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Ambiguities in the Solutions of Partial-Wave Dispersion Relations*
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Partial-wave dispersion relations for s-wave amplitudes are studied in the approximation where the left-
hand singularities are replaced by a Qnite sequence of poles. Conditions are obtained under which solutions
are possible and it is found that when these are satisfied several classes of solutions are obtained, with
di6erent behavior in the high-energy physical region. The case of p-wave amplitudes is also discussed.

"Im f(s')ds'1
F(s)=Ref(s) ——P

7F 80 S —S
s+ sp.

The integral on the right side converges since
0~& 1m'(s) &&1/q(s). To ensure the existence of the
principal-value integral it is sufficient to assume that
Imf(s) satisfies a Lipschitz condition for each s) sp.

By making analyticity assumptions of the form pro-
posed by Mandelstamz it is possible to represent F(s)
as the sum of a polynomial in s, the contributions of a
finite set of poles which correspond, to stable particles
with the same quantum numbers as the partial wave in
question, integrals over certain bounded cuts in the
complex s plane and the integral over a cut extending
to —~ along the negative real axis. ' To simplify the

*This work was supported in part by a grant from the OKce of
Aerospace Research (European OKce) U. S. Air Force under
Contract No. ROAR 64-62 and by the Schweizerische
Nationalfonds.

' We take this form for a partial-wave amplitude, rather than
the one often used, which includes an extra factor s'~', because we
want to be sure that our amplitude satisfies an unsubtracted
dispersion relation.

2 S. Mandelstam, Phys. Rev. 112, 1344 (1958).' For a detailed discussion of the form of F(s), see W. S. Wool-
cock, Phys. Rev. 153, 1449 {1967).

I. DISCUSSION OF THE PROBLEM

ET f(s) be a partial-wave amplitude for an elastic
scattering process, s being the square of the total

energy of the two particles in the center-of-mass system.
From the unitarity of the S matrix we know that f(s)
may be represented in the form'

~ (s)ezas (s)

(s) =-
2ig(s)

where 0&~zt(s) ~&1, 8(s) is real and is defined mod(rtn. )
with rt an integer, and q(s) is the center-of-mass mo-
mentum of either particle. The phase shift 8(s) may be
fixed by taking b(sp) =0 and requiring b(s) to be con-
tinuous, with sp ——(ritz+ms)', mi and ritz being the masses
of the two particles. The inelasticity parameter rt(s) = 1
when there are no competing inelastic channels open.
We may define the real-valued function F (s) by

where g(s) is a continuous real-valued function of s for
s~& s&(sp. This gives the integral equation

1
Ref(s)——P

"Imf(s')ds' 1 "g(s')ds'

s —stt S —S
s) sp. (1)

Assuming the validity of the integral equation (1),
how may we use it? For processes like pion-nucleon
scattering, where partial-wave amplitudes are known
over a wide range of energies, it is possible to calculate
the left side of (1) with reasonable accuracy for a range
of values of s above threshold (apart from a very slowly

varying contribution from the high-energy part of the
integral). The attempt is then made to use this knowl-

edge of F(s) to obtain information about the discontinu-

ity across the unphysical cuts. This method of analysis
has been extensively used by Hamilton and, his col-
laborators4 to study pion-nucleon scattering and has
also been applied to the Tt*(1385) resonance by
Martin. '

But it is also possible to try to proceed in the op-
posite direction. That is to say, some information (in
perhaps a very crude form) may be thought to be known
about F(s) from calculations concerning the left-hand
singularities and the problem is to obtain information
about f(s) in the physical region. Of course, in order to
define a definite problem, it is necessary to prescribe
zt(s) or b(s) or some quantity depending on both of

4 See the papers by J, Hamilton and T. D. Spearman, Ann.
Phys. (N. Y.) 12, 172 (1961); J. Hamilton, P. Menotti, T. D.
Spearman and W. S. Woolcock, Nuovo Cimento 20, 519 (1961);
J. Hamilton, T. D. Spearman and W. S. Woolcock, Ann. Phys.
(N. Y.) 17, 1 (1962); J. Hamilton, P. Menotti, G. C. Oades and
L. L. J. Vick, Phys. Rev. 128, 1881 (1962); D. Atkinson, ibid.
128, 1908 (1962); T. D. Spearman, zbid 129, 1847 (19.63); G. C.
Oades, ibzd 132, 1277 (1963). .

~ B.R. Martin, Phys. Rev. 138, B1136 (1965).
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discussion that follows, we assume that no subtractions
are necessary (no polynomial is then required') and
take only the final term in the sum, so that

1 '&
g (s')ds'

F(s) =
s s
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them for all s&~ so. In practice it is most convenient to
prescribe the quantity R(s), given by

2L1—tf($) cos28(s)j
R(s) =

1—2t) ($) cos28 (s)+Lr) (s)$s

R(s) = (o.„„i(s)/o.,i„„,(s)) for the partial wave in
question and therefore R(s) &~1; if(s) =1 (no inelastic
channels open) if and only if R(s) =1.

