current supplied to the superconducting ring is
Vr/Zs, the signal voltage across the tank circuit re-
jected from the superconducting ring is approximately
QV.

In addition to the rf current we could vary either the
static magnetic Geld with an auxiliary coil or the total
source current by means of a low-frequency current
source. As indicated in the previous section, these
should be equivalent operations. The weak link was
adjustable in the cryostat during the experiment by
means of a direct mechanical linkage as described above.
The experiment consisted of adjusting the critical
current of the weak link and then observing the rf
voltage as a function of both the low frequency or dc
current and the rf current. The former variable cor-
responds to C,'/L and the latter to C,'/L.

The actual practice of adjusting i, consisted of
essentially observing the radio-frequency V-I character-
istics of the contact. This was accomplished by the
configuration shown in I'ig. 10(b) . The signal generator
was amplitude modulated at an audio rate. The
rectified rf voltage from the 30-MHz detector is split
into two channels; the horizontal sweep of the oscillo-
scope is derived directly from the rectified 30-MHz
voltage and hence is linear in the amplitude of the rf
current applied to the ring. The second channel is fed
into a "T"rejection network tuned to the am frequency
and the output of this is applied to the vertical de-
Qection. Rejection of the am fundamental component
eliminates only the direct feed-through of the applied
voltage modulation and what remains is due to the
nonlinear electromagnetic behavior of the ring, i.e., the
rf voltage of the ring. The oscilloscope is observed while
the contact adjustment is made in order to minimize
the chance of damage to the delicate point contact.
A typical pattern is shown in Fig. 11.Variation of the
dc current will change this picture as shown in the
oscilloscope photographs. The pattern is a periodic
function with a monotonically decreasing amplitude;
the entire pattern repeats when the dc current changes
by Cp/L.

2' A. H. Silver, R. C. Jaklevic, and J. Lambe, Phys. Rev. 141,
362 (1966).
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FIG. 10. a

of the rin a
a oc iagram of the radio-frequency experiment using a current source used for observation of the period'c b h

'
g s a function of the current I. For the loop-coupled experiment the ring is placed in the coil Lq with no direct electrical

i e avior

connections. (b) Block diagram of the radio-frequency. experiment used for observing the rf V Icharacter-istics of the weakly con-
necte ring. The "T"in series with the vertical oscilloscope input is a parallel twin-T tuned to the frequency of the amplitude modula-
tion.

If the signal generator is tuned to the resonance
frequency of the 1.0C circuit, no signal appears until
i, exceeds C.G/2L. The first deflection appears on
the oscilloscope when the dc current corresponds
to (k+—',) C s/L and the rf current amplitude is
Ii, (CG/2L—) I; when the dc current is kC /Lothe
6rst signal occurs at an rf current equal to i,. If
i, (CJG/2L no signal occurs unless the frequency is
shifted from the center of the resonance curve. How-
ever, when the frequency is o6-resonance and
i, (CG/2L, the signal starts from zero rf current.
Hence in order to adjust the contact one usually tunes
the signal generator approximately 3 dB above the
I.OC resonance and observes the V-I curve as the
adjustment is made. Since the abscissa can be directly
calibrated in units of C.s/L, the position of the first
signal peak directly measures i,.

The complete experimental behavior of the ring
under the application of a 30-MHz current and a dc or
af current is summarized in I'ig. 12. Here one applies
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a cw 30-MHz signal and an af current and observes the
total rectified voltage as a function of the current
input. The abscissa represents the low-frequency
current (C,'/I, ) and the ordinate measures the total
voltage across the tank circuit. This voltage can be
considered a sum of the applied emf and the rejected
voltage from the ring. Hence to a first approximation
the voltage across the tank circuit is

V, =QV+ZC '/I. (73)

where Z is the complex impedance of the inductor 1.0

FIG. 11. Oscilloscope photographs
of the rf V-I curve derived from the
experimental arrangement of Fig.
10(b). The two photographs are for
two values of magnetic Geld differing
by Cp/2.

