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Methods for Constructing Invariant Amylitudes Free from Kinematic
Singularities and Zeros*

G. C. Fox
CaeenCish Laboratory, Cunsbridge, England

(Received 9 December 1966)

The work of Hara and Wang on the kinematic singularities of helicity amplitudes for particles with spin
is extended to rederive the invariant amplitudes given by Hepp and Williams. Parity-conserving invariant
amplitudes are given for reactions in which at most two particles have spin.

1. INTRODUCTION

'HE removal of kinematic singularities is an im-
portant preliminary to most calculations that

utilize the analytic properties of scattering amplitudes.
The complexity of this problem depends on the num-
ber of particles with spin and the magnitude of their
spin. It has been studied for two-body scattering
amplitudes by two different approaches. The 6rst
approach was used by Hepp' and by Williams, ' who
were concerned primarily with establishing the exist-
ence of amplitudes free from kinematic singularities
rather than their relation to helicity amplitudes which
are useful in practice. The second approach was used
by Hara' and by Wang4 and is concerned with establish-
ing singularity-free combinations of helicity amplitudes.

The kinematic singularities of a physical ampli-
tude arise from its relation to M functions, "which
are analytic functions of momenta and have only
dynamical singularities. An amplitude that is free
from kinematic singularities is designed to express
this analyticity in terms of the scalar variables s
and t. However, physically useful functions of s and
t such as helicity amplitudes contain kinematic sin-
gularities. These "choice-dependent" singularities occur,
for example, at s=(mr+ims)'. They can be exhibited
explicitly by using a Lorentz transformation to a frame
where the vectors do not have this singularity. Thereby,
one can express the same information at s= (mt+iiss)s
as contained in invariant amplitudes —but only sepa-
rately for each kinematic singularity. This is suQicient
for some purposes, but invariant amplitudes solve the
more general problem of simultaneously removing all
singularities.

Hara and Wang make use of the Trueman-Wick
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'H. P. Stapp, Phys. Rev. 125, 2139 (1962); A. O. Barut,
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crossing relationsr (hereafter denoted by TW crossing).
These relate the helicity amplitudes H, when s is the
energy, to the helicity amplitude H, when t is the
energy. They expose, for example, the singularities of
H, at the thresholds s=(m&&ms)' in the rotation
matrices D, since the amplitude II& has no such singu-
larity. By this means Hara and Wang obtain nonsingular
linear combinations of P,. However, these results do
contain kinematic zeros (e.g., in re scattering) since
one is unable to prove from the analyticity of these
combinations the input information that P& was non-
singular at s thresholds.

In Sec. 3 the method of Hara and Wang is extended
to remove these zeros. The invariant amplitudes ob-
tained there are related to a particular choice of those
given by Hepp and Williams. This choice is examined in
Sec. 2, where direct and inverse formulas are presented.
These are probably the best choice until one considers
the eGect of parity conservation when more than one
particle has spin. Parity is considered in Sec. 4; a solu-
tion is obtained when only two particles have spin, and
guidelines are given for the general case. In Sec. 5 three
typical examples of parity-conserving amplitudes are
given. These are j&=2, j2= j3=j4=0; any j&, j2=&,
js= j4=0; and j&=j&= j., ja= j4=0. Finally, in Sec. 6
we discuss these results.

2. SOME GENERAL FORMULAS FOR INVARIANTS
WITH NO EXPLICIT PAIGTY CONSERVATION

A. Notation

The spinor formalism has been described elsewhere" '
and consequently only the notation to be used is stated.

In terms of a T Inatrix corresponding to invariantly
normed states, de6ne an 3f function with lower spinor
indices by

~ri = SontgoingD(b )SinoomingD(Cb )M(P) & (2.1)
where (a) S denotes one D&" matrix, of the lower spm
representation of Sl.(2,C), for each particle; (b)
C= —ios is lowering matrix; (c) the boosts b are in the
helicity convention:

r T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964); I. Muzinich, J. Math. Phys. 5, 1481 (1964).' S. Weinberg, Phys. Rev. 133, B1318(1964).
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X3II»„, b~b, (s-channel c.m. system vectors)

inserting the conventional (—1)&'2+&'4 "2 "4 factor.
M has Lorentz transformation law

(2 2)

where (y, e,—y) is direction of y and Z(0;) is a boost in
z direction.

So for the s-channel reaction, for instance,

systems to center-of-mass (c.m.) systems by a boost in
the s direction. In the s, t, I c.m. system particles 3, 2, 3
are, respectively, in the directions (p,8,—q) = (O, tt, , 4, ,0)
with 0&&O, , t, „~&x in their physical regions.

