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Starting with the quantum-noise-source model of a maser developed in the fourth paper in this series
and specializing to the case in which all atomic parameters except the population diGerence vary rapidly
compared with the field, an equation is developed for the density operator p(b, bt, D, 1) that depends on the
electromagnetic Geld variables 6, bt and the population di6'erence D. The corresponding equation obeyed
by the density matrix p, (D, t) in the "r& representation" is obtained. The antinormal ordering correspond-
ence p(b, bt, D, t) =&tp&'&(P, P*, D, 1) Pin which P is replaced by b andP~ by bt with all bt s to the right of
all b'sg defines an associated classical function p«&. The equation for dp/8$ corresponds to a Fokker-Planck
equation for sp«&/st Under . the Markoffian assumption, an associated classical random process is uniquely
dered. The quantum-mechanical average of normal-ordered time-ordered operators is given by simple
integrals over the corresponding classical distribution functions. For one-time operators this result is well
known. For two-time operators, a proof is given using the quantum-regression theorem of the second paper
in this series. Amplitude and phase fluctuations are discussed by rewriting the Fokker-Planck equation in
the variables I, p, D, where P=P" exp( —iP). The Langevin description of the classical random process
associated with p& & (p, p", D, t) is used to make a classical adiabatic elimination of D. The resulting equa-
tions for p& & (p, ti*, t) and p (b, bt, t) are shown to agree with the corresponding results of the ninth paper in
this series, obtained by a more diKcult quantum adiabatic elimination of D. The equation for p(b, b, t),
rewritten in the n representation agrees with corresponding results of Scully and Lamb.

1. INTRODUCTION

Summary of the Author's Previous Work

N paper QIV of this series, ' the active atoms plus
... the radiation field in a laser was treated as a system;
reservoirs were eliminated and replaced by dissipation
coefficients plus (noncommuting) random forces. This
quantum Langevin description could be applied im-

mediately, using quasilinear techniques, to a discussion
of phase noise in' QV and correlated intensity and
population fluctuation noise in QVn. A quantitatively
correct description of laser noise is given by such quasi-
linear techniques away from threshold, and, by a
judicious choice of variables, qualitatively correct re-
sults are obtained even in the threshold region. To
obtain quantitatively correct results everywhere, in-

cluding threshold, one must use distribution-function
(Fokker-Planck) techniques in classical problems and
density-operator techniques in quantum mechanics.

To obtain density operator equations, the author and
Louiseli& in QIX specialized to the case in which all

atomic time constants are fast compared to the electro-
magnetic 6eld time constants. In this case, the field

alone should act in a MarkoS. an manner, and one

' The complete series by M. Lax is QI. Phys. Rev. 109, 1921
(1958);QII. Phys. Rev. 129, 2342 (1963);QIII. J. Phys. Chem.
Solids 25, 487 (1964); QIV. Phys. Rev. 145, 110 (1966); QV. in
Physics of Quantum Electronics, edited by P. L. Kelley, B. Lax,
and P. E. Tannenwald (McGraw-Hill Book Company, Inc.,
New York, 1966), p. 735; QVI. (with D. R. Fredkin, to be pub-
lislmd); QVII. J. Quantum Electron. QE3, 37 (1967); QVIII.
H. Cheng and M. Lax, in Quantum Theory of the Solid State,
edited by Per-Olav Lowdin (Academic Press Inc. , New York,
1966), p. 587; QIX. (with W. H. Louisell) J. Quantum Elec-
tron. QE3, 47 (1967). Note: Papers QVII and QIX were pre-
sented as part of one long talk at the Phoenix International
Conference on Quantum Electronics, April 1966.
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could hope to obtain an equation for c&p/&)f where
p= p(b, bt, t), the density operator, would be a function
of the field variables alone. Instead of proceeding di-
rectly to this end, we found it more expedient to intro-
duce an associated classical function p&'&(p, pt, t) by
means of the correspondence

p(» b' f) =@0"(p, p*, f),

where the antinormal ordering operation 6 means
replace P by b and P* by bt placing all operators in
antinormal order (all bt's to the right of all b's) . lt was
then easier to obtain an equation for &)p&'&/Bf than for
&)p/c&f. Moreover, this equation had Fokker-Planck form
corresponding to a particular Markoff random process.
Over a broad region including threshold, this classical
random process was shown in QIX to reduce to that
of a (classical) rotating wave Van der Pol oscillator.
This permitted the quasilinear treatment of the Uan
der Pol oscillator' in V, and the exact numerical so-
lutions for such an oscillator obtained by Hempstead
and Lax in. VI to be applied to the laser problem.
Indeed, it is this work that permits us to assert with
confidence that judicious quasilinear methods are valid
away from the immediate vicinity of threshold.

From our point of view, the equation for Bp&'&/dt is
more important than that for Bp/'&)t since we have shown

' V refers to the Gfth paper in the author's series on classical
noise: I. Rev. Mod. Phys. 32, 25 (1960); II. J. Phys. Chem.
Solids 14, 248 (1960); III. Rev. Mod. Phys. 38, 359 (1966);
IV. Rev. Mod. Phys. 38, 541 (1966);V. Bull. Am. Phys. Soc. 11,
111 {1966)and (to be published); VI. (with R. D. Hempstead)
Bull. Am. Phys. Soc. 11, 111 (1966), and thesis by R. D. Hemp-
stead, Department of Electrical Engineering, Massachusetts Insti-
tute of Technology, 1965 (unpublished) and Phys. Rev. (to be
published). Some of the key curves of VI have already been pre-
sented in V, QVII, QIX, and Fig. 1 of this paper.
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in QIX (at least for one- and two-time operators) that
the quantum-mechanical average of a time-ordered
normal-ordered operator is given by an ordinary inte-
gration over the appropriate distribution function of
the associated classical process described by p& ). More-
over, normal-ordered (with all b's to the right of all
bt's) time-ordered operators have been shown by
Glauber' to be just those appropriate to detection
schemes in which photons are absorbed. If we wished
to describe stimulated emission counters, such as those
discussed by Mandel, 4 we could be concerned with
antinormally ordered operators, and would find it
necessary, then, to introduce the normal ordering
correspondence

p(b, bt, f) =+Pi-&(P, P*, f) (1.2)

Contributions of the Present Paper

In the present paper we generalize QIX to permit
the fractional population difference D defined by

D=/t/ 'Q L(astas) —(a,t—a,) (1.3)

to vary at a rate that is comparable to the photon decay
rates. All other atomic responses are assumed, as before,
to be fast. The consideration of this problem has three
advantages: (1) It is the simplest generalization that
permits us to include the population dynamics of the
laser in addition to that of the field. Moreover, the
methods of this paper can be readily generalized to
permit the explicit inclusion of several populations, and
we shall do so in QXII. (2) The adiabatic elimination
of D in QIX presented some ordering difhculties. In
order to be sure that the previous calculations were
correct (and indeed we detected an error in the first

' R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys. Rev.
130, 2529 (1963);131, 2766 (1963).

~ L. Mandel, Phys. Rev. 152, 438 (1966).

in which the normal ordering operation X replaces P
by b, P* by bt, and places all operators in normal order.
Our methods of calculation can, of course, be applied
to p&"' just as easily as to p(').

By using an ordering correspondence between p and
a classical c-number function, we have eliminated
quantum-mechanical difhculties, and reduced our prob-
lem to that of a classical (nonlinear) random process.
Time-ordered, normal-ordered operator products have
mean values that (we shall show in QXI) can be
calculated by taking corresponding multitime averages
in the associated classical random process. The proof
of this result in QIX made use of the quantum regression
theorem. The theorem was derived in QII. (See also
QIV Sec. 2). Because of its central importance, a new
brief derivation of the regression theorem will be given
later in this section.

draft of QIX), we shall obtain the Fokk.er-Planck
equation for the variables b, bt, and D. The adiabatic
elimination of D can then be performed entirely in the
classical domain after the associated classical function
has been set up. This avoids all difhculties of ordering.
(3) In Paper QVII on the rate equations and amplitude
noise in lasers, we set up a description in terms of the
number of photons and the population difference and
succeeded in obtaining a Fokker-Planck equation for
these variables. However, intensity correlation experi-
ments of the Hanbury Brown-Twiss variety' measure
not the number correlation (bt(f)b(t)bt(0)b(0)) but
the intensity correlation (b" (0)bt(f) b(t) b(0) ). The dis-
cussion of such correlated intensity fluctuations in Sec. 9
of Paper QVII is based entirely on the associated classi-
cal random problem to be derived in the present paper.
Thus one function of the present paper is to derive
the starting equations QVII(9.5)—(9.9).

dDTr 3E b, bt, D p b, bt, D, t . j4

Since D commutes with b and bt it can be regarded as
a c number in the subsequent discussion. Strictly
speaking, the integral over D in (1.4) should be a sum
over the possible discrete values of this population
diGerence, but these are so closely spaced that we
shall for simplicity replace such a sum by an integral.
It is now possible to make the same antinormal corre-
spondence between the density operator and its associ-
ated classical function as was used in QIX:

p(b, O', D, f) =apt &(P, P*, D, f). (1.5)

In (1.5) the P and P* are numbers that are to be
replaced by the corresponding operators b and b~ follow-

ing the antinormal ordering rule mentioned above, The
population difference D can be placed in any position.
Similarly, an arbitrary operator M can be associated
with a classical function by means of a normally
ordered correspondence

M (b, bt, D) =ST&-&(P, P*, D),

~In the 6rst draft of QIX, the diffusion coefficient Dpp was
found to vanish, contradicting (9.10) in the present paper. This
error arose because the commutator Pb, Jg of QIX (3.14) was
neglected. This term is of order (7r/P)bJ 10 'bJ relative to
the drift terms. But as discussed in Sec. 10 of this paper, the
diffusion terms are of order s./I's~10 s times the drift terms.
Hence the drift terms must be computed to an accuracy s./Ps
since the drift correction terms arising from commutators can
take the form of diffusion terms, as shown in Sec. 10 of this paper.

6 R. Hanbury~Brown and R. Vf. Twiss, Proc. Roy. Soc. (Lon-
don) A242, 300 (1957); A243, 291 (1958).See QVII Ref. 28 for
additional references.