tat
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~'o

Fxo. 12. Composite of successive oscilloscope photographs
taken with the experimental arrangement of Fig. 10(a}. The
rectiGed rf voltage is dc coupled to the oscilloscope and the rf
voltage at the generator is increased from zero in several steps.
The photographs are taken at extremal values of the voltage
modulation. The abscissa represents the Qux CP as shown an/
the appropriate values of rf Aux C,' is indicated.
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at the frequency of the signal generator, and V is the
voltage across the weak link at 30 MHz. Thus some
appropriate average value of the ordinate for a given
voltage at the signal generator measures (C,'/L),
the rf source current, and the variation of V~ as a
function of the af current (C,o/L) measures V. Since
in these experiments the source and the output trans-
former are not independent, one should properly solve
for the voltage using a source current which includes a
term representing feedback from the detecting circuit.
This complexity must be recognized in comparing the
experiments with the calculations of Sec. II, but we will
not treat this in any detail.

Similar experimental results can be obtained by
using the loop-coupled configuration. This experiment
utilizes inductive coupling to the weakly connected
ring and is directly related to the calculations of the
previous section using a Aux source. In the experi-
mental apparatus the only change involved is in the
inductance of the tank circuit. The inductor has E
turns (typically 10 turns) tightly wound on the ring.
Some fraction ~ of the Aux in the inductance Lo is
applied to the ring and the voltage at resonance across
the entire circuit is again to a first approximation

Vr = «ÃQgi+ZC, '/L«N, (74)

where Z is the effective impedance of the coupled
inductor and ring. The experimental results are very
similar to that for the previous direct coupling as
shown in Figs. 11 and 12. Since the rejected voltage,
which is the term of interest in this paper, is ~N times
as large for inductive coupling and ~ can be made ap-
proximately unity, this latter method gives larger
voltage signals. However, aside from the practical
problem of tuning a large number of turns at rf, there is
an inherent limit on how large «%Qadi can become. This
will be discussed below.

3. CoraParisorl, with Theory

Let us relate the observed rf voltages with the pre-
dictions of the previous section. We will explicitly
consider the inductive coupling experiment, but the
discussion applies to the direct coupled, current input
configuration as well. First consider the case i,L)Co/2
(we will neglect y for convenience) and determine that
the signal-generator frequency is tuned to the composite
tank circuit for very low rf levels such that the rf
voltage amplitude displayed on the oscilloscope is
independent of C '. With these conditions the rf output
varies linearly with the signal-generator voltage, and
therefore with C ', up to the value C, ;„' dined in
Eq. (53). The voltage across the resonant circuit at
this point is Vr coLOC, ; '/L«. As——the generator
voltage is increased past this minimum value, the rf
voltage continues to increase linearly except near the
half-quantum values, C '= (k+-', ) Co, at these values of
C,' the rf voltage amplitude lags and increases only

slightly. Thus we observe a series of triangular shaped
negative pulses synunetric about C 0= (k+-, ) Co. The
width of these pulses, in terms of C ', increases until
C '~Li, and the total wave form appears to be a
triangular wave. At C,'= Li, this wave form collapses
to an essentially constant V& a&Loi,/« Th.ere is a small
variation in Vz which is periodic with Co. The observed
voltages should be explained by the calculations leading
to Eqs. (61) and (62) . Neglecting p compared to unity
the calculations apply to the interval Li,)C ')
(Li, Co/—2) and this is just the region described above.

When C,' reaches (Li, Co/—2) and C','= (k+2) Co, C

describes a single hysteresis loop; this should give rise
to an in-phase voltage which we calculate from Eq.
(61) as gi"———2a&C'o/s(1+y). However because this
would generate a voltage across the tank circuit
«1VQBi", there would be a contribution to C,' generated
in the resonant circuit which would reduce C,' below
C, ;„'. Hence this emf is reduced so that Vp)
BLOC; '/«and C,')C, ; '. This is the limiting effect
on 8& mentioned above. Similarly as C,' increases,
C, ;„'will be exceeded for a wider range of C ' but the
generated G~ will be limited and the resultant waveform
will be triangular in nature. In engineering terms, the
voltmeter impedance is not large enough compared to
the source impedance and the measured voltage is
therefore degraded.

