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Collision Integral for a Plasma in a Strong Magnetic Field*
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Starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of statistical mechanics, we derive
the magnetic-field dependence of the collision integral to second order in field strength. The field is suSciently
strong to make the Larmor frequency of the same order as the plasma frequency. The calculation is carried
out explicitly for a Landau plasma (small-momentum-transfer regime). The simplicity of the result makes
it particularly suitable for calculating transport coeKcients for a plasma.

erarchy, a pair of equations which determine the time
evolution of the single-particle distribution function to
second order in the magnetic Geld.

The BSGKY equations may be put in dimensionless
form by use of the following dimensionless variables:

x =x/Xi), v =v/vzb,

C*=C (x*)/co; B"=(~./~. )(B/IB I), (2)

where uzi, =(kT/rrt)'" is approximately the thermal
speed, ) ii= (/tT/4rrl, e')'" is the Debye length,
co„—=

v&i, /)i& is the plasma frequency, co,=eB/rtt is the
cyclotron frequency, and Cp is a mean value of the
effective interaction potential for a collision. Thus, Cp

is a measure of the strength of a typical two-body
interaction. If I/" is of order 1, then the B Geld is of such
strength that an electron under the action of the mag-
netic field alone would make one cyclotron revolution
in a time of the order of the mean duration of a collision
(Xn/vn, ). Thus, a lB*l field of order 1 is a very strong
field and may be expected to signiGcantly affect the
collision integral. We shall show that this expectation
is borne out by the mathematics.

The nondimensional BBGKY equations for an elec-
tron gas in a uniform, neutralizing positive background
ares

B(gauss) 3X10 zL'rt, (cm ')]'".
BF' C'p @Q

+ (Ee Isa)Fe IeFe+ (rt)tns) IeF8+' (3)
Bf AT AT

These plasmas are of the type encountered in experi-
mental situations. ' 4 Ke obtain below, from the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)hi- where we have dropped all *'s to simplify notation, and
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HE charged particles of a plasma interact through
the Coulomb force law. Because of the long range

of this interaction the duration of a collision, i.e., the
time of interaction, would be infinite. However, the
Debye shielding reduces the effective range of the inter-
action. Thus, the duration of a collision in a plasma is
determined by the time required for a particle to
traverse a Debye sphere. Since the Debye radius is

much larger than molecular dimensions, the duration of
a collision in a plasma is much longer than that in a
neutral gas. An external magnetic Geld, of magnitude
often encountered in the laboratory, will affect the
plasma in two ways. One is the effect on the trajectories
of the particles between collisions; the other is the effect
on the collision process itself. The first has been treated
extensively' and appears as a force term in the kinetic
equation. The second can be signiGcant for laboratory
magnetic Gelds because of the relatively long duration
of a collision.

We are concerned here with obtaining a description of
the time evolution of the one-particle distribution
function for a plasma in a magnetic field in which the
duration of a collision is comparable to the Larmor
period. This condition is satished for magnetic Gelds such
that
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We consider a Landau plasma (rIXII2=1, Cp/kT—= e&(1) in which the magnetic 6eld. is time-independent
and uniform over all space; the gas is homogeneous in
space. The Landau plasma regime corresponds to a
dense, weakly coupled gas, and describes a situation in
which small-momentum transfer collisions are domi-
nant. For the 6eld-free case this approximation yields
the well-known Landau collision integral which is of
the Fokker-Planck form. Since collective effects are not
explicitly taken into account, a cutoff at the Debye
distance is required. We have considered for simplicity
only the electron-electron collisions. The ions must be
present, however, to preserve over-all charge neutrality.
Therefore our system consists of an electron gas in a
neutralizing background of positive charges.

The SBGKY equations are solved here for the two-
body correlation function, and the kinetic equation is
obtained by means of the method of extension. ' The
s-particle distribution function I' is expanded in the
small parameter e with the following special notation
for s=1,

pl f0+sf1+02f2

The time is expressed in terms of the independent time
scales v.„,where 7.„=e"t. Thus, the time derivative is
expanded as follows:

t9 8 8 8
+0 +0 +'''

87 p 87y BT2

where
2

xl2 =$I2+—Q (—1)'vri( SII18,—sln8.;}~

1 2

pi2 $12 Q ( 1)'v,r(cos8, —cos8,),
s=l
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The coordinate system has been chosen so that the s
axis is along B and xis ——xi—x2. The result in Eq. (8)
does sot depend on the assumption of gyrotropy.

The kinetic equation is obtained in second order
using the assumptions of a homogeneous gas and a
gyrotropic single-particle distribution function. Equat-
ing coefficients of e' we obtain

8f2/ar 0+8f'/ar 2= rl~n'I. 'g I2'.