Since all that will be known about R(s) is that it
equals 1 when no inelastic channels are open, the prob-
lem of obtaining any information about f(s) in the
physical region will in general be impossible. Certain
special cases are favorable. If, for example, F($) is
small for a large range of values of s above threshold,
the most probable inference is that both Ref (s) and the
principal-value integral are small in this range. This
means that Imf(s), and therefore the principal-value
integral, will be negligible, at least over a somewhat
smaller range, especially for higher partial waves with
the amplitude written with an extra factor q" in the
denominator. Then Ii ($) will provide a good first ap-
proximation to Ref(s). On the other hand, if it is
known that a resonance occurs in the partial wave being
considered, a variational type of solution may be
used.

Apart from these special cases, the so-called N/D
method' is often used, usually with R(s) identically
equal to 1. This method may be written as follows.
Consider the inhomogeneous linear integral equation of
the second kind

Having determined h(s) we then define, for s) ss,

g (s')h (s')
N(s) =— ds'

S —S

(s—sp)
ReD(s) =1— I'

q(s')R(s')N (s')
ds

(s' —ss) (s' —s)

1 'i g($')h($')
N (s) =— ds'

7l ~ S —S

ImD(s) = g(s)—R(s)N(.s),

f($) = (N($)/D($))

It is clear from the integral equation for h(s) that the
integral defining N(s) exists if the limit j' "ds R(s)/s'"
exists. Und. er this condition the integral defining
ReD(s) will also converge, so that ReD(s) will be
defined for s) ss if R(s) satisfies a I.ipschitz condition
for each s&so. The problem is now to prove that the
function f(s) defined above is a solution of the integral
equation (1) which satisfies the prescribed unitarity
condition Im f(s) =q(s)R(s) l f(s) l' for s) ss.

The attempt at proof must proceed as follows. As-
sume first that for each s&s~ there is a closed interval
I= $$ b, s+—8j (8)0) such that, for any two points s',
s" belonging to I,

lg(")—g(s")
I
«ls' —"'ls (0&&& 1).

Assume, too, that for each s) so a similar condition can
be written for R(s). Then

(s—ss)
h(s) =1- ds'H(s, s')g(s')h(s'), s& si,

is an analytic function, regular in the complex s plane
cut along the real axis from s~ to —~ and continuous
onto the cut from above and from below, " the limit
functions being

00

II(s,s') = —— ds"
7l gp

q(s")R(s")

(s"—ss) (s"—s) (s"—s') Similarly,

I 'i g($ )h($ )
ds' Wig($)h($).

S —S

The kernel of this integral equation is not square
integrable, but if suitable conditions are imposed on
R(s) and g(s)' it can be transformed into one with a
square-integrable kernel. A unique solution h(s) will

then in general exist.

See the discussion in A. Donnachie, J. Hamilton, arid A. T.
Lea, Phys. Rev. 135, 3515 (1964).

A. Donnachie and J. Hamilton, Phys. Rev. 133, 31053
(1964};G. C. Oades, in Proceedings of the Siena International Con-
ference on Elementary Particles and High-Energy Physics, edited
by G. Bernardini and G. P. Puppi (Societa Italiana di Fisica,
Bologna, 1963), Vol. I, p. 388.

G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 {1960).
' For example, it is sufBcient to assume that the limitsJ' "PdsE(s)/s'~'pand J' „L~g(s) ~ds/sg exist. {ft is useful often

to use an arrow to emphasize that the limit of an integral over
a 6nite range is being taken. )

(s—ss) "
q (s')R (s')N (s')

D(s) = 1— ds'
7i 80 S —$0 S —S

is an analytic function, regular in the complex s plane
cut along the real axis from so to ~ and continuous onto
the cut from above and from below, the limit functions
being ReD(s)&i ImD(s) as defined earlier. Cauchy's
theorem may therefore be applied, in the usual way to
the function f(s)=N(s)/D($) and the desired result
proved, if the following four results can be demonstrated:

(i) D(s) has no zeros in the complex s plane away
from the cut Lss, ~ ),

(ii)
l f(s)l —+0 as lsl~eo, uniformly with respect to
args in 0~& args&~ 2m,

"This has a precise meaning. See Theorem 2 of Appendix II.
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ds'g (s') h (s') ds"
8P

q(s")R (s")

(s"—ss) (s"—s) (s"—s')

q (s")R (s")
dS

$ —$p $ —$

g (s')h (s')
dS—

$ —$ff

The problem of establishing by the 1V/D method the
existence of a solution of the integral equation (1)
satisfying the prescribed unitarity condition is thus
beset with great difhculties in the case when there is a
cut extending to —~."