The region of validity for Eq. (61) when C,o=
(k+i~) Co actually extends to C,'= (Li,+Co/2) since
the ring traverses only one hysteresis loop up to this
value. For C,')Li, and C,'= kCO there are two hystere-
sis loops and hence the signal voltage is greater than
that for C,o= (k+-', )Co, since the signal voltage is
always negative, the total voltage at the quantum
values is less than at the half-quantum values for
Li,(C,'( (Li,+Co/2) . The period of this voltage
pattern, i.e., between alternate lines of constant rf
voltage is AC, '= Co. In this manner one can understand
the observed variations in the voltage as C is increased.

For Li, (CO/2 no voltages appear when the rf is
tuned to the resonant circuit. However, if we vary the
generator frequency off-resonance, the oscilloscope
pattern as a function of C is antisynunetric about the
resonance frequency. This is because of the inherent
lossless behavior of the weakly connected ring, i.e.,
8&"——0. Therefore, off resonance one observes only
8&'. Again, one cannot compare the experiment directly
with theory without considering the effect of the
resonant circuit on C,'. In general 8~' for a&1 behaves
as G~" for 0.)1. Additionally it varies in amplitude
essentially as Li„starting from C,'=0. In effect,
while 8~" measures the area of the enclosed hysteresis
loops, 8~' measures the average slope of C —C over the
range of C '.

4. I'arametric Iedlctmce

Another directly measurable effect is the variation of
the effective impedance of the ring. This is a direct
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FIG. 13. EGect of the parametric in-
ductance of the weakly connected
ring on the resonance frequency of the
composite LC circuit. The variation
in frequency is shown for a(1 and
a&1 as a function of applied Aux C '.
Note that the ordinate scales differ by
10' for the two cases.
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V = —L' (dI/dl),

where L' is an effective inductance given by

(76)

L'= L(di2/dI) —= —L/1 —(dii/dI) j. (77)

Using the transformations, Eq. (27), we can write this
effective inductance for the loop coupled arrangement
as

L'= L(dC/dC, ) —= —Lt1+(Ldi/dC, ) $. (78)

Viewed as a two-terminal network the effective in-
ductance is the ratio of the voltage t/' across the
terminals and dI/dt flowing into the network. We can
easily recognize that L' is not a constant or even a
simple function of time if transitions between k states
occur. However, following the Fourier analysis of the
preceding section, we can express the inductive term
that relates the voltage at co, V~, and the source current
I. For n(1 only one component of Vi (or Bi) exists
and the effective inductance is real. However for a) 1
there are two components of t/~ and the effective in-
ductance is complex. The imaginary part of L' is an
effective resistance and represents the irreversible
work per cycle.

We have measured the resonance frequency of the
composite tank circuit near 30 MHz as a function of the
rf and dc currents (or fields) . This is plotted in Fig. 13
for the two cases 0.~~1. In each case we use a low rf
level associated with the erst signal patterns of Fig. 12.
The largest variations occur for n(1 since we are
sampling the actual derivative dC/dC, rather than
averaging over a hysteresis loop. The decrease in fre-
quency corresponds to traversing regions where
dC/dC, is nonzero. The frequency also decreases

reRection of the mechanical inductance of the weak
link, analogous to that previously observed with single
Josephson tunneling junctions. '4 We can most easily
see the origin of this effect if we consider the directly
coupled ring and differentiate Eq. (24) with respect
to time,

8= dC./dt= —Ldi2/dt. (75)

Since the independent variable is I and the voltage V
across the weak link is essentially equal to 8, we have

monotonicaBy as the rf field increases due to this same
effective inductance increasing as more transitions
occur per cycle of the rf field. Following the discussion
of the experiments on the stationary states given below,
we will return to this inductance measurement for the
case a&1.

