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On the Velocity Autocorrelation in a Classical Fluid*
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The evaluation of the velocity autocorrelation function and of its frequency spectrum in a classical
liquid is discussed in the framework of the formalism developed by Tjon for the spin autocorrelation function.
This is based on an integrodifferential equation involving a memory function, and is shown to be equivalent
to the well-known approach based on the time expansion of the correlation function. The use of a Guas-
sian memory function leads to fair agreement with the results of Rahman's numerical experiments for
liquid argon.

I. INTRODUCTIOH

! 'HE calculation of the velocity autocorrelation
function of an atom in a liquid is a difficult and as

yet an unsolved problem. In a real Quid this function is
not a simple exponential but has a negative part as its
characteristic feature. Recent work of Nijboer and
Rahman' has shown that the representation of this
function by means of its time expansion is far from
satisfactory because the expansion converges very
slowly. Thus the correlation function does not even
become negative when one includes the t' term in the
time expansion. This term already involves the fourth
moment of the frequency spectrum of the velocity
autocorrelation, a quantity which can in principle be
evaluated from a knowledge of the interatomic po-
tential but is in fact very poorly known.

In this paper we follow a method which was used by
Tjon' to calculate the spin autocorrelation function and
is equivalent to summing the time expansion to infinite
order, though approximately. The method consists in
evaluating the velocity autocorrelation function from a
linear integrodifferential equation whose kernel has
the meaning of a memory function. The memory func-
tion is taken to be a simple Gaussian whose parameters
are related to the diffusion coefficient and to the second
moment of the frequency spectrum. An explicit calcula-
tion of the velocity autocorrelation function and of its
frequency spectrum for liquid argon at two tempera-
tures yields fair agreement with the numerical experi-
ments of Rahman. A detailed discussion of the integro-
differential equation, and applications based on an
exponential kernel, have been presented recently by
Berne, Boon, and Rice.3

II. THEORETICAL DISCUSSION

The integrodifterential equation for the normalized
velocity autocorrelation function C (t) is'

dC, (t) t

n(r)C (t—r)dr,

~ Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

t B.R. A. Nijboer and A. Rahmart, Physica 32, 415 (1966).' J. A. Tjon, Phys. Rev. 143, 259 ($966).' B. J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 45,
1086 (1966).

where

The frequency spectrum f(o&) is defined by the Fourier
transform

00

f((o) = C-(t) cos(o&t)dt. (3)

where ((o2"), are the even moments of the frequency
spectrum.

Equation (1) implies the following recurrence re-
lationship' between the even moments of f(to) and the
even moments n(2"' of the Fourier transform of the
kernel n(t):

((O2n) — g (M2(n —tt)) n(22—2)

k=1
(5)

Conversely, starting from the time expansion (4) and,

using the recurrence relationship (5) and the identity

oon(1 &)~«=—22 jtt2 j/(22+ ttt+1)!,

one can establish Eq. (1) in a straightforward manner.
Equations (1) and (4), therefore, provide two equiva-
lent formulations of the problem, which are connected
by the relationship (5). The advantage ot using the
former approach is that one can guess a reasonable
functional form for the kernel n(t), which has the
physical meaning of a memory function.

The frequency spectrum f(o&) can also be evaluated
directly from the Laplace transform of the kernel n(t)
for imaginary argument. Indeed, by multiplying both
members of Eq. (1) by e+'"' and integrating over time,
one finds

The time expansion of the correlation function, there-
fore, reads

((O2n)
g&(t) —Q ( 1)n t2n

n=O (222)!
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where

n(afric) = n(t) e+'"'dt. (7)

I.O

T ~ 94.4 'K

In particular, one has
0.5

n(t)dt (8)

One sees immediately from Eq. (1) that, when n(t)
is a delta function, C(t) is an exponentially decaying
function corresponding to the motion of a particle
governed by the Langevin equation. On the other
hand, if n(t) is a constant, C (t) is an oscillatory function
of time corresponding to the case of an Einstein oscilla-
tor. Thus the two limiting cases are contained in Eq. (1)
for appropriate choices of the memory function. A
simple and reasonable choice for the memory function
in a liquid, which leads to the two limiting cases for
appropriate choices of the parameters, is a Guassian
form,

n(t)= —Ae e".

We note that the adoption of an exponentially decaying
memory function is not consistent with the relationship
(5), since only the zeroth moment of its Fourier trans-
form exists. However, this form of the kernel will become
correct at large time. '

For a Gaussian kernel, the frequency spectrum f(ce)
tends to zero at high frequencies as a&

' exp( —e/'/48).
On the other hand, at small frequencies f(e/) has the
form

O. I

-0.!
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if the parameters satisfy the condition

0.057 & 8/A ~& 0.943.

The parameters A and 8 of the Gaussian kernel can
be fixed from experimental data by means of Eq. (5)
for r/= 1 and of Eq. (8). These give

and

Now,

A = (res),

gi/2/g 1~8/sf (0)

(12)

(uP).»= (1/3M) g (r) V'q (r)dr (14)
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F&G. 2. Velocity autocorrelation in liquid argon at 94.4'K.
Curve A: ice'), =55X10'~ sec~, D =2.43X 10 ' cm' sec '. Curve
&: (~s)8, =55X10'4 sec ', D=2.19X10 ' cm' sec '. The circles
are from A. Rahman, Ref. 4.