Operator Averages

If we define a density matrix that is a function of
b, b~, and D, we can take the average of an arbitrary
operator in the form

&~(f) )= &~l b(f), bt(f), D])
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in which after the operator replacement all bt's are to
be shifted to the left and all b's are to be shifted to the
right. We now take the well-known theorem that the
trace of the product of a normally ordered and an
antinormally ordered operator can be evaluated by an
integral over the product of the associated functions
and generalize the proof Lsee, for example, QIX(1.4)—
(1.7) j merely by adding D to obtain

(M(t))= dD Mt"&(P, P*, D)Pt'(P P* D t)d'P/rr.

(1.7)

Thus the lnean of a quantum-mechanical operator can
be obtained in a nearly classical way by integrating a
classical function against a "classical distribution func-
tion. " If by means of the equation

p(» &' » t) = P(P, D, t) I
P)d'P&P I (18)

we introduce a slight generalization P(P, D, t) of the
Glauber -Sudarshan diagonal weight function, then the

usual proof (see, for example, QIX Sec. 1) leads to

&M(t))= dD M'"'(P, P*, D)P(P, D, t)d'P. (1.9)

Comparison with (1.7) then leads to the same relation-
ship

pt'l (P, P, D, t) = 7rP(P, D, t) (1.10)

as found in QIX in the absence of D. Since P(P, D, t) =-

P(P, P*, D, t) obeys the same equation as pt'&, we shall
use the simpler P notation in what follows and under-
stand that a dependence on p implies a dependence on
P* as well. Moreover, Eq. (1.9) with M = 1 tells us that
P(P, D, t) is normalized.

Associated Pokier-P1anck Equation

One of the principal results of the present paper is a
Fokker-Planck equation for the associated classical
function. In order for the reader to understand the
remarks that follow it may be helpful to have the form
of this equation in mind, although at the moment the
meaning of the parameters is not necessary. We find
that the associated classical function obeys

BP(P, P*, D, t) /Bt = B(PAp*) /—BP~ B(ApP) /B—P B f (w20(1 —dD) —(I'—s+sr) D)P rrPDPP* }—/BD

+(yn+srND) B'P/BPBP* rrB'(PDP') /BP—*BD rrB'(PDP) /BPB—D

+ (2N) 'O'I Lw&0(1 —dD) +I'2D+srD jP+7rPPP*}/BD'

+rrBs (DP) /BPBP+BD (sr/2N) Bs (PD—P) /BP (BD)2 (1.11)
where

Ap= ',y(1 in) p+ ', sr—(1-in—)pND;-— (1.12)

The parameter y is a photon decay constant, 72 is an
atomic decay rate, w20 is the pump rate, x is the rate
constant (3.4) such that the rate of emission of photons
is x times the population difference times the number
of photons plus one. The parameter d is to be set equal
to unity, If one wishes to neglect depletion then this
parameter can be set equal to zero. The parameter o.

is a measure of detuning. All of these parameters are
dined precisely in Sec. 2 by the role they play in the
Langevin Eqs. (2.1)—(2.8) .

Quantum Regression Theorem

The density matrix, unfortunately, only supplies
information concerning operators at one time, whereas
the questions we wish to answer concerning noise in the
electromagnetic 6eld require means of products of
operators at at least two times. To overcome this

' R. J. Glauber, Ref. 3 and in Qttamtlta OPtics ttnd Etectrortics,
edited by C. DeWitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach, Science Publishers, Inc. , New York, 1965),
p. 63.

8E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963); in
Proceedings of the Symposium on Optical Masers at the Poly-
technic Institute of Brooklyn, 1963 {John Wiley @ Sons, Inc. ,
New York, 1963), p. 45. See also C. L. Mehta and E. C. G.
Sudarshan, Phys. Rev. 138, 8274 (1965).

diKculty, we invoke the quantum regression theorem
of QII. This theorem states Lsee QII(6.4)—(6.7)j that
if the mean of an arbitrary system operator M at time t
can be expressed in terms of the means of a set of
system operators M„at an earlier time 3' by means of

&M(t) )=Z o.(t, t') &M.(t') ) (»t'), (1 13)

then an arbitrary two-time correlation involving the
operator M any other system operator S can be written
in the form

&M(t) N(t') )= go„(t, t') &M„(t')N(t') ), (1.14)

where the same numerical function O„(t, t') enters the
two-time correlation as was previously involved in the
mean equation of motion. The theorem can easily be
generalized to yield

&g(t') M(t) N(t') )=g O„(t, t') &g(t') M„(t') N(t') ),

(1.15)

where Q is another system operator. In Eqs. (1.13)—
(1.15) the time dependence of the operators is induced

by the full Hamiltonian including the system-reservoir
interaction.
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d(M„)/dt= (A„) (1.16)

are closed by the A„being linearly expressible in terms
of the same set JM„). In addition to the dissipative
terms introduced into (A„), the reservoir produces a
random force acting on the system:

At 6rst glance it may be thought that our regression
theorem is either obvious or false. Indeed it is true that
if (1.13) is valid as an operator equation (omitting the
averaging brackets), then clearly it can be multiplied
by 1V(t') and a subsequent average taken. In this case,
the theorem is obvious. If, for example, we had a com-
plete system and no reservoir, the Heisenberg equation
of motion for M could be valid as an operator equation,
and (1.13) would represent the time integral of this
equation, and would also be valid as an operator
equation. A direct proof of our theorem for this pure
system case was given in QII(3.14), (3.22), and (323) .

If (1.13) is not an operator equation then (1.14) no
longer follows directly from (1.13), but it is not neces-
sarily false. Indeed QII showed that (1.14) is correct
provided only that the density matrix of system and
reservoir could be factored at the starting time t'.
Although such a factorization is often performed in
deriving Markoffian equations of motion, it is not
equivalent to stating that the system is Markoffian.
It is therefore desirable to restate our theorem as
follows.

Quantum Regression Theorem If M.is a member (or a
linear combination) of a complete set of system Markman
variables M„ then (1.14) and (1.15) follow from (1.13).

Our set is understood to be complete if the mean
equations of motion

set is complete, this system of equations can be inte-
grated up to produce a set of equations that includes
(1.14) . LThis proof is closely related to using equations
QIV(2.11)-(2.16) in reverse order. )

Further discussion of the regression theorem and
quantum-classical correspondences will be given in QXI.

Density-Matrix Evolution

The solution of the Fokker-Planck equation (1.11)
subject to a given initial condition can be written in the
form

P(P, D, t) = P(P, D, t
~

P', D', t')

X P(P', D', t') d'P'dD', (1.20)

where the Green's function can be expanded in terms
of eigenfunctions in the form

P(P, D, t
~

P', D', t')

=P exp) —A&(t —t') jP&(P, D) @&(P', D') *. (1.21)

The discussion here precisely parallels that in QIX,
with the simple addition of the parameter D. In par-
ticular we again set up the correspondences

P (b, bt, D) =7ro,/P (p, p*, D)], (1.22)

g((b, bt, D) =KL(l. )(P, P*, D) *j, (1.23)

which permit us to write the density matrix in the form

p(b, bt, D, t) =g exp) —A. &(t—t') j
X Pi(b, b", D) Q)(t') ), (1.24)

dM„(dt =A„+F„(t). (1.17)
where

In a Markoff system, the forces can have no memory
and thus must obey QIV(2.3):

(F„(t)Z(t') )=0

for all p and any system operator X. But this last
equation can be rewritten as

Q, (t )) f k~(p''D=—') "p(p', W t')d, 'p'&8'

dD TrLy, (b, b&, D) p(t') ].

Two-Time Averages

(1.25)

d(M„(t)ill'(t') )/dt= (A„(t)E(t') ), (1.19)

i.e., a differential form of the regression theorem. If the
Making use of (1.9), the average of an arbitrary

operator can then be written in the form

(M(t) )=g expL —A~(t —t') j M&") (P, D) P&(P, D) d'PdD(y&(t') ). (1.26)

Using our quantum-regression theorem (1.15), we can now write

(1.27)

If the complete operator on the left-hand side of (1.27) were in normal order this would probably mean that Q
involved only b 's and X involved only b's. In this case, with the operator p& written in normal order, the operator
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on the right-hand side of (1.27) is still in normal order. In this case, we can again invoke (1.9) and write the
average on the right-hand side of (1.27) as a classical integration. These conditions are met by the two most
important averages associated with the electromagnetic field. For these we can write

(1.28)

(b'(O) b'(f) b(f) b(O) ) =Z exp( —A«) I P I'P~(P, D) &'PdD
I

O' I'&~(P', &') *P(P', D': O) d'P'dD' (1 29)

These integrations are precisely the ones that would
have been performed if one took. the classical random
problem literally. Indeed, we shall show in QXI that
classically performed averages always yield correspond-
ing quantum-mechanical averages, namely, those aver-
ages associated with appropriately time-ordered and
normally ordered operators.

Relation between Our Work and That of Other Authors

The correspondence between a density matrix and a
classical (c number) function is not new, nor unique.
As examples we mention the work of Wigner, Husimi,
Moyal, and Klauder. ' The particular correspondence
used here (p, p*—+b, bt) for the electromagnetic 6eld
has been emphasized by Glauber~ and by Sudershan,
and extensively reviewed and exploited by Mandel and
Wolf" and others. In general, the above-mentioned
work' deals with a closed physical system, rather than,
as we do, with a system in dynamic interaction with
a reservoir. For such closed systems, the first authors
above' have concerned themselves with finding the
classical dynamical equation from the quantum equa-
tion for Bp/Bf.

In the electromagnetic-field case, the free-held Hamil-
tonian is so simple that the second set of authors' "
have in general not sought to obtain BE(P, f)/Bt, but
instead have usually chosen to work in a Heisenberg
representation in which E(p) is independent of the
time, and the field operators b(t) and bt(t) are given
a free-field dependence. LKelley and Kleiner" have
criticized but continued to use free-field operators. $
Plausible guesses for P(p) have then been made by
Glauber, ~ Morawitz" and Lachs"

Our own procedure exploits the antinormal corre-

9 E. P. Wigner, Phys. Rev. 40, 749 {1932);K. Husimi, Proc.
Phys. Math. Soc. Japan 22, 264 (1940); J. E. Moyal, Proc.
Cambridge Phil. Soc. 45, 99 (1949); J. R. Klauder, J. Math.
Phys. 4, 1055 (1963);S, 177 (1964); Phys. Rev, Letters 16, 534
(1966); J. McKenna and J. R. Klauder, J. Math. Phys. 5, 878
(1964); J. R. Klauder, J. McKenna, and D. G. Currie, ibid. 6,
734 (1965).

'0 L. Mandel and K. Wolf, Rev. Mod. Phys. 37, 231 (1965)."P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316
(1964).