C. Static Magnetization Experiments

At this point we have demonstrated experimentally
the quantum nature of the weakly connected super-
conducting ring. The detailed shape of C versus C

could be inferred only with great difficulty from the rf
data. However we can recognize that these experimental
techniques provide a voltage that varies with ambient
magnetic field or current in a periodic fashion. We now
describe an experiment" utilizing this property to
study the details of the stationary magnetic quantum
states of the ring as proposed in Fig. 2.

Utilizing a voltage pattern of the type shown in Fig.
12, we can convert the weakly connected superconduct-
ing ring and associated electronic circuitry into a
linear magnetic-field detector. This instrumentatiori is
described in the next section of this paper. For the
purposes of this discussion one needs only to know that
we can obtain a voltage directly proportional to the
external magnetic Aux applied to the weakly connected
ring detector. Hence we place our detector ring directly
below and coaxial with the ring which we wish to study.
The ring under study has a field coil closely wound on
it to provide the applied Aux 4 as shown in Fig. 14.
The applied Aux is slowly cycled over several Aux

quanta with a very-low-frequency (VLF) generator.
A voltage proportional to C, is derived and used to
control the horizontal position of an x-y plotter. The
detector ring experiences an applied Aux from two
sources: a fraction of the Aux in the sample ring which
we may call xC, and a fraction of the applied Qux
4 which we call yC . Thus the output voltage from our
magnetometer circuit is proportional to xC+yC„and
this voltage controls the vertical input to our x-y
plotter.

The behavior of C as a function of 4 was observed
for a ring with 1 mrn i,d. and 2 cm long. The adjustable
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FIG. 14. Experimental configuration
used to determine the stationary mag-
netic behavior of a weakly connected
superconducting ring. The upper ring,
wound with a 6eld coil connected to
the very-low-frequency (VLI') gener-
ator is the sample and the lower ring
serves as the magnetometer detector.
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parameter was the critical current of the weak link, i,.
Figure 15 shows the experimental recorder tracings for
several adjustments of i,. The coe%cients x and y are
both approximatelv 2 P 10 '. Since the period C'p

expressed in gauss for this particular ring is approxi-
mately 20 pG, the unit divisions in the magnetometer
output correspond to approximately 0.4-pG steps at
the detector. The resolution is about 10 nG at the
detector or 0,5 pG as the sample ring. Because of this
resolution we require the ambient field from all other
sources to be constant within 10 nG over the period of
one scan. This places a limit on the scan time and
hence on the permissible averaging time constant in the
magnetometer output, circuit; our scan times were
typically 30 sec.

Proceeding from run A through D in Fig. 15, the
critical current of the weak link was sequentially
adjusted to the approximate values 34, 4, —'„and
times Co/L. Each run represents a cyclic variation of
C, over the range shown. The vertical position has been
arbitrarily adjusted for each scan but each division is
one unit. The coordinate axes are not orthogonal in
order to subtract the linear term (yC, ) from the
vertical scale.

In cases A and B the behavior of the ring is almost
perfectly diamagnetic until the critical current is
reached; at these paints the Qux changes discontin-
uously by Co. Hence we see vertical transitions with a
small overshoot which indicates the direction of the
transition. The overshoot is purely an instrumental
effect associated with the response of the magnetometer
circuit. As C, varies in one direction irreversible steps
occur with a spacing Ce. Upon reversing dC, /dh there

is hystereis; the width of the hysteresis in (C'~/C'o)
is 2(Li,/Ce) —1, if we neglect y. This hysteresis repre-
sents irreversible work done by the passage of Aux
across the weak link. When i, becomes just less than
Ce/2L as in case C, the magnetic behavior of the ring
becomes continuous and reversible. Within experi-
mental accuracy dC/dC, is a constant until i reaches
i, ; then dC/dC, increases rnonotonically to a maximum
value greater than unity when C = C,= (0+2)C'e.