M»444»441(c. m. system)
=et»+»+»+4'4&~1M»„, ,„,»(rest) . (2.5)

In Secs. 2 and 3 particle 1 will always be at rest.
Finally, the kinematic notation will be

M(p) = g D(g)M(X p), (2.3)

and irreducible amplitudes are formed by operating
with the Clebsch-Gordan (C.G.) series in the usual

way: and

S, = [s (m—4+m;)25[s (m—, m—;)'5,
(ij)= (12) or (34)

cosha, '= E;/m;, i= 1,2,3,4

sinho' =S12/2mim2,

(2 6)

M""'(p)= Z C(j j j: )M. .(p) (24)
g+p2=ss

The s, t, I rest systems are dehned with particle 1 at
rest and with particles 2, 3, 4, respectively, along the
z axis. The x components are speci&ed by relating rest

so that 0'=01'+02'.
Similarly, T;; and 0' are defined by s+-+ t and 2 +-+ 3

in the above.
The Trueman-Wick~ crossing angle for particle 1 for

s —& t channel crossing is de6ned by

(S+mi' m2'—)(t+mi' mb'—)+2mi'(mb' mi'—+m2 m4)

cosXy =

2mi[yj't2
slnXy =

&u~i2

(2.6')

B. Construction of Covariant Polynomials

Both Hepp' and Williams' construct their covariant
polynomials out of the elementary covariants:

M, ,[Z„Zbj= S(Z,),tt,Ct"&2(Zb),t4, u= +-', .

Here

and
Z &"")=k &' '"& 0 '~msa a 0„=(42,1), (2 7)

while

tb, '= [(—1) if 4b= 2 or 35p, ',
k."=[(—1) if 48=2 or 45P.",

(2.7')

g, t a]$ permu4ations of ey ~ ~ ug

with

4t2= stbt s(mi'm2'+—mb'm4') t(mi'mb'+ —m2'm4')

N(mi'—m4'+m2'mb')+2mb'm2'mb'm4'(Q 1/m, ') .

The M's are to be chosen so as to simplify the re-
quirernents of crossing and parity, but we will not con-
sider the latter until Sec. 4.

With particle 1 at rest we have, for any vector q
with qua=0,

q, —q,
M[Zi, q7= (2 8)

not distinguishing between q and 0"q.
So in the s channel M[Z1,Z25 is antidiagonal, which

simplifies calculations. M[Z1,Z25 has this property in
the t channel, and so it is convenient to form covariant
polynomials from M[Z1,Z25 and M[Z1,Z,7, which also
gives a de6nite behavior on 2~3 crossing. Alterna-
tively, M[Z1,Z25 and M[Z1,Z8 —Z45 are useful for
3+-+ 4 crossing.

For the covariant that is allowed to appear only
once, it is simplest —until one considers parity for more
than one spinning particle —to take, for some vector m,

IF(w) =M[w, Z25+(Zi Z2)M[Z1)wj —(w Zi)M[Z1,Z25

There are 3 independent M[Z;,Z;7 i, j=1~ 4, one
of which is to be eliminated whenever it occurs more
than once in a covariant polynomial by the constraint
given by Eq. (2.19) of Ref. 1.The analogous equation in
the lower-dotted formalism is written out in (2.18).

= slnho' 'R,
0 1

in the s channel. (2.9)

IF is proportional to M[Zi, o.„2&""&pi„p2&22„5 used in
Ref. 2,
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C. Evaluation of Covariant Polynomials

In order to be able to discuss the previously chosen
special covariants in all 3 channels, we take the model
M's:

0 1

Writing

D. Inverse Relations

3E(&)= P (EQ.

A=n
0

Slneb COS8b
(2.10)

Coseb —sln8b&

8'=8 with a prime added,

C=y
0 1

and correspondingly take as our 2j+1 covariants:

for a linearly independent set Q;, we have now obtained
3f as a function of the invariant amplitudes q, (s, t)
Conversely the qi may be expressed in terms of 3f (&'

[m= —j + j].
A powerful method of obtaining such inverse formulas

has been given in Refs. 2 and 6, and applied by Williams
to the Q; of (2.11).Although this method appears the
best in the majority of physically interesting cases (i.e.,
with explicit parity conservation, cf. Secs. 2E and 4)
it happens that a simpler explicit result may be obtained
for the covariants (2.11).

Taking the linearly independent set

(b b) ~~a&a2 ~a2r-], a2r ~a2r+la2r+2 ~a2j-1a2j 7
Q(.»"" Q& b )(J r) r 0

(2r ) . ~ ~ ~ ~ ~ ~(b b&) —~ a1a2 ~a2r 1a2r a2r+1a2r+2 a2j —3a2j-2

the results (2.15) imply that if we form

~(j,m)~( 1)m~(1,—m)

XCarr' Iarj ' ( 1—) the problem at once splits into two.
Also, since

Q( b)
&' "', Q(, b, )(& ") are as above, with 8'-+ A, and

results will be given for this simple case only. The more
general covariants with b' replacing a may be obtained
fr OITl

Q(.,) „(,b, )& ")(m)=0 for j r(~—m~,

the relation between M and q is triangular and so the
inversion is rather easy to do by hand. Since this will be
exploited in Sec. 3 just the answer is presented here.