» H. Morawitz, Phys. Rev. 139, A1072 (1965).
"G. Lachs, Phys. Rev. 138, B1012 (1965).

spondence" (1.1) to obtain an equation for BP(P, t) /Bt.
Our E(P) is then the steady-state solution of this
equation, and the solution of this equation subject to
initial conditions P(Pf

~

P't') is used to calculate the
desired phase and amplitude fluctuations. )That
P(Pt

~

P't') is also the conditional probability depends
on the field alone being Markofiian. )

To obtain the equation for BP(P, t) /Bt )or
BP(P, D)/Bfj we need a physical model for a laser:
field+atoms+reservoir, rather than some plausible
estimate of the Geld statistics. The quantum noise
model of QIV provides us with the necessary starting
point by eliminating the reservoirs and replacing them
by dissipation coefficients plus random noncummuting
noise sources. This model is essentially identical to that
used by the Haken school. "" We use the Einstein
relations to determine the second moments of all our
noise sources, whereas Haken et al.' give an explicit
calculation in agreement with ours for atomic sources,
and take over Senitzky's" sources for the field. Since
our models are essentially equivalent they can be ex-
pected to yield the same results at the quasilinear level.
There will, however, sometimes be differences between
the results of our calculations based on a classical
function that is exactly related to the density matrix
and Haken's "semiclassical" procedure of taking over
quantum-mechanically calculated diffusion coefficients
and inserting them ad ho@ into a Fokker-Planck equa-
tion. LSee Risken, Schmid, and Weidlich. isj

Since Scully and Lamb' use a density-matrix ap-

'4 Most authors refer to the Glauber-Sudarshan weight function
P(P) of (1.8) as normally ordered since it is useful in obtaining
the mean of normally ordered operators as in (1.9). This is a
matter of taste. It is important, however, to recognize that al-
though our antinormal ordering connection (1.1) is eqrifsafenf to
the Glauber-Sudarshan resolution (1.8) of the density operator,
the antinormal correspondence (1.1) is a particularly convenient
way to do calculations. The calculations in QIX and QX were all
done using {1..1) and ignoring (1.8) because the equivalence be-
tween these two viewpoints was not realized until the calculations
were essentially complete.

"H. Haken, Z. Physik 190, 327 (1966); H. Sauerman, ibid.
188, 480 (1965); 189, 312 (1966};H. Risken, C. Schmid, and
W. Weidlich, Phys. Letters 20, 489 (1966)."I. R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642 (1961).

'7 M. Scully and W. K. Lamb, Jr. , Phys. Rev. Letters 16, 853
(1966}.See also M. Scully, W. E. Lamb, Jr., and M. J. Stephen,
in Physics of Quantum Ftectroeics, edited by P. L. Kelley, B.Lax,
and P. E. Tannenwald (McGraw-Hill Book Company, Inc. ,
New York, 1966}.
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proach and adiabatically eliminate the atoms, our
results should be in agreement with theirs whenever a
careful comparison is made. Such a nontrivial com-
parison is made in Sec. 10 Lby translating our equation
for P(P, t) into one for the density matrix p„„(t)7
and agreement is indeed found.

Our procedure is more general than the Scully-Lamb"
procedure insofar as we can handle situations in which
some (or all) of the atomic rates are slow compared to
the field. In this paper, we permit the population
difference D to be slow, and in QXII we shall permit
both upper- and lower-state populations to equilibrate
at arbitrary rates compared to the field.

When all atomic-rate constants are fast compared
to the field, P(P, t) and p „(t) constitute two ways of
viewing the same situation. Which is preferable de-
pends on the question asked. Number fluctuations:
(bt(t) b(t) bt (0) b(0) ) are most simply described in terms
of p„„(t),but intensity correlations (bt (0)bt (t) b (t) b (0) )
(or other time-ordered, normal-ordered operators) are
more simply described in terms of P(P, t) .

As a practical matter, P(P, t) obeys a differential
equation and p „(t) obeys a difference equation. Over
the broad region, including threshold, for which the
Van der Pol description of QIX is valid, the differential
equation for P(P, t) can be scaled both in P and in t so
that only one dimensionless parameter p remains (the
dimensionless net pump rate). Thus numerical calcu-
lations need only explore a one-parameter space. On
the other hand, since e is discrete, it can not be scaled
except in an approximate sense, and numerical calcu-
lations for p„„(t) would, in principle, have to explore a
two-parameter space.

Green's-function methods such as those used by
Korenman" are necessarily moment methods with an
approximate factorization valid above or below, but
not near, threshold, as discussed in QVI and V.

The self-consistent approach of Picard and Willis"
assumes a factorization of the density matrix into field
and atom parts. This procedure (for a gas laser) is
quite different, in principle, from allowing the atoms
to follow the field. Whether Willis's" most recent
treatment using the Bogoliubov kinetic-equation ap-
proach" is equivalent to ours is difhcult to ascertain
until Willis quotes more specific results, comparable to
ours, including the eGects of noise.

Recent work of Gordon" starts from our equation
LQIV(A10)7 for the density matrix of the system
(field+atoms), uses the antinormal ordering corre-

I V. Korenman, Ann. Phys. (N.Y.) 39, 72 (1966). Also
in I'hysics of Quantum Electronics, edited by P. L. Kelley, B.Lax,
and P. E. Tannenwald (McGraw-Hill Book Company, Inc. ,
Neer York, 1966).' R. H. Picard and C. R. Willis, Phys. Rev. 139, A10 (1965).' C. R. Willis, Phys. Rev. 14/, 406 (1966) and to be pub-
lished.

N. N. Bogoliubov, in Studies in Statistical Mechanics, edited
by J. De Boer and G. E. Uhlenbeck (North-Holland Publishing
Company, Amsterdam, 1962), pp. 5-118.

~ J. P. Gordon (private communication).

db/dt= —
—2,y(1—in) b+1Vl2o+F(/),

do/dt = I'(1+irr) o+p—bD+F12 (t),

do22/df= W20o00+W21oll F2o22 B+F22q

doll/4 W10o00+W12o22 Ploll+B+Fll

(2 1)

(2.2)

(2 3)

(2.4)

where 8, the radiative transition rate, and D, the
population difference are given by

B=l2 (bto+otb); —D= o 22
—o 11. (2.5)

The (fractional) populations are defined by

o;;=E' Q(ut, e,)2r,
— (2.6)

and (after removing the steady rapid time dependence)

o —=E ' g (atra2) 2r exp(i010t) (2.7)

is proportional to the total electric dipole moment of
the maser. The operating frequency of the maser was
shown in QV to be

~0= (2m~. +I'~.) /(2V+I'), (2.8)

spondence, and seeks a solution which is a superposition
of product density matrices. This procedure is, in
principle, exact. Whenever the same results have been
computed, Gordon has been in agreement with us and
with Scully and Lamb.

Modus Operandi

We start in Sec. 2 with our quantum Langevin
model of a maser, and adiabatically eliminate the lower
state population 0-&~ and the atomic polarization 0- to
obtain, in Sec. 3, a set of Langevin equations for b~, b,
and D. From this, in Sec. 5, the motion of a general
normally ordered operator 8((b")'b'f(D))/Bt is com-
puted. It is then easy to deduce in Sec. 6 the equation
for the associated classical function P(p, p*, D, [) and
from this the equation for the density operator
p(b, bt, D, t) which is our prime result.

From the Fokker-Planck equation for P(P, P*, D, ])
we construct the associated classical random process
for P, P*, and D in Langevin form. In the latter form,
it is easy in Sec. 9 to adiabatically eliminate D classi-
cally, resulting in an equation for P(P, P*, t) . The con-
version from the latter to an equation for p(b, bt, t), a
more dificult task, is accomplished in Sec. 10. The
results for the density-matrix equation are then shown
to agree with Scully and Lamb.

2. STARTING EQUATIONS

In Sec. 6 of QIV we developed a Markoflian model
for a set of atoms and a radiation 6eld interacting with
reservoirs. In this "black-box" model, the reservoirs
are replaced by a set of damping constants or transition
probabilities and a set of quantum (noncummuting)
noise generators. This model, when specialized to the
homogeneously broadened case, as in QV, QVII, and
QIX is described by the equations
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and the parameter o, is the detuning de6ned by

I'i—& ao, (3.1)

which means that the lower state empties so rapidly
that its population can be neglected:

where cv, is the atomic frequency and or, is the cavity
frequency.

3. ADIABATIC ELIMINATION OF (r AND 0 yy

We now wish to specialize to the model adopted in
QVII, in which the population difference is the only
relevant atomic variable, and the population of the
lower masing state is negligible. This can be accom-
plished by assuming

[b, D]=[bt, D]=0. (4.2)

where b,—=b(t —0) is b evaluated at a slightly earlier
time as in QIX.

4. PRESERVATION OF COMMUTATION RULES

Before proceeding to the use of our working equa-
tions, we would like, in this section, to note that the
adiabatic approximation has not interfered with our
desired commutation rules. In the Appendix we show
that to within the accuracy of the adiabatic approxi-
mations of (3.1) to (3.3),

d[b, D]/dt= [db/dt, D]+[b, dD/dt] ~ [b, D7. (4.1)

In other words, if the commutator of b and D vanishes
at any one time it will continue to vanish thereafter;

&22= D. (3.2) We also find that

As shown in (A27) of QIV the off-diagonal decay con-
stant F depends on F& and also approaches infinity:

r—= r„=-',(r,+r,)+r„"~ . (3.3)

In order not to lose the essential physics we must
assume that the electric dipole parameter p, increases
in such a way that the ratio

d[b, bt]/dt= [db/dt, bt]+H. a.=0, (43)

[b, b"]=1.
In addition it is easy to see that

(4.4)

so that the commutator of b and b~ is constant in
time and may as well be assigned the conventional
value

2p'/[r(1++') ]=~~const (3.4) [db/dt, b7=0; [dD/dt, D]=0. (45)

dD/dt =An+F~,

where the drift vectors are defined by

Ag =— 2y (1 ia) b+ ~—7r (1 ia—) bND, —

(3.8)

(3 9)

AD= W 0(1—dD) —r,D— (btb+1) D= w ~"&, (3.10)

and the random forces are defined by

approaches a constant. Since the parameter I' is large,
an adiabatic approximation should also be made to
eliminate o.. This is accomplished by neglecting d/dt
compared to r in (2.2) to obtain

0 =[r (1+in)] '(pbD+Fi2) . (3.5)

The population of the supply state can be eliminated
using particle, conservation by means of

0'00 = 1—d (0'u+022) ~1—dD. (3.6)

The parameter d is understood to be unity. We explicitly
inserted it however because setting d equal to zero is
equivalent to neglecting depletion of the supply state.