J(~)=f(0) 1+
16(B 1 '

1 (10) and

f(0)= 2ND/rrks T.
Therefore, f(ru) will have a Positive sloPe in this limit Here, g(r) is the pair distribution function, y(r) is the

interatomic potential, M the atomic mass, and D the
diffusion coeKcient.I.O
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FIG. 1. Velocity autocorrelation in liquid argon at 85.5'K.
Curve A: (ar')»=50X10" sec ' D=1.88&(10 ' cm2 sec '. Curve
8: (a&s)s =45X10s4 sec r D=1.88X10 ~ cms sec '. The circles
y,rg fro~ B.R, A. Bijboer and A. Rahman, Ref. 1.

III. APPLICATION TO LIQUID ARGON

We have evaluated the velocity autocor relation
function and its frequency spectrum for liquid argon at
85.5 and 94.4'K, using the data of Rahman. ' These
are (cu') =50X10'4 sec s [This value should be pre-
ferred to the other values reported in Ref. (1) (A.
Rahman, private corrnnunication). 1 and D= 1.88X10 '
cm' sec ' at 85.5'K, and (~') =55X10" sec ' and
D=2.43X10 ' cm' sec ' at 94.4'K. We have also
investigated the effects of small changes (by &10%)
in these numerical values. The results are presented in
Figs. 1 to 4, together with the results obtained in the
numerical experiments of Rahman. "'

4 A. Rahman, Phys. Rev. 136, A405 (1964).' A, Rahmau, J. Chem. Phys. 45, 2585 (1966).
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The present approach clearly reproduces semi-
quantitatively some of the features of Rahman's
results. Thus the velocity autocorrelation function
becomes negative at approximately the correct time and
has a well-dered minimum; it reaches, however, a
deeper negative value and undergoes some additional
oscillations of small amplitude. Small changes in the
parameters do not affect these features markedly. The
theoretical frequency spectrum has a peak. in approxi-
mate correspondence to the shoulder in Rahman's
spectrum, and the high-frequency tail of the spectrum
is also approximately reproduced. The low-frequency
peak in Rahman's spectrum is missed entirely. Small
changes in the parameters affect markedly the height
of the peak and, to a lesser extent, its position and the
high-frequency tail. A decrease in the diffusion coef-
ficient or in the second moment of the spectrum
heightens and narrows the peak in f (a&) and strengthens
the oscillations in 4 (t); this behavior is consistent with
the analysis given in Sec. II.

Our results at 94.4'K, for the values of the parameters
quoted above, can be compared with the results obtained
by Berne et ul. ,' at the same temperature and for the
same values of the parameters, but with an exponential
kernel. The curves for C(t) and the broad features of
f(ro) are essentially the same. The peak in f(&o) obtained
with a Gaussian kernel is, however, lower and more
spread out.

We have also evaluated C(t) and. f(&o) for values of
B/A just outside the bounds (11).For small values of
this ratio f(cv) has a very high and narrow peak, and
C (t) undergoes many slightly damped oscillations; the
particle is clearly being described as an Einstein oscil-
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FIG. 4. Frequency spectrum of velocity autocorrelation in liquid
argon at 94.4'K. Curves A and 8: data as in Fig. 2. The broken
curve is from A. Rahman, Ref. 4.

Iator with a very small damping. For large values of
B/A f(co) decreases continuously from its value at zero
frequency, but C (t) still undergoes some strongly

damped oscillations. Substantially larger values of B/A
are necessary to completely eliminate the oscillations.

IV. CONCLUDING REMARKS

While the present approach clearly represents a
substantial improvement in the description of the
velocity autocorrelation over the use of the Langevin
picture or of a truncated time expansion, it is also clear
that the use of a simple memory function oversimplifies
the problem. The motion of a particle in a liquid involves
a diffusive component as well as a damped vibratory
component; the former contributes mostly to the low-

frequency part of the spectrum while the latter is ex-
pected to lead to a peak in the region of the shoulder in
Rahman's spectrum. "By fitting the parameters of the
kernel to the diffusion coefficient and to the second mo-
ment of the spectrum one is taking into account both
components in an approximate manner. Our comparison
with Rahman's results suggests that the present ap-
proach is actually giving more weight to the second
component, and may, therefore, be describing the
liquid as more "solidlike" than it really is. A better
description could be developed in this framework. by
using a more complicated kernel, at the expense of
increasing the number of parameters in the model.

0
0 0.5 I.O

%~I(k&r)
I.5

FIG. 3.Frequency spectrum of velocity autocorrelation in liquid
argon at 85.5'K. Curves A and 8: data as in Fig. 1. Curve C:
(aP), =50X10~ sec~, D=2.07X10 ' crns sec '. The broken
curve is from A. Rahman, Ref. 5.
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