Simplifying the result of Sec. 3 obtained in terms of
D;„r'(8b), for m~) 0 let

Q(b'b) or (b'bo) (m) Z Q(ab") or (ab"o) ' (~)
X

XDb &'(8b ), (2.12)

d (1+cos8b) +(cos8b —1)

ot8b) (sin8b)

1
X (X-,',m=0), (2.16)

2'!
and then, again with l+l'= j, we find

where 8b.+8b ——8b and Q..."(m) is matrix element of X &(cot8b)=
Q...",„,. for a state

~ j,m). d'(c
If we choose M[Zi,Zpj, M[Zi, Zpj, and 8' as 8', 8,

and C, respectively, the covariants (2.11) are of type
Q( b) Q( b ) in the s and t channels, but of type Q&b b),

Q&b b, ) in the I channel.
On evaluating (2.11) with l+l'=j we find

Q( b)""(m)
P'n'2'l!

DP '(8b), (2.13)
[prCt+ (E+m)!(E—m)!j"'

Q&.b ) ""'(m)
n)'P( (2r'(E 1)!——

mDp '(8b) . (2.14)
sin8b [q;Cz+ (E+m)!(mE m)!ji)&—

Note that

Q(b'b) o ( b)
' "(m) = (—1)"Q&b'b) o ( b) "'(—m)

(2.1S)

Q(b'bo) or (abo) ' (m) ( 1) Q(b'bo) or (aba) ' ( m) ~

( 1)l m—
(E( b)

'' = Q (pC+ ) 2'+'n' (p sin8b) '
X '(cot8b)

Xpg (j,m)+( 1)m~(j,—m) j (2 1 'E)

This concludes the treatment of the covariants (2.11).
The above will also form the basis of the discussion in
Sec. 4 of parity-conserving amplitudes. However, the
simplest description of some practical problems lies in
the formalism of Barut, Muzinich, and Williams, which

( 1)l—m

(E( b)""'=E (prCr+ )'"
2&'+'y n'(P sin8b)' 'm

XX '(cot8 )[CV™—(—1)™3E""'j. (2.17')
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does not use the C.G. series. Deviating from the main
line of the argument, in the next section are given the
details in an especially simple case.

E. The Method of Barut, Muzinich, and Williams

In order to consider the practical problem of 6nding
parity-conserving amplitudes in the j3= j4=0, j&= j&
case, it is most convenient to take the linear combina-
tions of Q's suggested by a lower-lower dotted formalism
(Refs. 5 and 6). For particle 1, define lower-dotted
states by

Ipt4)= Ip X)D"',(C 'Z).
Covariant polynomials are formed" from elementary

spinors with one 0.2 and one a& index. We are allowed any
number of Z~, Z~, and q, and one of a covariant,
which we take as the parity conjugate of q

xq=Z2C 'q~CZ&.

Two m-q's are eliminated whenever they appear in a
covariant by the constraint

S{mq~q+ qq+2 (Zi. Zs) ~qq+ q LZtZi+ZsZs j
+252(Zt q)(Zs q)

—(Zi Zs)q']ZtZs —2(Zi q)

As the inverse coefIicients are essentially the same as
the direct ones, not much extra work is involved in
getting the inverse relations except that all the F's
have to be calculated. and not just the (2ji+1)' inde-
pendent ones.

Finally, we reduce the sum over all /; to a sum over
the chosen linearly independent set by means of (2.18).
Then is even easier (in the s channel) than it appears,
since the P's to be eliminated have large lsl4 and small
l~l2. Their corresponding inverse F therefore has, from
(2.20), large lils and hence many zero elements.

As an example for j&
——j2———,

' there are, for each parity,
8 linearly independent F's and ten F's in (2.19), while
in the inverse relation, the coeKcients of three M's
are unaffected by the constraint (2.18), while three
have one extra term and two have two extra terms.

Finally, no useful explicit formula could be found for
the F's like (2.13), but a little of the tiresome insertion
of elementary 2-spinors is avoided by noting that

n
Fg,1,(ltlslsl4) = X {coefficient of xt"xs"xs"x4"

ltlsls/4)

in Di i &'&=&'&(xiZt+xsZs+xsq+x47rq) ) .

In Sec. 5, j&= j2——1 is given as an example of the above.

where Z
lower-dotted index wherever they appear othervnse
than in a scalar product Lwhich is denoted, for instance,
by (Zi Zs)3.

In fact, to get explicit parity conservation one would
judiciously choose more than one wq in a singularity-
free manner as dictated by (2.18).

Denote the matrix elements of the covariant contain-
ing lt Zi's, 4 Zs's, 4 q's, and /4 n q's by Fq, j„(ltlslsl4). Then
we may expand

A. Statement of Problem

We take the TW crossing relation' when there is only
one particle (No. 1) with spin. This is

M" '(s rest) = (—1)"M&&»(t rest) D„'(Xi), (3.1)

where:

(i) As in Sec. 2, M(s rest) denotes the M function
with particle 1 at rest and particle 2 along the s axis
and M(t rest) has particle 3 along the z axis;

(ii) We have used the C.G. series to treat any num-
ber of spinning particles, as the use of M(s, t rest) ensures
that all particles transform with the same rotation as in
the one-spinning-particle case.