Working Equations

After these adiabatic eliminations have been made,
we obtain the working equations

db/dt=Ap+yH(t)/(1+in), (3.7)

If we examine (3.7) we see tha, t all terms commute
with b except possibly H(t) . The methods of Appendix
A reduce this to the question of whether or not the
random force H commutes with itself at two diferent
times. But as shown in QIV, forces such as F and F»,
of which H is composed, commute with themselves
(although they do not commute with their Hermitian
adjoints). In a similar way an examination of (3.8)
shows that the second part of (4.5) reduces to the
question of whether the random force F~ commutes
with itself at different times. This can indeed be es-
tablished by direct use of the definition (3.12) and
the commutation rules associated with the random
forces of which FD is composed. It is simpler to note,
however, that the MarkoG property requires this
commutator to be some operator times a 6 function of
the time difference, i.e., an even function of the time
difference. On the other hand, the commutator of F~
at two different times is necessarily an odd function of
the time difference. Thus this commutator necessarily
vanishes and (4.5) is obeyed. The properties (4.5) will

play an essential role in the equations developed in
Sec. 5. It is to be noted, however, that

[dD/dt, b]WO, (4.6)

and it will not be assumed in the subsequent equations
that dD/dt commutes with the operators b and bt.

yH = (Ntj, /r )F»+ (1+ia—)F,

p b cFu F labe
Fr=F22 —— . +r 1+in 1—in '

(3.11)

(3.12)
ab=—b(t+at) —b(t) (5.1)

S. MOTION OF A GENERAL OPERATOR

Introducing the notation
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to describe the change in an operator over a time interval At, the motion of a fairly general operator can be
written in the form

A$(b t)"b'f(D) j=r(b t)~'Ab tb'f(D)+(b t) "sb' 'Abf(D)+(bt) "b*ADgf/gD+r(bt)~ 'AbtAbsb8 'f(D)

+ (bt) rsbe1Ab-ADgf/gD+r(bt) r 1A—btb8ADgf/gD+ (bt) rbsl (AD) 2g2f/gD2 (5 2)

This procedure is similar to the corresponding classical procedure of III(5.5)—(5.9) . We are permitted to stop at
second-order terms because we have shown in QIV that our random forces are to a good approximation Gaussian,
so that higher-order terms yieM results of higher powers than the erst in dt. See, for example, the discussion in
V(5.17)—(5.19) or IV(3.8) ff. Note also that we have made use of (4.5) to position the pairs of differences as
close to one another as possible. The fact that AD and Abt in the next-to-last term of (5.2) could not be brought
completely together will lead to some interesting complications in the calculations that follow.

Drift and Di8usion Terms

We now wish to take the mean of (5.2) and divide by At. The terms involving only first differences lead to
the drift terms

(Ab)/At = —-', y(1 —iu) (b)+-', x(1—in) N(bD) = (Ai, ),

(AD)/At =wq, (1—d(D)) —I', (D)— (bbtD) = (Az&),

(5.3)

(5.4)

which are obtained directly from (3.9) and (3.10) . The second-order or diffusion terms arise because of the random
forces. From (3.7) and (3.9) we learn tha, t

~+6, f

(Ab Ab)/At=(At)- Ht (s) ds yH (s') ds' (1++')

=yn+N7rD= y$n+D/Do—f. (5.5)

The second part of (5.5) is obtained using moments of the random forces available in Sec. 6 of QIV. The spectrum
of H when no adiabatic approximation is made is given in QV (19) and (20). We see by comparison with the
results quoted here that one must set ~ =0 in QV(20) to obtain the present result. This is equivalent to neglecting
co in comparison with I'. Thus, as might be expected, our adiabatic approximation restricts us to frequencies small
compared to those decay constants which have been assumed large. The parameter Do in (5.5) is defined by

Do=—(2vI'/Nu') (1+~') =v/(N~), (5.6)

and has the meaning of the minimum population difference at which masing will occur according to QV(15).
Using again the moments available from QIV, we obtain another diffusion constant in the form

t+At I+5 t

((AD)')/At=(At) ' ds ds'(FD(s)F~(s') )
t

= (~„(1 dD) + r,D+—~bbtD)/N (5 7)

This result is identical to the shot-noise result quoted in QVII(4. 12) . It is also easy to show that within the scope
of our adiabatic approximation

(AbAD)/At=0.

The troublesome next-to-last term in (5.2) is evaluated explicitly in

(5 8)

Tp
(Abtb AD)/At = (At) -'

I'(1—in)

t+4t b)P P b
F2i(u) du b' du' F~g(u') —— . +

t I' 1+in 1 ia—
= LNti/I'(1 —in) ]b'(2D2i22/N) —-,'nb'b" (2D /I')

= —Luu2i/I'(1 —in) $b'ot —7rb'btD —7rb'btD, (5,9)

where the omission of the first term follows from the adiabatic approximation (3.3). The vanishing of the means

(F&&(s) Fi2(s ) )= (F(s)F(s') )=0

is suf6cient to ensure that the second moments

((Ab) ') = ((Abt)') =0

(5.10)

(5.11)
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vanish. This explains the omission of these terms in (5.2) . Our operator equa, tion of motion can now be written
in the form

B((b")"b'f(D) )/Bt= (r(b")~ (A() tb'f(D) )+((bt) "sb~'A( f(D) )

+((bt) "b'[wgo (1 dD—) I'pD— 7cbb—tD]Bf/BD)+ (r (b t) ~'sb' '[yn+~ED]t'(D) )
—(r(bt) ~' b'(~ btD) Bf/BD)+ ((bt) "b'E '[w (1—dD) +I'&+7cbbtD] Bmf/B—D'). (5.12)

We shall now try to rearrange the operators in (5.12) so that they appear in normal order. If we set M =bt'b',
then we can write

Mbbt = (bt) "+'b~'+ (bt) "sb'+ (bt) 'b'

=btMb+BM/Bb b+M. (5.13)

Rearranging the terms in this way, (5.12) then takes the form

B(M(b, bt)f(D) )/Bt= (AbtBM/Bbtf)+(BM/Bb A( f)
+(IMLw o(1 dD) I D—] ~[—b'Mb+BMIBb b+M]Dj Bt/BD)

+(B'M/BbBbtfyn+~ED]f(D) ) ~((bt—BM/Bbt+B'M/BbBbt) DBf/BD)

+([w~oM (1—dD) +M I'2D+~D(btMb+BM/Bb b+M) ]E ' 'B'f/BD')-. (5.14)

Since an arbitrary operator can be written as a linear combination of operators of the form b~"b', we may regard
(5.14) as valid for an operator M that is an arbitrary function of b and bt

6. DENSITY-MATRIX EQUATION

The equation of motion of an arbitrary operator is clearly equivalent to a knowledge of the equation of motion
of the density matrix. Indeed, the relation between these equations can be obtained by comparing (D2) and
(D3) of QIV. Since, however, we are also interested, in obtaining an equation for the associated classical function
we shall proceed by a method which leads directly to the latter objective. We may as well assume that the oper-
ator M has been written in normal order. In that case (1.5) can be rewritten in the form of an integral

(M&"&(b, bt)f(D) )= dDf(D) TrM&") (b, bt) p(b, bt, D, t)

dD d'Pf (D) M&"& (P, P*)P (P, D, t) . (6.1)

Similarly, the time derivative of a general operator is expressible in terms of the time derivative of the density
matrix so that

( &"p( «c(«)&/p(D))/p&= «D f p&p/(D)&&p& &(p, p') pp(p, D, &)/8& (6 2)

We next replace the left-hand side of (6.2) by (5.14) . The left-hand side is then written in integral form following
the prescription (6.1) . All derivatives acting on M are then integrated by parts so that they act instead on the
density matrix. The arbitrary function M&"&(P, )9*) then appears as a common factor and its coefficient must
necessarily vanish. In this way we obtain the equation for the associated classical distribution function quoted
in the Introduction as (1.11).Since that equation was already written with the parameters P and P~ in an anti-
normal order, it can immediately be rewritten in the form of an operator equation;

Bp& &Bt = —B[p& )A t]/Bbt —B[A&p& ))/Bb —BI [w o(1—dD) —I'2D —mD]p& ) —m bDp& )bt j/BD

+ (yn+~ED) B p
' /BbBb mB'(p&')Dbt) /Bb"B—D rcB'(bDp&')) /BbBD—+ (2E) 'B {[w20(1 dD)—

+r&D+mD]p& )+nbp& )bt j/BD +mB~(Dp&.)) /BbBbtBD (~/2E) B8(bDp&'))/Bb(BD) —' (6 3a)

or setting E2 ED, R, =Ew20(1 dD), —a—nd omitting —the unnecessary (a) superscript (since the above equation
must be true whether p is in antinormal order or not), we have

Bp/Bt = —i(cu.—cpo) [1—(D/DD) ][btb, p]+2y[B(bp) /Bb+B(pbt) /Bbt]+pnB2p/BbBbt+[ B/BE2+ ', B'—/BE)' ~ .]-—
X (R2p) +I'2[B/BE2+—B'/BE~ + '] (E~p) —

27rE2[B (bp) /Bb+B (pbt) /Bbt 2B'p/BbBbt]—

+ p[rB/BEg +-', 'B/BE'2+ ~ ]E2[bpbt B(bp) /Bb B(—pbt) /Bbt+B—'p/BbBbt+p] (6.3b).
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The first form (6.3a) has some but not all third-derivative terms. The relation between flrst-, second-, and third-
derivative terms (when available) is just that due to shot noise: "Rate in" contributions appear with the same
sign in all orders, "rate out" contributions alternate in sign. [See, for example, IV(9.4), IV(9.73).]We can then
immediately extrapolate to all orders. The shot noise merely tells us that X2—=AD must take on integral values,
and our sums of derivatives add up to exp[NB/BN~], so that we get the difference equation

~t /~t = —i(~.—~0) L1—D/Do][b'b, t ]+i~[24»' —(b'bt +t b'b) ]+~n[b, [t, b']]

+ [exp ( 8/—BN2) —1](E2p) + [exp (8/BN2) —1](P2N~p)

', AN—2—[pbbt+bbtp 2btp—b]+~[exp(8/BN2) —1](N2btpb) . (6.3c)

The series of terms (8/BN~)" converges as (N2) " where N2 is the mean number of atoms in the excited state, so
that terms with r) 2 can be neglected with impunity since N&~y/vr)))1. We retain these terms here, however,
because of the simplicity of the difference equation that results when one uses

exp[~8/BN~]p(N2) =p(N2+1) .