At this point i has decreased to zero and reverses sign
as C, continues to change. Thus the Aux changes rapidly
near the half-quantum points, but still reversibly.
Since the graph of C (C,) is analogous to a B(H) curve
for a magnetic material, we can say that near the
quantum values of C the ring is always diamagnetic;
near the half-quantum values and for i, (Co/2L the
ring is paramagnetic.

In cases C and D the slope at C =kCO is larger than
zero, indicating the parameter y is not negligible
compared to unity. From Eq. (8) we expect

l (C /Ce) —k l
= (Li,/Ce) (1+y) (80)

(79)

if y is a constant. Measurement of the slopes give
y=0.17 and 0.56 for C and D, respectively.

The data of Fig. 15 is in excellent agreement with the
linear model outlined in Sec. II for i, )Ce/2L. The
selection rule 6k=~1, AC =~CO is well obeyed. No
noticeable change in slope occurs before the transition.
However the magnetic behavior deviates from the
linear model for i, (Ce/2L. In fact the deviation occurs
only when the applied flux exceeds the value
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for a given state k. In this nonlinear region, symmetric
about C,= (k+-', ) C 0 for any k, the behavior is similar to
that of a Josephson tunneling junction. An interpreta-
tion and implication of his behavior will be discussed in
Sec. V.

In the experiments of Fig. 15 the critical current was
restricted to a small number of (Co/L). As one might
expect if (Li,/Co) is made larger, this simple selection
rule will eventually break. down. Figure 16 shows the
results of increasing (Li,/Co) to the order of 10.
Transitions ( Ak )

=2 and 3 are more frequent than

j Dk
~

=1. However the behavior is otherwise sub-
stantially the same, i.e., transitions are directly be-
tween quantum states and do not include the normal
or open-ring state C=C . Furthermore we do not
generally have transitions to the lowest energy state.
The higher-order selection rules can probably be under-
stood in terms of a perturbation model to be discussed
in Sec. V.

D. Instrumentation

1. Radio-Frequency Detectioe Systems

In this section we describe some of the radio-fre-

quency instrumentation used in these experiments,
including the magnetometer used to obtain the station-
ary magnetic behavior of the previous section. We have
pointed out that the only voltages to be measured with

Fio. 15. Selected data showing the magnetic behavior of the
weakly connected ring with n corresponding to 3-,', ~, —,', and 5

for A, B, C, D, respectively. Both ordinate and abscissa are in
normalized units of C0, the position on the ordinate is arbitrarily
chosen.

a single weak-link superconducting ring are associated
with Aux changes and therefore are proportional to the
frequency involved. However, even at 30 MHz these
voltages are too small to be observed directly with any
available ampli6er and require preampli6cation via
impedance transformation. The I.OC resonant circuit
directly connected to the ring provides a voltage gain
of Q and impedance increase of Q', while the inductively
coupled circuit provides an additional factor for the
effective turns ratio. In addition to voltage ampli6ca-
tion, the resonant circuit determines the bandwidth
of the input stage.

In all the experiments reported in this paper the
LOC resonant circuit was connected to a tuned rf
amplifier; the front end or preamplifier stage is a 6922
twin triode connected in a low-noise cascode configura-
tion. Following the preampli6er stage we used either a
Hewlett-Packard type 460A rf ampli6er and a tuned
detector, or a narrow-band rf ampli6er and detector of
our own construction. The radio-frequency source was
a Hewelett-Packard 606A signal generator. Because the
background voltages involved in these experiments
are so small it is not necessary to use an rf bridge in
front of the preampli6er. In fact, because the system is
so nonlinear, it is not even desirable to use a bridge
circuit.

A convenient modi6cation of the rf system which
was used in connection with the magnetometer and
Ineasurement of the parametric inductance is the elim-

ination of the signal generator and conversion of the
rf ampli6er into an oscillating detector. Again because
of the nonlinear nature of the superconducting ring
and the low voltage and current levels required, the
choice of oscillator is important. We have used a
modi6cation of the Robinson circuit in making a
marginal oscillator. The oscillator consists of the same
6922 low-noise preampli6er, two stages of tuned rf
ampli6cation followed by a pentode rf limiter and grid
detector. The rf output from the plate of the limiter
tube is attenuated and connected through a small
variable capacitor (~0.01 ppF) to the tank circuit
at the grid of the preampli6er. Hence the average rf
level of the oscillator, and therefore the rf current or
fIux applied to the ring, is determined by the setting
of the limiter voltage and the rectified voltage appears
at the grid of the limiter tube.