(iii) The TW crossing relation relates the analytic
continuation of M(s rest) to M(t rest) in the t physical
region. The phase in (3.1) is stated for the customary
route of continuation for the s rest vectors so that
Sls ~ + ] Sls[ and L@j' ' ~ +LPGA"' in the t physical
region.

As described in the Introduction, the M functions are
analytic functions of the momenta and kinematic
singularities occur through making the choice p, = p;(s, t)
to get a function of s and t.

There is the unavoidable singularity at the physical-
region boundary and M &~ ~& is proportional to {LPj'~') ~ ~~

times a function regular at the physical-region boundary.

Misled P Plg4lal4Fxs)a(f1121314) y

all ls
(2 19)

and as long as the sum runs over all the /; we may invert
to ffnd" (in the rest frame of particle 1)

n q 1
Ptttt=~ [ (—1)'~"

Eltlslsl4) (2q, sinha')"

2 (—1)"+"'F-.srhL~441s1tjMs2i4, (2 2o)
P2Pl

where tt = lt+ls+ls+/4 and

kltlslsl4)

is a multinomial coefficient.

s K. Hepp, Helv. Phys. Acta 36, 355 (1963).

X qZi+mqZs —2 Zs. q qZs+7rqZt, 2.18)
3.DIRECT DERIVATION OF INVERSE RELATIONS

s, Z2, mq, and q each have one lower and one FROM THE TRUEMAN-WICK CROSSING
RELATIONS
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The other singularities are choice-dependent, and Then consider the following two cases:
in our case,

I. ~=(—1)
M(s rest) is singular at S»=0,
M(f rest) is singular at Tqa ——0.

Following Hara' and Wang, 4 the nature of this
singularity is given by the TW crossing relation (3.1)
which, as written, exhibits the S» singularity of
M (s rest) in the D matrix, since M (t rest) has no singu-
larity there.

We will try to find some nonsingular linear com-
binations of M(s rest) which are not only analytic at
S~2 but whose analyticity at S~~ enables one to deduce
that M(t rest) is analytic there. These linear combina-
tions should also enable one to prove the physical-re-
gion boundary behavior of M and that M (s rest) is an. -

alytic at T~3.

B. Solution

, t=O" j

and

A, jm ( 1)j—mB. ,jm

A,j-=o
Then, forming

P A g' (—1) M&' '(s rest)

Operate on both sides of (3.2) with

(sinj 'Xq) d'

d'(cot8) sin j8

and write the resulting equation:

A jj"=Bjjj'D„j(X,).
We have

(3.3)

(3.4)

This problem is soluble if one notes (using the results
of Sec. 2) the triangular relation, in both the s and t

channels, between M and a suitable set of invariant
amplitudes.

Consider the equation —for any 8 and p= &1

D,„(8)+&D,.(8)= t D;„(8 X,)+~D—;„(8—X,))
)&D„„j(Xg). (3.2)

=Q B&"M&~ ~ (t rest), (3.5)

and letting l increase through integral values from 0 to j,
we get linear combinations of M(s rest) (of one less in
number each time) equal to linear combinations of
M(t rest) (of one more in number each time).

We must now multiply by factors to remove the
singularities and so we form the invariant amplitudes

Aj"(—1)mLM&' &(s rest)+( —1) M&j ~(s rest)g(&(-,' if m=0)

(sin jXj)S» Tra
0 e ~ o j (3 6)

which are proved analytic at Tq8 from (3.6), and at S» from the expression in terms of M(t rest) (3.5), and at /= 0
from either (3.5) or (3.6). But, as they are triangular, these relations may be inverted. Taking, for example, the
2'» singularity, we start at m=l=j and work downwards in jr', inverting to find M&j &(s rest) in terms of I&&

(I&~ jr'). At each stage the new M&&'m&(s rest) has a simple coeKcient in Ij j proportional to (sinX~) j m, the Tqa
singularity of which is canceled by the division factors in (3.6). Thus we may prove M(s rest) analytic at T»——0.
Sj~ and &=0 are dealt with similarly, and so Ijj are the desired singularity-free amplitudes.

Z. jv= —(—I)j
The remaining j invariant amplitudes are given by p= —(—1)j. This time operate on both sides of (3.2) with

sinU ')X» d' '

(/ —1)! d' '(cot8) sin' '8

and write the resulting equation:

where

A j,
j"=Bj~D„„j(X,),

'

Aljm —( 1)j mB. +1jm

(3.7)

(3.8)

Then similarly we get the invariant amplitudes

m&0

Ajj (—1) LM~j m&(s rest) —(—1) M&~' &(s rest)j

(sin'Xj)(S»)' '+'Tqa'
(3 9)



q&, b&
U '& = (22&222&22) '(22&212nd) '~2( 1)—'Ii2,

q ~, i„&'2 '& = (2 2&222222) '+'(2 22222&22) '-'( —1)2I&'. (3.10)

4. PARITY-CONSERVING INVARIANT
AMPLITUDES

A. Introduction

The general results we have obtained explicitly con-
serve parity only when just one particle has spin. If
more than one particle has spin, the nonphysical nature
of the C.G. series is exposed since it is not preserved by
the parity transformation.