Density-Matrix Equation in the n Representation

Equation (6.3) has such a simple form that by taking its me matrix element one can immediately obtain the
equation of motion for the density matrix in the e representation;

Bp„„/N = —i(cv, —~0) (1—D/Do) (m —e) p„„+-',y[2(m+1) "'(n+1) '12p„+i,„+i—(m+e) p„„]
+yn[(m+1) (m+1) '

p +i,„+i+(enz) '
p i,„ i —(nz+tt+1) p „]+Rq[exp( 8/BN2—) —1]p „

+r [e2xp(8/BN, ) 1]N&—p,'~N2[(m+~+2) p „2(res—)"'p„ i,„ i]
+~[exp (8/BN2) —1]N2 (num) "'p„ i,„ i. (6.4a)

The diagonal (m=e) form of (6.4a) agrees precisely with QVII (5.7), and is just the difference equation one
would write down intuitively, with the given transition probabilities

Bp„„/Bt= [exp( 8/BN—2) —1](R2p„„)+[exp(8/BN2) —1](I'2N2p„„)+y(n+1) [(n+1)p„+i,„+i—mp„, ]
+yn[ep„ i„i (e+, 1)—p, ]+~[exp(B/BN2) N2mp„ i,„ i —Ng(v+1) p„„]. (6.4b)

Associated Classical Langevin Equations for b~, b, D System

An alternative approach more closely related to the spirit of the present paper is to take the Fokker-Planck
equation (1.11) obeyed by the associated distribution function and write the classical Langevin equations that
yield this particular Fokker-Planck process. By comparing III(5.13) and IV(10.18)—(10.20), we see that the
nonrandom drift vectors of the I,angevin process can be read o8 as the coef6cients that appear in the erst-derivative
terms of the Fokker-Planck equation, and the moments of the random force can be read off from the coe%cients
of the second derivatives in the I'okker-P~anck equation. Thus we obtain the process

dP/dt = ,'y (1 in) P+ ,'—m (—1 in) PND+-F p (t)—,

dP*/dt = ——',y (1+in)P*+-',m-(1+in) P*ND+Fp e (t),

dD/dt =zv~p(1 dD) —F2D —7r(I+1)D—+F1)(t),

(F *(t)F ( ))=(F (t)F *(e))=2D .5(t—u),

2Dpp* yn+m N, =2Dp*p)——2Dpp —2Dp 8p @=0&

2Dpi) ———mPD; 2Dp ei) = mP*D, —

2DDi) = [zv2O (1—dD) +I'gD+7r (1+I)D7/N.

7. POPULATION AND PHOTON-NUMBER FOKKER-PLANCK EQUATION

(6.5)

(6.6)

(6 7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

If we are unconcerned with phase fluctuations we can seek a solution of the Fokker-Planck equation (1.11) in
the form

F (P, P*, D, t) =P(I, D, t), — (7.1)
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in other words a solution that is a function of P and P* only in the combination I.Making use of the simplifzcations

B(PP)/z7P= (z7/BI) (IP) = (8/BP*) (P P) (7 2)
we can rewrite (1.9) in the form

BP(I, D, t)/Bt = 8$—( yI—+IND) P]/BI 8{)—w, (1 dD—) I',D— 7z(I—+1)D]P j/BD

+~'E( 2~ID—)P]/~I~D+-(vn+N~D) (~/~I) P(~P/~I) ]+(2N) '~'{Lw»(1 dD) +—I'pDy~(I+1) D]Pj/~D'

( 9 8 ) ]x' 8 8+ —
~

I— DP
~

——— —(IDP). (7.3)
BI BD ) 2EBD'BI

We next rearrange this equation so that all functions of I and D appear inside the derivatives, in order to obtain
the Fokker-Planck form of this equation. Note that in so doing we have retained third-derivative terms, which,
because of the rearrangement, affect the resulting second-derivative terms. Our final result is

&P/Bt = 8{fvn —yI+ (—I+1)ND]P j /BI z7 {[~ o—(1 dD) ——I' D—(I+1)D]P j /&D

+ (21V) '8'{Lw»(1 —dD) +I'pD+~(I+1) D]P j/AD'+8'$(yn+mND) IP]/ztI'

+8'$ m(2I+1) —DP.]/BIBD+zz(B/BI) (zi/BD) {$(B/BI) (ID) —(2N) '(8/BD) (ID) ]Pj. (7 4)

The ones which appear in combination with I in the Using (8.1), we make an explicit calculation of the
6rst and next-to-last terms of (7.4) arise because of photon drift vector
these rearrangements. Aside from this small effect,
we can neglect third derivatives completely. Az=(BI/BP)Ap+(BI/BP ) As*+2(BI/OPS ) Dsp'

Equivalent Langevin Formulation

We now ignore the third-derivative term that appears
in (7.4) and write the equivalent classical Langevin
equations that give rise to the I'okker-Planck equation
(7.4) . Our results have the form

yI+7zIND—+ (yn+7rNp)

=y(n —I)+7r(I+1)1VD. (8.2)

A p
= ',n(xlVD y),-— (8 3)

In a similar way we And the remaining drift vectors

dI/dt =Az+Fz,

dNp/dt=A~+Fzz, Np= ND, —
Az = —y(I—n) +~(I+1)N, ,

Azz =w»(N —dN, ) —Li'pNp+m(I+1) Np],

Dzz (yn+7z1V p) I,——

(7 5)

(7.6)

(7.7)

Ag) =w»(1 —dD) —I'pD —m (I+1)D. (8 4)

Diffusion Coefficients in I, Q, D Representation

(7.8) Equation IV(3.27) tells us that the corresponding

(7.9)
transformation rule for diffusion coefficients is given by

D»= '{LNw p dw P]+-O' Np+—~(I+1') 1V ]j,
(7.10)

(7.11)

D',,=Ra';/Ba (aa'~/aa„) D„„. (8.5)

Applying this rule yields the complete set of diGusion
coeKcients

Dzz = 213/*D span I(yn+7zN p), —— (8.6)

unchanged (8.7)

D~~ =2(~e/~t3) (~4/~P') Dps = (4I) 'h'n+~Np)

These are the results quoted without proof" at the
beginning of Sec. 9 of QVII. In that paper, a quasilinear D~n =-,'Lw»(1 dD) +.I',D+~(I+1)D]/N,
analysis of these equations was used to obtain the total
noise and the spectrum of intensity correlation noise.
To save space these results will not be repeated here.

8. TRANSFORMATION TO I, Q, D
REPRESENTATION

Under a transformation from one set of random
variables a to another set a, the drift vectors were
shown in IV(3.28) to transform according to

DIy
—D@T—DDy —DyD —0&

Dzo =P*Dpo+PDp*g) = mID. —'

(8.8)

(8.9)

(8.10)

A,' =Ra,'/Bt+(Ba,'/Bag) AI, +8'a,'/Ba Ba„D „. (8.1)
"These results where discussed at the Phoenix International

Conference on Quantum Electronics, April 1966 as part of our
presentation of Papers QVII and QIX.

These results could also have been obtained by making
the transformation directly on the differential equation
(1.9) with the omission of the third-derivative terms.
The only change induced by retaining the third-
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2Dpp'~= —~N2(1 —in) 7rP'J'$1 ——',U(1 —in) jD» = —~(I+-,') D, (8.11)

derivative terms is the replacement of the last result, maining diffusion coe%cients are given by
(8.10), by

in agreement with the corresponding term in (7.4) . ',—x—No(1+n') m P'J' (9.10a)

9 ADIABATIC ELIMINATIQN QF pQPULATIQN 2Dp.s*' x——'1V—2(1+in) 7 p*'J'$1 ', U—(-1+in) j
DIFFERENCE D

',—7rN—o(1+n')irP*'J' (9.10b)

Fp'= Fp+ ,'N—vr (1 -in) JPF—D. (9.3)

We have calculated the mean of this new random force
and found that

(Fs' ) (or/r, ) Deading terms in dp/dt] 0, (9.4)

so that the new drift vector takes the simple form

Ap —— ', y(1—-in)P—+', N~(1-in)PJ—woo,

As a check on the results of QIX, we wish to make
an adiabatic elimination of the population difference
D by assuming that F& is large compared to p. We
start from the Langevin equations (6.5)—(6.7) and
obtain an adiabatic approximation for D by setting
dD/dt=0 in the last equation. In this way we obtain
the elimination

J(w20+FD) j J=)12+dw20+7I (I+1)$ '. (9.1)

Inserting this result into (6.5) yields

dP/dt = i2y(1 i—n) P+io—lV~(1 in) PJw—w+F p'~) (9.2)

where the random force is defined by

These diffusion coefficients are, of course, complex
conjugates of one another. The drift vectors and
diffusion coe%cients given in (9.5)—(9.10) define a
Fokker-Planck equation in accord with the usual
formula III(5.13). We shall not write this equation
until (10.1), but we shall remark that to obtain this
equation directly from (1.11) would require the use
of a Born-Oppenheimer approximation. The motion
associated with D in the diGerential equation would
have to be solved for regarding P and P~ as adiabatic
parameters. The determination of this quasistatic so-
lution and its elimination to obtain an effective Fokker-
Planck equation for the variables p and p* requires an
amount of eGort that is likely to be significantly greater
than our rather trivial procedures using the Langevin
equations.