We write gls'*= gr2'(rp= —00), and write Eq. (8) as an
integral from 0 to ~ (i.e., gl2'*) minus an integral from
Tp to ro Lwhich we call h(rp)$. The correlation function
g»'~ can be shown to be independent of 7 p so that when

Eq. (9) is integrated over r p we obtain

(8f0 TO

f'(r )= rp~ +rlhnpllglsi* — Ir(X)did. (10)
&ar2 p

The two-body correlation function, defined by P»'
frfs+gl2 va—nishes in lowest order, i.e., gr20=0. In

6rst order g~~' satis6es the equation

8gr2'/&rp+ (&' Iz') gi2'= II2'f—r'fs'. (7)

Solving Eq. (7) using the initial condition gls (0)=0,
we obtain

gl2 (+12)$12)sl2$1)82)&0)

BC
(r12yg12+12)/Djf1 f2 $(81)82)&0) y (8)

p 0$yg&

We assume for simplicity that at t=o, F' satis6es the
molecular chaos condition. We use a cylindrical co-
ordinate system in velocity space. The components of
v are (v, , 8, v, ~), where v, is perpendicular to B, 8 is
the angle between ~& and some 6xed axis in the plane
perpendicular to B, and v„is along B. The single-
particle distribution is called gyrotropic if it does not
depend on 0. The gyrotropy assumption need not be
made at this point, but is required to obtain our 6nal
result.

In first order (sr) the equation for the single-particle
distribution function yields

Bf /Bri ——0 and f'(rp) =0.

The freedom introduced by the multiple time-scale
expansion is now exploited to require that 0'f'/fp be
small for all 7p. The last term on the right-hand side of
Eq. (10) does not increase indefinitely as rp increases.
Therefore, in order for f' not to grow with T p we must
have

8f0/8t = (nXD2) (C 0/k T)2LIgrsi*

which is the kinetic equation in a general form. Related
results have been reported previously. '

We shall now put Eq. (11) into an explicit form by
doing a second perturbation expansion in which we treat
the dimensionless 8 as a small parameter. The expan-
sions for gls' and f0 are

gl2'= gl2"'+&gl2"'+&'gls"'+ . .

f0 f00+gf01++2f02+. . .

The initial conditions applied are gi2'(rp ——0)=0 and

fpi (rp 0) = 0
We obtain the following results for the single-particle

distribution function. The fp' term is zero and f" and
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f" are determined by the foHowing equations:

gf 00

g (3)
Tv

D f 00f I&0 (13)

rjfl c& Tjj
&fv2 Dj (fl f2 +fl f2 )

where

E;,
D f 00f &&0 (14)
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Here C(k) is the Fourier transform of C(~xl2~) and
e;,k is the completely skew-symmetric Levi-Civita
density7 which equals unity for i = 1, j=2, k=3.

Equation (13) is the usual Landau equation. ' It is
known to have an H theorem and to have the Max-
wellian as the unique equilibrium distribution. The
tensor T;; has a principal axis in the direction of the
relative velocity v~~ and is axisyDUnetric about v». The

field-dependent correction, Eq. (14), is determined by
the tensor N;; whose principal axes are in the directions
of the relative velocity v», the acceleration due to the
magnetic field vl2XB, and the orthogonal direction
vi2X (vl2X 8).We further note that the collision current
densities J & &, defined through the equations r)f&&~(v,)/rjt
=(ci/Bt&i~) J'dv2J;& ', are orthogonal to the relative
velocity vi2 because the J& & are calculated to lowest
order in the momentum transfer. This property is used
in the demonstration that f' becomes Maxwellian for
suKciently large times.

By virtue of Eq. (13) f"will become Maxwellian, M,
in due time. Consider now Eq. (14) at large times, that
is when f" is Maxwellian. The term containing E,,
vanishes since X,,D,M&M2 0. The——T,, term in Eq. (14)
drives f" to zero. This is seen by noting that the T,;
term corresponds to the linearized version of the Landau
equation for f"+82fs2. Since f" is Maxwellian, then
f22 must eventually vanish. We have thus shown that
f =f +8'f" will become the Maxwellian distribution
for suKciently large times. This is so in spite of the fact
that II=J f'lnf'dv does not have a negative definite
time rate of change for all fs (except when 8 —+ 0).'

Equations (13) and (14) provide a pair of equations
for determining the single-particle distribution function
in the presence of a strong magnetic Geld. We note that
the magnetic-Geld corrections to order 8' yield a
remarkably simple collision integral, and that this
collision integral, furthermore, has the same form as
the standard Landau collision integral. The Landau
collision integral has been extensively used for the
study of transport properties. ' The techniques de-
veloped there should, therefore, be applicable to calcu-
late the e6ects of the strong Geld as well.

We are indebted to Dr. A. Klimas and Dr. H. P.
Eubank for stimulating discussions.

'The two collision integrals of Eqs. (13) and (14) can yield
competing contributions to SH/sj inside the lobes of the region
de6ned by

~
itl2

~

' & (3 &'&/2 &2 &) (8'/4) (1—3 cos'O~)

where 0 is the angle between the direction of the magnetic field
and the relative velocity v12.