It has only been possible to obtain linear combina-
tions of the invariants of Sec. 2 for which the constraint
of parity conservation takes a simple form in the two
cases: Any jij2 and j3=j4=0, or j3 g ) j4= 0. Only
the result for the first case is presented below since it
has features that are probably common with the general
case. The proof involves the study of the matrices

T22™(~)= 2 C(j j ji:&22)2e '""C(j ij 2j P1P2)

which are proportional to the representative of the
boost e' in the (ji,j2) representation of the homogeneous
Lorentz group. In Sec. 3, as the energies were non-

singular, we only needed to consider the rotation group
in order to Gnd invariant amplitudes. It appears that
parity causes difhculties because it involves the study
of the full Lorentz group.

Williams and Guertin have also considered the same
problem.

C. Relation to Sec. 2

In Sec. 2C take

A =M[Z2,Z2j,
8=M [Zr,Z2j,
C= W(Z2) .

Then

Ii' and q~, »&2" I&2 and g&,»&J'& for l+l'= j,
have exactly the same structure in the s and t channels.
They are thus identical up to a proportionality constant,
and one may verify that

By the same argument as in Sec. 3, we may derive a
set of parity-conjugate invariant amplitudes —called
'P'~&—which are the same linear combinations of P as
'I'&&' were of 3E. Then a parity-definite, linearly in-
dependent, singularity-free subset of 'P' and 'I' may
be found as follows.

1. General Case

For fixed / let j;d be the midpoint of the allowed
values of j, i.e.,

j;d=-', f ji+j2+maxP I ji—j2ll).
Then keep 'I'&& for j&j;& and replace 'I'&& for

j&j-' by 'P" «r j&j--'
Z. Anonsalols Cases

This is a complete prescription except when j;d
is an integer. In this case one replaces I~™idand 'I'~™d
by (taking ji&&j2):

(i) 1=0,
Idimid+ ( 1)2'1+J2pdi'mid ~

I&2'm d+ ( 1)'2'1+j2P22'm d'
Iiimid ( 1)2'1+22P 12'mid

(In the above j;d=ji and this case only occurs if

j; is integral);
(iii) l&

t ji—j2~, j, integral,

coshkoIi™d+522sinhko I22 id+( —1)2'1+2'2

X[coshkaPi™d+512sinhkoP&™d)

sinhkr
COShkoIiJinid+ I ilmid —(—1)11+22

Sg2

sinhko.
X coshkaPi™d+ pii' 'd

Si2

with k=-(~—
~ ji—j2~), j d=k+j 1;

(iv) l&
~
ji—j2~, j; half-odd integral,

sinhk0
I

coshkoIi' "+ Ii™d

B. Parity-Conserving Amplitudes when
Two Particles Have Spin

After doing a parity transformation and a rotation
through ~ about the y axis to bring the vectors back to
their original values (since they have no y components),
define the parity-conjugate 3f function by

Pgg (p)=(—1)»+22 m~ y y
—
(p)d

—»2~ (41)

where 2&2= &ii+4. Then, if parity is conserved,

P&,&,(p) =n~x, &.,(p) .

sinhk
+~ coshkoPii 'd+

l Si2
)JIQid

with k=-', (&
—

~ ji—j2~ —1), j;d——ji+k+-', . (4.2)

C. Analogous Results for Covariant Polynomials

The above results are stated in terms of invariant
amplitudes. Similarly one could give the answer in terms
of the covariant polynomials Q de6ned in Sec. 2. The
prescription for these is to replace Q for j&j;d by
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the parity conjugates of those for j(j;z.The midpoint
anomalies (4.2) are unaltered save for some factors
given by (3.10) and 0- —+ —o. in (iii) and (iv).

D. General Method for More than Two
Spinning Particles

The situation in (C) is indicative of the general
method of finding parity-conserving covariant poly-
nomials. Namely, one starts at the lowest j and works
upwards in j, replacing the Q of higher j by parity
conjugates of those of lower j.The C.G. series greatly
complicates the parity transformation and it is helpful
to unsymmetrize the Q's (which is possible by working

up from the lowest j). This should be done so as to get
covariants made up from the elementary covariants of
the type M, ,[z&,q] with one index belonging to the
same particle (here particle 1) as one of its momentum
arguments. This has parity conjugate

[(Zg Z2)(zg q) —(Z2 q)]C~,a,+Ma, ~,[q,zg]
—(Zg q)M ...[Zg,Z2], (4.3)

which may nonsingularly replace M, ,[q,Z2].
An example of this procedure is Hepp's treatment' of

the EE—& EE case.

E. Derivation of Both Direct and Inverse Formulas

In a practical case, the writing down of a set of
covariant po1ynomials which have definite behavior
under parity and any desired crossing, is the easiest
part of the work. One may do it either as in Sec. 48 so
that the relation of the nem q; to B, is almost immediate
or as in Sec. 4C where the relation of H, to the new

q; is easy. If one chooses unsymmetrized covariants this
relation mill be similar to Sec. 2E.