I, Q Formulation

In order to discuss intensity and phase fluctuations
it is convenient to transform from the variables p and
p* to the variables I and g. Applying the transformation
equation (8.1), we find our drift vectors to be

y(n —I) +~N2(I+1),

Ar =P*Ap+PA pe+2Drip*

Using (9.3) we can write the second moments of our
noise sources in the form (9.11)

~.= (2i/P) ~~ (o'/P*) ~—s (oi) D~~/—P'+2iD~ ~ /P*'

=2Da*s"8(t N), etc., (9.6—)
=-', n[NowooJ —y7. (912)

where

2Dp*p —2Dpp*

=yn+7rNo (1 ~IJ) +', (1+n') orNo (—-xIJ) U

='yn+m No ——',m NoJI(1—n'), (9.7)

Making use of the transformation equation (8.5) we
hnd our diffusion coeflicients to take the new forms

Drr =pnI+7rNoIt 1 7rIJ(2 U) j— —

='ynI+~NoI (1 7rIJ), (9.13)—
where in these expressions N& or D are merely abbrevi- Des= (4I) 'I 'Y'++&No(1+&IUJn') j~
ations for

Dry ,'nmNoI(~J) (U —1) ='0. -
N2= ND= Nwoo—J=Nw—oot I'o+dwoo jx(I+1)j- (9.8)

(9.14)

(9.15)

and

U = {woo(1 —dD) +LI'2+ (I+1)$D}/(2w20) 1~ (9 9)

The dotted equal sign in (9.9) means that the parameter
U reduces to unity if depletion is neglected. This con-

'clusion can be seen by inserting the appropriate value
(9.8) for D into (9.9). The second expression for Dpp*
results when we set V=1 into the erst. The two re-

Quasilinear Treatment of Amplitude Fluctuations

The operating point, which we shall call I to conform
with the notation of QVII, can be determined by setting
the drift vector of (9.11) equal to zero. When the
expression (9.8) for N& is introduced, this yields pre-
cisely the same operating point as that found in Sec. 6
of QVII. The decay parameter of a quasilinear treat-
ment (see' I) is given by the negative derivative of
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FIG. 1. The dimensionless amplitude decay eigenvalue
(A.,)~'I=A, T is plotted against the pump parameter

p= kv TLD-/Do —G
where D„=wm/(I'1+dro1o) is the population inversion that
would be produced by the pump if no radiation could occur, and
Dp =p/ (Es') of (5.6) 1s tile n11111mllm hlve1's1011 11eeded fo1'
masing. The unit of time T is de6ned by

sr 2"= (I'1/v)'"L2/(&+I) 3"',
where 1r is the photon rate constant of (3.4). If one scales the
photon number by

I=fsp; P=—L(n+I) I'1/(2w) g'",
the quasilinear approximation (9.17) reduces in dimensionless
form to the result V (9.16)

(A.)" =2p+(4/p)
appropriate to the rotating-wave Van der Pol oscillator.

The quasilinear approximation (h.,)@~=2 (p'+8) 'I' results
when p=pp 1s given its quasilinear value —,Lp+(p'+fl)'I'j of V
(11.12); the intelligent quasilinear value (1t )'oL=2(pl+4/ip),
where (p) is the exact mean value of p in the ground state.
LSee QIX (5.29) and Fig. 4 of V, or Fig. 2 of QVII, or QIX.j
The exact half-width (A, ) ' is the eigenvalue associated with
the 6rst nonvanishing eigenvalue h. of the Fokker-Planck equa-
tion appropriate to amplitude fluctuations, i.e., eigenfunction
independent of phase @;

d1R/dps+Lp 1—-(P—p) j(dR/dp)+L1+(A —2P)/4p)R=O.
See QIX (5.27), V (Fig. 1), and VI.

the drift vector at the operating point;

A.= r—i&r"/r)lir r

=y f 1—(Nrr/7) (Jwso) Li —s (1+1)Jj}Ir i
y7r(I n) — y(n+1)

9.16
Fs+dwgp+s (I+1) I+1

This result for the half-width A, associated with in-
tensity Quctuations is identical to the slow eigenvalue
found in QVII(7.8). This is as it should be since only
the slow eigenvalue remains in the latter problem after
an adiabatic approximation has been made to eliminate
the fast eigenvalue. Over a broad range of operating
points that includes the threshold value (Fs/2s. ) '", this
eigenvalue A reduces to the form

A.=VL( I/Fs)+(n+1)/ij rf 1«1«F/~ (9»)
After taking account of the scaling performed in Sec. 5
of QIX, this result reduces identically to the last form
in V(9.16). This last form is referred to in V as the

dg/dt~ ts(rrNs y) +-(2I) —'Fr

dy/dt=xn(~N, 7)+F,. —
(9.20)

(9.21)

The particular linear combination m has been so chosen
that the drift associated with this phase vanishes;

dw/dt=F~ cosP' —Fr(2I) ' sinP'=F„. (9.22)

As a result, the phase m executes a simple Brownian
motion described by

(Lw(t) —w(0) j')/t=t-' ds ds'(F„(s) F„(s'))
0 0

=cos'P'(2Dqq) +sin'P'(2Drr) /(41s) .

(9.23)

intelligent quasilinear approximation because it has
been expressed in terms of the operating point I, and
when compared with experiment one would presumably
use not the quasilinear expression QVII(6.5) for this
operating point, but simply the experimental number
of photons. Figure 1 shows a comparison between the
half-width A, calculated in this intelligent quasilinear
way and the exact value for this parameter obtained
by ending the lowest eigenvalue of the Foyer-Planck
equation associated with the drift vector Az and the
diffusion constant DII. The numerical methods of evalu-

ating A, and also of making a direct evaluation of the
spectrum of noise associated with noise intensity Quctu-
ations are discussed in VI.

A quasilinear approximation for the total noise associ-
ated with intensity Quctuations is given'by the Einstein
relation I(5.20)

((») ')=D»"/A' (9.18a)

Over the same broad intermediate range, this second
moment can be simplihed to the form

((EI)s)~; 1&&I&&Fs/s., (9.18b)
(n+1)I'

(n+1)+(m.ls) Fs'

which corresponds precisely to the form V(10.27). At
very high operating levels (9.18a) reduces to

((AI) '~I+ (Fs/s. ) I))Fs/s, d =0 (9.18c)

in agreement with QVII(9.11) and QVII(8.10) when
we assume I'2))y in the latter. It should be noted that
when n can be neglected the shot noise that is present
in photon-number Quctuations is not present in the
total noise associated with I.Compare with QVII(8.10) .

Phase Fluctuations above Threshold

By introducing the de6nitions

I=exp2N; cosP' = (1+1x')-'".
w=d cosP' —u sinP', (9.19)

the Langevin equations for amplitude and phase Quctu-
ations can be transformed to the form



226 M ELVIS LAX

(~-«) --(0)] )/t

= (yn+vrtVp)/(2I) +z2N2/(U —1)aP/(1+aP)

=' (yn+~N, ) /(2I) . (9.25)

The last form in (9.25) results when the average over
I is performed by replacing the expression on the right-
hand side of (9.25) by its quasilinear value. Our final
result for the full width at half-power can be written

2A.„=W= (1+a') (pn+m A'2) /(2(b" b)) . (9.26)

Comparison with Previous Calculations

The same width, as calculated in QV(34), is given by

Wov ——(1+a') (App)'S/(2y(bib)), (9.27)

where the half-width Ace is defined by

A =el/(-', v+r)~, (9.28)

and takes the limiting value y in the adiabatic limit.
The parameter S is dehned by

Since

S=-', (S +Sp); S =n+(o.22/Dp);

S+=n+ 1+a ii/Dp.

pii+7rN2 pS, ——

(9.29)

(9.30)

our present result indicates that the appropriate line-
width above threshold is given by

II shove threshold = (1+a') (APP) 'S /(2&(b b)), (9.31)

which differs from the earlier result (9.27) merely by
the replacement of S by S . This correction, which is
small above threshold, applies not only to our previous
work in QV but also to the corresponding calculations
of Haken and co-workers. " Although the replacement
of S by S constitutes a minor correction when the
number of photons is large, it is symptomatic of an
important difference when the number of photons is
small. In particular we see by examining the Fokker-
Planck equation (1.11) that the relevant diffusion
term takes the form

Linewidth due to Phase Fluctuations

As discussed in V and QV, in the region well above
threshold amplitude fluctuations are suppressed, but
the line has a residual width associated with phase
fluctuations. The full width at half-power of the
I.orentzian describing the spectrum of these fluctuations
)see, for example, QV(32) and (33)] is given by

2A„=W= (L@(t)—y(0) ]2)/t

=( P') '(L (t) — (0)]')/t, (924)

where the mean-square growth in m in accord with
(9.23) is given by

whereas a quasiclassical analysis would have taken the
form

—;~Sa&F/aP*aPy-', ~S,a'F/aPaP* (9 33)

The difference between these two diffusion coeKcients
in the Fokker-Planck equation, pS and &S, is large
below threshold. To see this difference we note that at
absolute zero, if the pump is turned off, S approaches
zero whereas S approaches the value unity. It is just
these differences that arise from the commutation rules
that make it risky to follow the procedure suggested
by Risken, Schmid, and Weidlich. "Their procedure is
to take a set of quantum-mechanical variables a~, a2,

a3, ~ ~, and define a set of diffusion coefficients in the
usual way QIV(1.6);

D,, = (Aa,Aa;)/(2At)

This diffusion coeKcient is computed in a quantum-
mechanical way and then it is inserted by Risken,
Schmid, and Weidlich" in ad Aoc fashion into a classical
Fokker-Planck equation. Such a Fokker-Planck equa-
tion automatically makes use only of the symmetric
part of D,;, and thus discards the quantum-mechanical
information contained in the antisymmetric part of D;;.
Of course, this procedure should be adequate above
threshold where the number of photons is large and an
essentially classical treatment is valid. This procedure
is equivalent to replacing the original problem by a
classical problem with c-number noise sources F;(t)
whose correlations (F;(t)F, (u) ) are given by
(D,,+D,,)8(t—I). For many questions, such a semi-
classical procedure is adequate. Indeed, this procedure
was the basis of our early calculation of the phase line-

width. "These calculations were not published because
it was felt that the proper task of a quantum theory
of noise is to ascertain when such semiclassical pro-
cedures are valid. The Fokker-Planck equation derived
in the present paper for the function F(P, P*, D, t)
associated in a dehnite way with the density matrix

p(b, b", D, t) is not precisely equivalent to the semi-

classical Fokker-Planck equation for the variables b, b~,

and D. The procedure of the present paper permits one to
calculate the intensity correlation (bt(0) bt(t) b(t) b(0) )
and to distinguish it from the number correlation
(bt(t)b(t)b" (0)b(0)). Even in the region well above
threshold, when the statistics are nearly classical, there
is a significant difference between the spectra associated
with these two correlations. LCompare QVII(8.15) and

QVII (9.14) .]
10. EQUATION FOR ADIABATIC DENSITY

OPERATOR

Associated Classical Fokker-Planck Equation

In Sec. 6 we obtained the equation of motion for the
density matrix in the variables b, b, and D. In addition
we obtained the equation of motion for the associated

~S a Z/apap*, (9.32)
W. '4 Presented at the 1964 Durham Conference on the Quantum
Electrodynamics of High Intensity Photon Beams (unpublished}.
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classical distribution function in those variables. Re-
placing this classical Fokker-Planck problem by an
equivalent I angevin problem, we were able in Sec. 9 to
make an adiabatic elimination of the population differ-
ence D. The new drift and diffusion vectors after D
had been adiabatically eliminated were given in (9.1)—
(9.10). From these drift and diffusion vectors we can
immediately write down the Fokker-Plancl» description
of this same process in which D has been adiabatically
eliminated.