If Li, )CO/2, there is loss in the weakly connected
ring and the oscillator level is sensitive to this. One
obtains the same detector ouput as with the separate
signal generator and receiver arrangement as shown in

Fig. 12. However if Li, (CO/2, there is no intrinsic loss
and no variation in voltage should appear at resonance.
Some signal as a function of the ambient field can be
observed because of the frequency shift that occurs with
varying field. In constructing a magnetometer, or more
generally a galvanometer, using the voltage sensitivity
of a marginal oscillator we set Li,)Co/2. If one wished
to use the frequency shift due to the parameteric in-
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20

FIG. 16. An example of the magnetic
behavior of a weakly connecting ring
when a is of the order of 10.The recording
shows nine cycles of the external field 4 .

4
IO

@o

ductance of the ring as the primary measurement, the
greatest sensitivity would be achieved with Li, (Cp/2.

Z. Magnetometer

The block diagram of the rf magnetometer is shown
in Fig. 17. The marginal oscillator is adjusted to give a
voltage-versus-field pattern similar to the lowest curve
in Fig. 12. An audio-frequency modulation (167 Hz
in this case) is applied to the superconducting ring and
the amplitude is adjusted to modulate the Qux by
C'p/2, peak-to-peak. The resulting amplitude modula-
tion of the marginal oscillator is rectified, amplified in
an audio amplifier, and converted to a dc voltage in a
synchronous detector. The output voltage from this
audio phase detector is essentially the first derivative
of the rf voltage versus @„dV/dC, . When this signal
is fed back to the coil around the ring through an inte-
grating amplifier, the magnetometer will "lock"
on one of the extrema of the V—C, curve. Whether this
locking point is a voltage maximum (quantum value)
or minimum (half-quantum value) depends on the
total phase shift of the feedback loop. In this locking or
servo mode the output voltage at the phase detector is
maintained zero as C, varies. The feedback current and
hence the output voltage of the integrator is a linear
function of C, and the average total external Qux is a
constant equal to kCp, Lor (k+—', ) Cp depending on the
locking point) as C, varies. Hence we see that the feed-
back current produces a Qux which just cancels any
variation in the applied or ambient Qux from the locking
value, and therefore a measurement of this current
measures the variation in C,. All values of applied Qux
which lead to a maximum (or minimum) in voltage
are equally acceptable locking points. However the
range of this linear analog measurement is limited by
the output range of the integrating amplifier. In

MARGINAL OSCILLATOR

1
I gl

I lE
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LIMITER
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DFTECTOR
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167-IIz
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RESET J

SUPERCONDUCTING
RING
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FIG. 17. Block diagram of the magnetometer using the mar-
ginal oscillating-detector and field locking scheme.

practice a high-resistance feedback circuit is used to
minimize the effect of thermal and contact emf's
so that the output voltage is the limiting value.

This instrument provides a linear measurement of
the incremental value of the magnetic field. With an
appropriate coupling inductance and resistor it could
equally well serve as a high-sensitivity arruneter or
voltmeter with an exceptional figure of merit. It is
readily appreciated that this galvanometer is easily
adapted to a digital instrument providing a further
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stationary states themselves as with the transitions
between states. The transitions between states demon-
strate either an intrinsic irreversibility or a change in
the microscopic ordering. In this section we shall
discuss some modi6cations to bring the theory into
better agreement with the data and also some of
the general implications of the experimental results.