Homever, having chosen a particular may the inverse
relation mill be more tedious. The results of Sec. 48
are quite easy to invert in two steps: First invert for
M&~ &, j&j;~, and their parity conjugates and then
find the physical amplitudes from these. The case of

j3——j4——0, j2——-„any j& is given in Sec. 5 as an example
of this. The difhculty in the any j&j2 case is proportional
to the lomer spin.

In most practical cases, however, since one un-

symmetrizes to get a simple parity transformation, it is
more convenient not to use inversion methods based on
the C.G. series but to invert by the methods of Refs. 6
and 2.

F. Approach via Wigner Amplitudes

Finally me note that parity-conserving amplitudes

may not be trivially attained by replacing the M func-
tions used in Sec. 3, by Wigner amplitudes with particle
1 at rest. These retain the same transformation law under
rotations which was all that was needed there, but the
argument that the t amplitudes were free of s singu-
larities fails at s=(no~ —A&2)' because of the E= nz-
singularity in the particle-2 boost.

This is perhaps most clearly seen by comparing the
results of Refs. 9 and 10 for the mB'J3" vertex. Vertex
factors are discussed in the same way as scattering
amplitudes except we are only allowed to use C, ,
and M[zq, z2] to form covariants. Both references take
C.G. series; that in Ref. 10 is in terms of helicity
amplitudes, thereby being physically meaningful, but
only attaining the canonical p~ behavior at s = (m&+m2) 2

or s=(m~ —m2)' (depending on channel considered);
that in Ref. 9 is in terms of spinor amplitudes and
behaves like p~ at both s= (m~+m2) '.

S. EXAMPLES

A. Introduction

In this section three examples wi11 be given. In
Sec. 5B j&=2, j2= j3=j4=0, which is an example of
the results in Secs. 2 and 3. In Sec. 5C any ji, j~= 2,
j3= j4——0, which is an example of the method given in
Sec. 4 for finding parity-conserving amplitudes when

only tmo particles have spin. In Sec. 5D j&=j2=1,
j3——j4=0, which is an example of the method of Sec. 2E
(this is better than Sec. 4 for j&——j2).

Direct and inverse relations for the s™channel c.m.
system helicity amplitudes are given, @&here

Q &2&i—( 1)ji+js+&z—l mela~'M&
& (rest)

= (—1)&~"'e"&"Mg,)„(rest) .
Put

~2X1(g) —+ ~2kl+g+ —X2,—Xl

M, =p; e~E;+p; I;X;,
a sum over e; and e,—invariant amplitudes of even and
odd relative parity, respectively. (E; and E; are cor-
responding covariant polynomials. )

An arbitrary vector q linearly independent of pq/etq

and p2/m2 is left in the results. It may for example be
chosen as p3/ma or p3—p4, depending on the crossing
desired. q's components are those in particle 1's rest
system and in Sec. SD the definitions A =qo+q„
8= go

—q, are used.
The results are given only in the s channel. The t- and

I-channel formulas are similar but have fewer zero
elements.

x denotes parity conjugation so that

sQ xsxl —( 1)pl+JR+)El xgQ xg,—Ill

B. j&=2, j2= j3= j4=0

Take covariant polynomials

El M[zl)Z2]M[zl)Z2] i +1 M[zl)Z2]w[za] )

E2——M[zg, z2]M[zi)zg], Xg=M[zi, zg]W[zg],
E,=M[Z, ,Z,]M[Z„Z,].
"I. Durand, P. C. DeCelles, and R. B. Marr, Phys. Rev. 126,

1882 (1962).
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TABLE I. Case (B):H, in terms of invariant amplitudes.

e3

H, P

H. '(—)
H. '(+)

(4/g6) sinh'e'
0
0

—(4/g6) sinhe' sinhe' cosX1
2 sinhg s sinho' sinX1

0

(2/+6) sinh'e'(3 cos'X1—1)
—4 sinh20' cosX1 sinX1

2(sinX1 sinhe')'

H. '(+)
H. '(—)

—@'/2 sinhe'/m 1mzmb

0
(@'/2 sinh/r//mrmzmb) cosX1
—(4 '/2 sinhe'/mrmzmb) sinX1

TABr,E II. Case (B):The invariant amplitudes in terms of H, .

H, p H. '(—) H '(+)

82

g6/4 sinh2(r'

0
0

H '(+)
—m(mzmb/qV" sinh/r'

0

cosX1/2 sinhz/2' sinX1
1/2 sinhe * sinh/2' sin X1

0

H*'(—)
—m 1mzm3 cosX//Q'/2 sinhe' sin X,

mrmzm3/rf/1/2 slnh/2/ s111X1

(1+cos2X1)/4 sinh'e' sin'X,
cosX1/sinhe' sinhe' sin'X1
1/2 (sinX1 sinhe') '

TABLE III. Case (C): H, in terms of the invariant amplitudes.