BP/oji= —Bl (1—in) ( ——,'y+-', Norw»J) PP]/BP

+-',8'f(pn+N7rw»J) P]/POP*

—(~'Nw»/4) L(1—n') a'(PP*J'P) /aPaP*

+ (1+n') 8'(P'J'P) /BP']

+complex conjugate. (10.1)
The classical function

is simply the classical function associated with the
density matrix of the electromagnetic field. The symbol
J in (10.1) is defined by (9.1) or in our present notation
by

J=J(PP*) =LI',+dw»+7r+mPP~] ' (10.3)

In QIX Sec. 5 we showed that (10.1) reduces in the
vicinity of threshold to the rotating wave Van der Pol
oscillator. A detailed discussion of the rotating wave
Van der Pol oscillator was provided in V, and exact
numerical solutions were obtained in VI. From these
numerical solutions we learned that the approximate
quasilinear methods of V were adequate in a region
well below or well above threshold. By "well above or
well below, " we mean roughly the regions in which
there are at least ten times as many photons as at
threshold or at most y p as many photons as at threshold.
Since the number of photons at threshold has been
shown in QIX to be of order (I'2/7r)'"~10', and the
deviations of (10.1) from a rotating wave Van der Pol
oscillator do not become important until the number
of photons is of order I'o/x 10', we can conclude that
at these high operating levels a quasilinear analysis of
(10.1) is adequate. Such a quasilinear analysis of the
amplitude and phase fluctuations was already provided
in the previous section. Conversely, in the region where
a careful solution of the differential equation (10.1) is
necessary, it is possible to reduce (10.1) to the rotating-
wave Van der Pol oscillator. And the solutions found
in VI are already adequate to cover the latter region.

It may be remarked tha, t (10.1) was already pre-
sented in QIX(4.19). In QIX this equation was ob-
tained by the elimination in one quantum-mechanical
step of all atomic variables. In the present paper all
variables but D were eliminated at first, and then the
population difference D was eliminated in a second
stage. A desirable feature of the present procedure in
that the population difference was eliminated in a

~l:~(PP*)p" (0 0*, ~)],

—=8L~'(PP*)p" (0, 0*, ~) ],

(10.5)

(10.6)

have not yet been presented in a form that is easy to
compute. The antinormal ordering symbol Q, in (10.5)
is the same a,s that defined in (1.1) .

Feynman Ordering Notation

In order to facilitate the computation of P we shall
introduce the Feynman ordering notation" in place of
the antinormal ordering notation. In Feynman's no-
tation, for example, (10.5) could be rewritten in the
form

~(hb'o) po (10.7)

In Feynman notation, it is understood that the oper-
ators appear in an order determined by their indexing
symbol and not by the order in which they happen to
be written. Thus if A, 8, C, D, and E are any 6ve
possibly noncomrnuting operators, then

A284C5Dj E3=—DA EBC (10.8)

is the manner in which the symbol on the left-hand
side of (10.8) is to be interpreted.

To properly interpret (10.5), it would be necessary
to make a complete expansion of (10.3) in powers of
PP*. Such an expansion would unfortunately not con-
verge when the number of photons is large. Neverthe-

25 R. P. Feynman, Phys. Rev. 84, 108 (1951};F. Dyson, ibid.
75, 486 (1949};75, 1736 (1949}.

classical portion of the problem, so that possible ambi-
guities of order could not arise. The agreement obtained
between (10.1) and QIX(4.19) is a check on the
arithmetic and assumptions of both calculations.

Our work is complete in the sense that QIX(4.19)
and (10.1) provide all the information necessary to
calculate the desired statistical properties of the electro-
magnetic field. Scully and I.amb'~ have presented an
equation for the density matrix in the number represen-
tation that should be comparable to our Eq. (10.1).
Since their methods are not yet presented in detail, it
is desirable to compare answers. The purpose of the
present section will then be to convert (10.1) to an
operator equation and thence to an equation for the
density matrix.

Ordered-Density-Oyerator Equation

Equation (10.1) can at least formally be written as
an operator equation

Bp/Bt =-'y (1—in) 8 (bp) /ojb —-'(1—in) N~w»B (bp) /Bb

+ io gnat'P/BbBbt+ ioNvrw»8'P/Bb8bt (~oNw»/—4)

XL (1—n') oj'(b pb t) /Bbojbt+ (1+n') 8'(O'p) /Bb']

+Hermitian ad joint. (10.4)

I say formally because the symbols P and p, although
well defined by
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less, the 6rst term in such an expansion, taken in the
m representation, has the form

(m I b,bt»,
I n) = &m I

bpbt
I n)

= (m+1)'"(n+1)'"(nz+1
I p I

n+1)
—',L(m+1) + (n+1) j(m I p I n)

=(m
I

s(bzbts+b4bt4) ps I n) . (10.9)

The approximation on the right-hand side of (10.9)
makes use of the fact that the geometric mean of two
large numbers with a small difference can be approxi-
mated by their arithmetic mean. It also makes use of
the fact that the density matrix is a slowly-varying
function of its indices when these indices are large.
Equation (10.9) suggests that bibts be approximated by
s (bsbts+b4bt4) . We note, however, that small frequency
shifts lead to matrix elements of the form

-', in'(m —n) (m I p I
n)=(m

I
sin'(bzbz' b4b4'—)ps I n).

(10.10)

To allow for such frequency shifts as well, we shall
make the replacement

bibts =—-', (1+zn') bzbts+ —', (1—zn') b4bt4+e= q+e. (1—0.11)

The sum of the first two terms in (10.11), which is
denoted briefly by q, represents a good approximation
to b&b~&. The symbol e represents the small difference
between b~b~~ and its approximation q.

Drift-Correction Terms

The advantage of (10.11) is that it splits the operator
b~b~~ into two operators the 6rst of which, q, is of the
order of a typical number of photons and the second
of which, e, is the order unity. Thus we can expand J
not about zero but about q;

J(q+e) J(q) —zreJ'(q) . (10.12)

Inserting this approximation into (10.7) we obtain

p J(q) ps zrJ'(q) I
—b,bt s(1+in') bzbtz

—
s (1—irr') b4bt4)

=tz —zrbvbt+-', zr(1+in') bbtv+-', zr(1 —in') vbbt, (10.13)

where p and v are defined by"

t =—J(q) ps

=J(-', (1+zn') bsbtz+-', (1—zn') b,bt4) ps, (10.14)

v—=J'(q) ps

=LJ (—', (1+in') bzbts+ s (1—in') b4bt4)]'ps. (10.15)

The expansion we have been using, (10.12), is a rapidly
converging one since it is an expansion of powers of
zr/I'z. This justifies the neglect of all correction terms
beyond the first in (10.12). Indeed, one may wonder
why even the first correction term is necessary. The
reason for this is that the diffusion terms in (10.4)
are smaller than the drift terms by just this factor
zr/I' s. Thus the drift terms in (10.4) must be evaluated
to this additional accuracy. However the diffusion
terms do not require this accuracy and it is sufhcient
to introduce the approximation P~v.

The last three terms in (10.13), the drift correction
terms, can be rewritten in derivative form.

2bvbt —(1+in') bbtv —(1—iu') vbbt

= (1+in') 8 (bv) /Bb+ (1—in') 8 (vbt) /Bb" —2v. (10.16)

When (10.16) is used in the second term of (10.4), the
drift correction terms take the form

(Nzr'wzp/4) (1—ia) &(8$(1+irr') 8 (b'v) /Bb

+ (1—zn') 8(bvbt) /Bbt —(3yz~') bv$/Bb. (10.17)

The last term in (10.17) is a pure drift term. When it
is compared in size with the dominant drift term, the
first term in (10.4), we find the ratio

N~'w, g'/q = (N~/q) (w,g) (~J) &~/r, . (10.1S)

Thus we shall neglect the last term in (10.17).
If in (10.17) we set n' equal to cr, we see that the

first term cancels the last diffusion term in (10.4), and
the Hermitian part of the second term in (10.17)
cancels the next-to-last diffusion term in (10.4) .

Density-Oyerator Equation

Sy the use of the cancellations mentioned above,
(10.4) can be simplified to the form

Bp/Bt = s (1 in) PyB—(bp) /Bb NzrwMB(bp) /—Bbj+,' (1+in) PpB(p-bt) /Bbt Nzrw208 (tzbt)—/Bbt j
+ynB p/BbBbt+NzrwzpB'tz/BbBbt. (10.19)

Making use of the identities
8(bp) /B—b+8'tz/BbBbt = 8(pb) /Bb, —

8 (pbt) /Bbt 8(bp) /Bb =bt—bp pbtb, —

our density-operator equation can be reduced to the simple form

Bp/Bt = rsinyPbtb, p]+ s yLB (bp) /Bb+8 (pbt) /Bbt j—sr NzrwzsL(1+ia) 8 (bttz) /Bbt+ (1 in) 8 (tzb) /—Bbg

(10.20)

(10.21)

+ynB'p/BbBbt (10.22).
"The temporary use of p here as a kind of density operator should not cause confusion with our previous use of p, (see Sec. 2) as a

parameter proportional to the electric dipole matrix element.
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Density-Matrix Equation

Using (10.14), with a set equal to n, the matrix elements of p in the I representation are given simply by

Pmn JmnPmn) (10.23)
where J „is de6ned by

J „=J(io(1+in) (m+1)+o(1—in) (I+1))
= fro+dwm+or+-', m (m+1+v+1) +-,i~(m n—)] '. (10.24)

Our density-operator equation (10.22) can now be transformed immediately to a density-matrix equation. If all
the terms proportional to in are combined into one term, this density matrix equation takes the form

Bp /8&= i(—m n—)p „(oi oi—o)(1—(woo4~/Do)] —oN~wooL(m+I+m+1)J „p „—2(mn)'~'J~ i,„ ip~ i,„ i]
+ynL(m+1) '"(n+I) "'p +i, +i+ (mn) "'p i, i —(m+e+I) p„„]. (10.25)

The first term in (10.25) was simplified by making use of the relation

g'yn =COO
—

GOc) (10.26)

obtained from QV(13). Since our starting equations used o~o as the origin of frequency, the replacement of J „
by a mean value in (10.25) leads to an approximate operating frequency of the form

coo+AM~Mo+ (oi~—Mo) (1—D/Do) ~ (10.27)

which reduces to o~, well below threshold and o~o well above threshold. The frequency shift found in (10.27) is in
agreement with that found in QV(38) —(40) . See also V(10.3) .