From the data of Fig. 15 we can plot i(C,), s(C)
and the corresponding free energy, expressed by Eq.
(11), as shown in Fig. 18. We note that for the re-
versible behavior as shown in C and D, the free energy
at the half-quantum values is less than in A and B.
For the irreversible behavior the energies of adjacent
states k, 4+1 are degenerate at the half-quantum
values, but apparently the point C = C,= (k+-', ) C's, for
Li, (Cs/2, is a lower-energy state." It is convenient
to suppose that when Li, becomes smaller than Cs/2
some off-diagonal perturbation couples the degenerate
states. This perturbation can then resolve this de-
generacy, producing one lower-energy state which we
observe and another higher-energy state which has not
been observed, This perturbation term is obviously a
nonlinear function of (i—i,) and of (2Li,/Cs) and
probably has some general iP C form. If this is the case,
then near the half-quantum values k is not a good
quantum number and the system is more properly
described by some new quantum numbers which we
have not yet discovered.

Some conceptual difhculties arise because at pre-
cisely C = (k+-,') C'p, when this perturbation should be
maximum, i (and j) are zero. However we must
realize that we are measuring the time-averaged values
of the variables i, 4, and C,. One can show experi-
mentally that the addition of an oscillating external
flux (or current) at rf or microwave frequencies will

yield experimental C (C,) curves which are time
averaged over the amplitude of the oscillating Qux.
By this trick we can artificially convert irreversible
curves of the type A and B to curves very similar to
C and D. In a very real sense the spectrum is shifted
from zero frequency to the frequency of the oscillating
Q.elds essentially as described in Sec. II and observed in
Sec. III. We are then led to hypothesize that there
may be oscillating currents, even at C =C,= (k+rs) Co,
which switch the ring between the time-independent
states k and %+1. The frequency would probably be
something near 6/Cs. This will be discussed further in
connection with the microscopic theory.

The macroscopic irreversible behavior of these weakly
connected superconducting rings has a direct relation to
the general problem of Qux-Qow resistance in super-
conductors. When the state changes irreversibly from

"It is very interesting to note that the behavior of a super-
conducting ring with one weak link or Josephson tunneling
junction is mathematically analogous to the de Haas —van Alpen
oscillations in the magnetization and magnetic Qux density in
diamagnetic metals. The authors wish to thank A. S. Joseph for
pointing out this similarity.

j=mev, (82)

where n is a constant. The data of Fig. 15 C, D are
inconsistent with this linear theory but can be inter-
preted to provide a function e(o) . Obviously we take
e/2 to be the number of Cooper pairs and v to be the
pair velocity. Using strictly local relations and a
uniform current density and velocity as was assumed
in Sec. II, we have

(83)

z= sevo.

Therefore. except for a constant scale factor in the
abscissa, ( tm/e), Fig. 18 show—s i as a function of o.
From this we can calculate n(o) as a function of v

k to k&1, the Qux in the ring changes by ~CO. This is
equivalent to one Qux quantum crossing the weak link
and the associated Qux-Qow resistance is given by
VL/Cs where V is a function of time. If the flux-flow
rate is v Qux quanta per sec, then the resistance at the
frequency v is obtained by using the Fourier com-
ponent of V(t). From Eq. (47) we have

R(v) =2uL/(1+7) .
This intrinsic loss occurs in idealized Qux-Qow in a

type-II superconductor without pinning. The possi-
bility of conservative Qux-Qow for a weakly connected
ring depends on the load line 2Li,/Cs as previously
shown. This cannot occur for an isolated superconduct-
ing film because one cannot satisfy the load-line
condition, i.e., one cannot provide a voltage source at
dc except by means of a superconducting source. Let
us inject that the proper inductance to be used in
computing this load-line condition is the inductance at
the frequency v of the Qux change and not the super-
conducting or dc inductance. If the eGective inductance
is frequency-dependent and therefore has a conven-
tional resistance, then the ordinary loss term also must
be included. An example of this would occur if the hole
in the superconducting cylinder were ulled with a
normal metal, or if the weak link were shunted by a
normal conducting link as well as by the superconduct-
ing ring. In either case the fundamental time constant
for flux to change would not be approximately Cp/6,
but would be limited by the geometry and conductivity
of the normal conductor. Hence the speed of the
transition is decreased and one may operate on non-
quantized hysteresis loops. Thus the intrinsic speed
of the ring can be altered and the Qux periodicity will
appear to become a function of frequency; the zero-
frequency period will always be Co while the higher-
frequency period will appear greater than Co.