H q.my[( 1)/q+mrg— [Q (Xr+2/Xr) ( )1[ne2r/( 1)ne r/2)Q& b)
—(n r+1) (m

I.)
2 sinhe [(j1—mr+1)/(2 jr+1)$1/» 3

n—2 ( (m1 —-,') l+ 2 (y'+xy')( —1)n+'[e'"+(—1)"e "3Q&nbr)(n"+" (m1—2)+(Z+xz) Sinhe( —1)"[e'"+(—1)"e r/2) 1—
~Q&,»(n 3)(m, ——,')

s p n

n —1 n —2

H i my( ( 1)/g+mg)— (X"—2rX )(—1)n[er/2+( 1)ne—
r/2)Q& b)(n r+1)(m1 1)y g (yr Xy8)

2 sinhe [(j1—m(+1) /(2 j,+1)J/»=3 s=p

(m1 —2))
X(—1)"+'[e"—( 1)"e "j—Q&nb. ) "'+')(m1 ,')+(z —2rz—)(—1)—" sinhe[e'" (—1)ne r—/2j] l —

)Q&,»/n o)(m, —2)
S

TABLE IV. Case (C):The invariant amplitudes in terms of H, . For 2+2rz use y rules for 3=0.

With l+r =n:
(2„g )1/2( 1)1—mX 1( q /g )

X '+2rX~'=( —1)" Q
1(~t ~(n Ns) p 2"+'(sinhe) r(/ '

—
/j, m+,) 1/2

/gg jm+-'
Q[ekr~ (—1)ne //r)

( [
H $,m+5[~ (—1)n+mj+ ( 1)m( H i}rn+}[+( 1)n+mj, —

}&. 2j+1 i
With l+s=n.

(2 C )1/2( 1)1 m-
y'-'+ y -'=(—1)"+' E —X./( —g,/~. )

1~(s~(n—1 2'+'(sinhe)'+'g, ' m

1 m+1 1/2 / j/+m+-22'(} '"
+[em+( —1)'n+(e }r] — H b m+4[~( —1)n+m]+( 1)m+1(

[
H },—,yb[~(

2J].+1 5 2j+1 i
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TsELE V. Case (D): H. in terms of invariant amplitudes.

II 0&0

H 1 1(+)
H, 1'0(—)
H01( )
H 1 —1(+)

H11( )B' 100(+)
H 0 1(+)
II 1,—1( )

e1

—j.
2 coshcr
0
0
0

—COShcr

2
0
0
0

2 sinhcr
0
0
0

—-,'(A+B)
Ae +Be ~

V2q sinhcr
0
0

n3

Ae —Be ~

V2q, coshcr—V2q
0

e4

——,'(Ae'+Be ')
A+B
0
V2q, sinhcr
0

n4

B—A—V2q
&2q cosha

0

e6

—-P10A e0'+B es' —2 coshoq 'j
2AB
v2q, (B—A)
V2q (Ae' Be ')—

—2q

n5

A'e —B'e ~

v2q (Ae'+Be ')—v2q, (A+B)
2q ' sinhcr

TAnx.E VI. Case (D): The invariant amplitudes in terms of H, .

e1

e2

e3

Q 000

sinh'0.

coshcr

sinh20

Q 101(+)

COSho

2 sinh20

2 sinh'0.

H10( )

(Ae' Be ')—
2v2q~ sinh20.

(A —B)

2V2q sinh'0.

V2q sinhcr

H "(—)

(A —B)

2v2q~ sinh~cr

(Ae' Be~)—
2v2q, sinh~cr

&2q sinhcr

H 1 —1(+)

(A 'e'+B'e ' 2cosho q—'j
4q, 3 sinh'0

(A+B)(—Ae'+Be ') coshe+2 coshsoq0+2AB)

+4q ' sinh'cr

(A —B)

2q 2 sinhcr

(Ae' —Be ')

2q& slllhcr

eg

n1

Ã4

H 1,1( )

2 sinhcr

H 1 0(+)
(Ae'+Be )

2V2q sinh'0.

coshcr

V2q sinh'0

(q2q, sxnh0o) '

H "(+)
(A+B)

2V2q, sinh'o

(V2q sinh'e) 1

COSher

VZq sinh'0

H1 —1( )
(A'e' —8'e )

4q ' sinh'0.

(Ae' Be )—
2'' sinh'0

(B-A)

2q~' sinh'0

n5
2q 'sinhcr

Then Tables I and II give the resulting relation be-
tween H, and the invariant amplitudes.

In the above j;&=j;and this case only occurs if j;
is integral.

C. Any j~, j2———,', j3——j4 ——0

Putting jx———,'(2e—1), take as covariant polynomials

0&~ r ~& rx —1: X"=C~,~/if [Zx,zs] M[zx,q]
r times n —r —1 times

0~&s&~N 2: F =C—, PI(zx,zsj Mtzx, qj ~ ~ 8'(q)
s times n —s—2 times

z=m. ..,~z„q~mpz„q j".m[z„q~,
n times

+here indices not sholem explicitly belong to particle 1.
A complete set of covariants is formed by X", F', Z,

and their parity conjugates. Let the corresponding
invariant amplitudes be x", y', s, xx", xy', and xs.