If (10.22) is rewritten in matrix form without rearranging the terms, we obtain

Bp /Bt = i(m—n) p—~~(oi. ohio)
—[(m—+1)R„„+(n+I) R„„*]p~„+JR~i„i+,R*„ im&](,mn) "'p„ i,„,

+ynL(m+I)' '(v+1)' 'p„+i,„+i+(mn)' 'p i,„ i —(m+v+1) p „], (10.28)
where

R „=', Nxwoo(-1+in) J„„ (10.29)

We have rewritten (10.26) in this alternative form (10.28) because the latter is directly comparable with Scully
and Lamb. ' The only difference is that their matrix 8 „is given in our notation by

R .=-,'NxwooL(1+in) + (on/I'i) (1+in') (m —n) ]/Lro+os (m+x+2) (ri+ro) /ri+-', inn (m —n) (ri —ro) /ri].

In (10.30) a term in the denominator,

—(ir'/r ) (m —n)' (ir /riro) Xro 10 ' ro,

(10.30)

(10.31)

TABLE I. Comparison of notations.

Scully and Lamb

GO) P) 6
Pa) Pb) Pal

ra) g

~/v. ~

U=~/()
2g'/v~

8
2)/2

Ma) GOp) GOa
—

COp

F2, F, I'=F12

XK'20) p,

(co —cop) /F =n

2p'/I' —=~ (I+cx')
(A'w2p/I'2) (2p'/r)
(2Ewgo/F22) (2p'/F)'
4P2/(I'I'2) =22I-(1+ ') /I'2

was omitted because it is small, of the order of the
terms neglected in Scully-Lamb analysis and in our
analysis. Table I permits a comparison between the
Scully-Lamb notation and our notation.

In the present paper, we have chosen a model in
which the lower state is essentially empty, namely in
which the decay rate Fj is large. Thus we can simplify

the Scully-Lamb results by making the replacements

(I'i+ro) /I'i —+1, (10.32)

(r,—r,)/r, (10.33)

In this case the Scully-Lamb matrix reduces to

R „—+-,'Nn. woo(1+in) J„„, (10.34)

our result, provided that we neglect depletion in our
expression for J „.A comparison of (10.28) with the
corresponding Scully-Lamb equation indicates com-
plete agreement in the region of overlap of the two
theories. The Scully-Lamb theory must be specialized
by letting I'& approach indnity to agree with ours and
our theory must be specialized by letting n=d=0 to
agree with theirs.

Our result (10.28) is, of course, a special case of our
more general equation (6.4) for the density matrix
when the population difference is not assumed to
equilibrate fast compared to the Geld equilibration
rates. A straightforward application of the methods
discussed here has permitted Louisell and the author
(in QXII) to generalize (6.4) to an equation for the
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variables b, b, 0.~~, and o-~~. Adiabatic elimination of
0~~ and 0-~~ has also been accomplished. When the
results are translated into the e representation, a direct
comparison with the Scully-Lamb result (10.30) should
be possible.

11. SUMMARY

Using the model for a maser developed in QIV and
specializing to the case in which all atomic response
times are fast compared to those of the field with the
exception of that associated with the population differ-
ence, we have succeeded in deriving Eq. (6.3) for
the density matrix p(b, bt, D, t), where b and bt are
field variables and D is the normalized population
difference. This density-matrix equation has been
written in operator form and also in the e represen-
tation as (6.4). In addition we have shown that the
operator density matrix can be obtained from an
associated classical function p& & (P, P*, D, t) by replacing
P by b and P* by bt, subject to the rule of placing the
results in antinormal order. This correspondence be-
tween the density operator and its associated classical
function is a dynamical one because the Geld operators
are not assumed to propagate freely in time but rather
are variables that obey a quantum-mechanical Marko6
process. The equation of motion of p&'(P, P*, D, t) is
given by (1.11).

Although the density matrix is descriptive only of
fluctuations at one time, we showed in Sec. 1 how to
use a theorem developed in QII to evalua. te the means
of two-time operators and to show that these can also
be obtained from appropriate solutions of a corre-
sponding "classical" random process.

For the purpose of discussing amplitude and phase
fluctuations we transformed the Fokker-Planck equa-
tion obeyed by our associated function to the new
variables I and p defined by P=P" exp( —+). As a
result of this transformation we obtain the differential
equation obeyed by p& &(I, P, D, t). LSee Sec. 8.] For
a discussion of amplitude fluctuations alone we can
seek a solution in which this associated density function
is independent of P. This leads to the differential
equation (7.4) for p~'& (l, D, t). From the Fokker-Planck
equation for these two variables we constructed an
associated classical Langevin process. It is this classical
Langevin process that was used in Sec. 9 of QVII to

discuss the total noise associated with intensity corre-
lations and the spectrum of that noise.

As a check on our work in QIX we made an adiabatic
approximation to eliminate D and in this way obtained
Fokker-Planck equations for p&'(P, P*, t) as well as
for p'&(I, p, t). A quasilinea, r analysis of the last
process gave amplitude noise which could be compared
with corresponding results in QVII and a phase line-

width could be compared with earlier results in QV.
In addition, by the use of ordered operator techniques,
we translated p&'&(P, P*, t) into an operator equation
for p(b, bt t) . and finally into an equation for the
density matrix p „of the electromagnetic field in the
photon representation. The latter equation (10.28) was
found to be in precise agreement with corresponding
results of Scullv and Lamb. '~

APPENDIX A: PRESERVATION OF
COMMUTATION RULES

Making use of our working equations (3.7) —(3.12),
we can express the time derivative of a commutation
rule in the form

S

D(s) =D(t) + (dD(s') /ds']ds',
t

(A2)

and using the fact that a random force commutes with
an arbitrary operator at an earlier time, we can simplify
the next-to-last term in (A1) to the form

PyH, D]=(ht) ' dsL7H(s) D(s)]

t+d, t

= (At)
—' ds ds'fyH(s), FD(s') ]. (A3)

t t

(d/dt) Eb, D]

=Pb/dt, D]+P, dD/dt]

= ——',y(1—in) $b, D]+', Ex(1—in) -[b, D]D

—(P~+~20d+xbb') pb, D] ~bD

+[yH, D]/(1+in) +Eb, Fr&]. (A1)

By writing

Making use of (3.11) and (3.12), and retaining only those parts of pH and FD that do not commute, we obtain

[yH, D] 1 Xm
At

1+in 2 I'

t+ht e

ds ds'fF~2(s), Ft~2(s') ]b (A4)

Using QIV(6.25) we can write the commutator in (A4) in the form
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The diffusion constants that appear in (AS) can be written in the forms

2D =(I'i+21'i )o +Q w o „ I'i 22=21'D,

2D =(I'+Pl' '") +Q io, o;,«I'D.
q&1

(A6)

To obtain these forms we make use of QIV(6.28) and then keep the dominant terms appropriate to the require-
ments (3.1) and (3.3) of our model. In this way we obtain the result for the first commutator

(L~&, D))~(l~Db). (A8)

The last term in (A1) can be treated in a similar fashion, and we find it can be reduced to a form identical to (A3)
so that it has precisely the same value;

(P, F~))=(~t) '
' db(s')

ds') Fi) (s)
dS

'+~' ' $yH (s), FD (s)
ds dS

(1+t~)
=(-; Db). (A9)

The last three terms in (A1) can be combined to form a commutator. Thus (A1) tells us that

(dP, D)/dt) ~ (P, D)) =0. (A10)

ln other words, the right-hand side is completely expressible in terms of commutators, so that if the commutator
of b and D vanishes at an initial time, it continues to vanish thereafter.

By using (3.7) we can write

drab, bt)/dt = [[db/dt, bt)+Hermitian adjoint

= I-', (~D—y) (1—io,) +(HEI, bt) }+H.a.

Following the procedures used above, the commutator can be expressed in the form

t+t e

PpH, bt)=(At) ' ds ds'[[7H(s), yHt(s'))
t t

(A11)

(A12)

in terms of the random forces. Using QIV(6.22), (6.23),
and (6.25), the commutator of the random forces can
be written in the form

(Lv&(s), v&'(s') ))= (v —~D) b(s —s') (A13)

The numerical integration in (A13) produces a factor
of —'. Thus the commutator in the braces of (A12)
cancels the real part of the first term of that equation,
leaving the content of the braces to be pure imaginary.
Thus the braces cancels against its Hermitian adjoint
and we arrive at

(d[b, b')/dt =0), (A14)

which tells us that the commutation rule relating b

and b~ is preserved in time.
Strictly speaking, we have only shown that (P, D))

remains zero for all time, if it is assumed to vanish at
some initial time. More generally, we would like to show
that the saine is true of jb, D) itself. More precisely,
we shall attempt to show that d(MP, D))/dt=0 if

$b, D)=0 at time t for any M=M(b, bt, D). Using

QIV(2.7)—(2.9) we can write

d(MP, D))/dt=(M{dP, D)/dt})

+( {dM/dt} p D))+2DM, [bDJ) (A, 15)

where the quantities in braces are the system operators
that remain if a reservoir average is taken of the oper-
ator in the braces, i.e., {dM/dt} =Ai[r is the drift vector
associated with M. { See QIV(2.10).)

Our proof, through equation (A11), essentially con-
sisted in showing that

{d[b, D)/dt} ~ [b, D). (A16)

Thus the first two terms are already of the desired
form, and vanish at the initial time t. The diGusion
coefficient 2D~N with 1V=fb, D) can be evaluated by
setting I[7 =Pb, D) in QIV(B22), and it is then found to
be a sum of terms each of which contains $b, D) and
vanishes if the latter is assumed to vanish. Thus

d(MP, D) )/dt ~ (operators)& P, D)) =0.
Hence, if p, D)=0 at time t, then (Mp, D))=0 at
t+Dt for arbitrary M, which implies that p, D) =0 for
all time. Similar remarks apply to p, b")=1.