Let us look at what information about the micro-
scopic model we can derive from our experiments.
We have assumed in our linear model
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where

1=lii+li,

ln= (4', [ (e/m) A ) +,), (86)

ii = gi
~

(e/2m) (pb(x) —5(x)p) (4,)

+ (e
~

(e/2m) (p8(x) —8(x)p) )et). (87)

Here +, is the BCS ground-state wave function and%~

FIG. 19. Graph of
e(v) calculated from
the curves C and D
of Fig. 18. The scale
is in arbitrary units.

as shown in Fig. 19. Qualitatively this curve agrees
with the theoretical curve of the current induced de-
paired state as calculated from the BCS theory. ' '"
Since fv/2 is the pair number, when I begins to decrease
we are presumably entering the depairing state. At the
limiting velocity e—+0 implying no superconducting
pairs exist. However, the link still does not have the
properties of a normal metal as shown by, the slope
di/dC, . No doubt this simple picture is invalid for
this regime. In the sense that e is an order parameter
at small values of e, there must be a more general
order parameter which is still valid for large e. Because
the f1=0, v=0, C = (k+-', ) Ce state is still coherent, the
order is preserved although probably in some diferent
variable. A possible description may be in terms of a
complex parameter, j= ) if

~
e&, where the usual I is

Rej, p is 2 mvt/lit, and $ is the coherence length.
One can think of the nonlinear behavior of i(C) in

a manner analogous to molecular dia- and para-
magnetism. Using BCS wave functions one can com-
pute the current via the usual decomposition into
diamagnetic and paramagnetic components, '~

is a 6rst-order perturbation of the BCS state function
which is linear in the field variable A, and 8(x) is
the Dirac delta function. In the limit of zero mo-
mentum, i.e., spatially uniform current density, iI
vanishes identically'~ and we have the linear term
for i~. However because of the weak link we have
established a spatial dependence of j and therefore
introduced a wave vector q~t '. In this casein does not
vanish but is linear in the field C (or the vector po-
tential A) when computed in second order. This
should relate to the experimental change in slope of
dC/dC, at C=C', =kCe from zero to y(1+y) and. is
formally analogous to a second-order paramagnetism.
The linear behavior of ~~ and ip are both calculated
with zeroth-order, i.e., ground-state, BCS wave func-
tions. However, as the current, and hence the pair
velocity, increases we can expect the wave function to
change with ~i'� ) decreasing and )ir )

increasing. A
calculation based on this perturbation approach may
have only limited validity near the half-quantum
points where i—+0.

In the regime Ii,(Cv/2 the half-quantum points are
positions of energy maxima. Since the electromagnetic
stored energy is zero, the increase in the free energy of
Fig. 18 corresponds to an internal energy change. In
the BCS framework the only mechanism for increasing
the energy is via quasiparticle excitations of minimum
energy 2d, per electron pair. This increase AG should be
of the order of @crt'. The persistence of this zero-
current (at zero frequency) state further requires that
these quasiparticle excitations are not independent but
are themselves coherent. The presence of a large number
of excitations probably produces a change in the gap 6
itself and may result in a gapless condition in the weak
link. When the zero-current, half-quantum condition
exists the situation is in some manner equivalent to a
vortex centered on the weak link. At the center of a
vortex in a superconductor the order parameter and the
gap are both zero. 'a Thus the functions i(v) and e(v)
for the weak-link. ring are approximately related to
i(r) and N(r) for the radial dependence of current and
order parameter for a vortex' "by e r-'.

'6 R. Parmenter, RCA Rev. 26, 323 (1962).
'~ C. Kittel, QNuetgm Theory of Solids (John Wiley R Sons,

Inc. , New York, 1963).
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