Then by taking matrix elements between states of
j=l and their parity conjugates (as mentioned in
Sec. 4, this is easier than taking j=n and j=rx—1),one
Ands the results given in Tables III and IV. Here the
answer is left in terms of the Q introduced in Sec. 2.

D. jy= j2=1; j3=j4=0
In the notation of Sec. 2E let

Qx=zxl, „,zxls, p„Qs——Zxzs, Qs ——Zxq, Q4 ——Z10rq,

Qs= qq1 Qe= qrrq1
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and put
2E;=Q;+s.Q;, i = 1,2,3,4,6
2Ã;= Q;—s-Q;. i =1,3,4,5

Then the results are presented in Tables V and VI.

6. DISCUSSION

Invariant amplitudes free from kinematic singu-
larities provide a convenient vray of stating the ana-
lyticity of 2 —+ 2 scattering amplitudes. In the preceding
sections we have given the relation of these to physically
useful amplitudes in some special cases but no com-
pletely general formula has been obtained. However,
in many practical cases one may use the methods of
Hara and Wang to derive results whose incompleteness
is either irrelevant or commensurate with the dynamical
approximations to be employed. I give belovr four ex-
amples of this:

(i) In the form-factor example at the end of Sec. 4, if
one is interested in s&0 one may consider it unnecessary
to get the threshold behavior correct at s=(Nst+ms)s.
Then the simple analysis of Ref. 10 will be sufIjj.cient.

(ii) When one writes dispersion relations with one of
the invariants (say I) fixed, t helicity amplitudes, when
their physical-region boundary behavior has been
divided out, express the same analyticity in s as in-
variant amplitudes. This simple (to state) prescription
is applicable in surprisingly many cases."

"T.L. Trueman, Phys. Rev. Letters 17, 1198 (1966); A. Bialas
and B.E. Y. Svensson, Nuovo Cimento 42A, 672 (1966).

(iii) Hara and Wang by considering the "parity-
conserving" helicity amplitudes find functions whose

singularities may be removed by a simple multiplica-
tive factor. However, these nonsingular combinations
have kinematic zeros at s=0 and s=(m;&m;)s. It is
sometimes important to remove some of these zeros in a
practical calculation. At s= 0 (in the general mass case)
one can use the fact that the original helicity ampli-
tudes were nonsingular, while at s=(m;&nz;)' the
perpendicular amplitudes introduced by Kotanski"
diagonalize the behavior. These perpendicular ampli-

tudes seem useful only at these special points because

they are singular on the physical-region boundary.

(iv) It should be noted that the kinematic singulari-

ties of partial-wave amplitudes are more easily discussed

by the method of Hara and Wang, '~ than from particu-
lar invariant amplitud. es.
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.errata

Mandelstam Iteration in a Realistic Bootstrap
Model of the Strong-Interaction S Matrix, NAREN

F. BALI) GEOFFREY F. CHEW) AND SHU-YUAN CHU

[Phys. Rev. 150, 1352 (1966)j.Lines 5 through 17
of the first paragraph of Sec. I should read: "em-
phasis of these regions is experimental. It has been
observed that four-line connected parts are large
within three narrow strips, as shown in Fig. 1. The
strip labeled 3f' manifests itself in two ways: (a)
In the s physical region there may be strong peaks
in low-energy cross sections; these peaks are associ-
ated with s poles of definite J, whose residues have
a corresponding polynomial dependence on s, =cos8,
and thus on t (or u). The inevitable dying out of
such peaks above about 2 GeV in center-of-mass
energy indicates that even if resonances continue
at high s, the partial widths for individual two-
particle channels are small. (b) When there exist
low-s poles on or near the physical sheet, "

Pion Production in es
—-P Interactions at Energies

90) 830' and 870 MeV, N. M. CAsoN, I. DERADo,

J. W. LAMSA, V. P. KENNEY, J. A. POIRIER, W. D ~

SHEPHARD, C. N. VITTITOE, AND J. L. STAUTBERG

LPhys. Rev. 150, 1134 (1966)), Reference 3 should
read: R. A. Burnstein, G. R. Charlton, T. B. Day,
G. Quareni, A. Quareni-Vignudelli, G. B. Yodh,
and I. Nadelhaft, Phys. Rev. 137, B1044 (1965).

Conformal Group in Space Time, H. A. KAsTRUr
LPhys. Rev. 142, 1060 (1966)]:Formula (20) con-
tains misprints. It should read

dasinhaP, s t~s
' ' '(cosha)P;s r~s

' 'I'(cosha)

General Theory of Dispersion Sum Rules with
Special Emphasis on the High-Energy Contribu-
tion, I. J. MUzrNIcH t Phys. Rev. 151, 1206 (1966)].
Equation (3.7) should read:

I's(As Ar) —mv(As —A4)—=P~Tr (3.7)