In this paper therefore we propose to treat a simpler
problem, in which the left-hand cut is replaced. by a

fij,
rite number of poles. From now on we use the variable

x= (s—ss). The poles are at the points —xi, —xs,
—x, where 0&x~&x2& &x, with residues r„r„~, F„respectively. We therefore consider the system

I' "f,(i)dt ~ I';
fi(*)— = Z , (2)

p t x'=i x+—x;

fs(x)=q(x)R(x)lifts(x)+ fss(g) j, (3)

and look for pairs of real-valued functions fi(x), fs(x)
which satisfy these equations for all x)0. The function

q(x) is given by

g+4mims
q(x) = -'x'"I , *&0.

kx+ (mr+ms)'3

Throughout the paper, the function R(x) will be as-
sumed to satisfy the following conditions:

(n) R(x) & 1,
(P) the limit J' "dxR(x)/x' exists,

(y) for each x&0, there is an interval I=
I
g —$, g+ Q

($&0) such that, for any two points x', x"belonging
t», IR(*')—R(*")

I
~«I*'—g"

I
"(0&„&~1).For

x=0, there must be an interval t 0,$$. The quanti-
ties P, ii, and X may depend on x.

There are two reasons for restricting ourselves to
this simpli6ed problem. The 6rst is that all practical
dynamical calculations which attempt the solution of
dispersion relations make the approximation of replac-
ing the left-hand singularities by a finite set of poles.
The second is that it is possible to find conditions on
the poles for which the existence of solutions can be
demonstrated with proper mathematical rigor. More-
over, it is possible to discuss in detail the question of

"A study of this problem, with a very special assumption made
about the form of the discontinuity across the left-hand cut, has
been made by D. Atkinson and A. P. Contogouris, Nuovo Cimento
39, 1082 {1965).

(iii)
I f(s) (s s—s) I

~ 0 as s ~ ss, uniformly with respect
to arg(s —ss) in 0&~arg(s —ss)~&2m, together with
the same result with $0 replaced by $i,

(iv)

the Neiqmeee$$ of the solution. It seems to us that in-
suKcient attention has been paid to this question. '~

What we show is that, under suitable conditions on the
poles, there exist several classes of solutions of Eqs.
(2), (3). Each class consists of a single or double
in6nity of solutions and is characterized by a diferent
behavior of the functions fi(x), fs(x) as x~oo.

The source of these ambiguities is well known. For
example, in connection with the X/D solution for the
general case, Amati and Fubini" remark that it is
possible to add to the function D(s) an arbitrary
meromorphic function, provided that the resulting
function does not have zeros in the complex $ plane
away from the cut Lss, oo ).However in this general case
it is impossible to tell whether any such meromorphic
functions exist, so that nonuniqueness remains a
theoretical possibility. In the case of a 6nite number of
poles, however, nonuniqueness of the solution can be
demonstrated explicitly. Whenever the standard solu-
tion of the Jt'//D type exists, it is possible, by adding to
D (z) a suitable pole on the negative real axis or, in some
cases, a linear function of s, to construct other solutions.

Our solutions will be obtained in the usual way by
constructing analytic functions f(z) satisfying the fol-
lowing conditions:

(a) f(z) is regular in the whole complex plane cut
along the real axis from 0 to ~, except for poles at
—x, , —x„with residues Fi, ~, 7„;(b) f(z*)=f*(z)
when z is not a singular point; (c) f(z) is continuous
onto the cut" from above (and therefore from below)
for each x&0 and the (continuous) limit function
f(x)= fi(x)+ifs(x) satisfies Eq. (3) for all g&0; (d)

I f(z) I~ 0 as IzI-+on, uniformly with respect to argz
for 0& argz& 2s", (e) Izf(z) I~0 as z-+0, uniformly
with respect to argz for 0& ~argz~&2', (f) the function

fs(x) defined in (c) above satisfms a Lipschitz condition
for each x&0. That is, there exist numbers $&0, E'&0,
p(1&~ii&0) (all depending on x) such that

I fs(g+h) —fs(g) I ~«lhI"
for IhI &~(. To prove that Eq. (2) is satisjmd by the
pair of real-valued functions fi(x), fs(x) it is necessary
to use Cauchy's theorem of residues in the form given,
for example, by Copson. '4 This states that if Ii (1) is an
analytic function, continuous in the closed, region
bounded by a simple closed rectifiable curve C and.
regular in the interior of the region, except for a finite
number of poles, then Jo Ji(f)dj'=2s. it sum of residues

"There is, however, a brief discussion of ambiguities of the
type which we consider in S. C. Frautschi, Eegge Poles un'
S-tutrix Theory (W. A. Benjamin, Inc. , New York, 1963). The
existence of ambiguities in the solutions of partial-wave dispersion
relations derived from a static model was 6rst pointed out by
L. Castillejo, R. H. Dalitx, and F. J. Dyson /Phys. Rev. 101, 453
(1956)g. Their method was applied by Shirkov and his collabora-
tors to obtain different classes of solutions of partial-wave dis-
persion relations for pion-pion scattering. For an excellent
summary, see D. V. Shirkov, Nucl. Phys. 34, 510 (1962)."D.Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12, 359 (1962).

14 E. T. Copson, AN Ietroductioe to the Theory of Functions of u
ComPlex Variable (Oxford University Press, London, 1935),p. 117.
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of F(f) at its poles within C].The application is obvious
on taking F(f)= f(t')/t s—, where z is not a singular
point of f(l ) T.o finally obtain Eq. (2), fix x(&0) and
let y —+0 from above. Using condition (f) above, we
see from Theorem 1 of Appendix II that Eq. (2) is
satisfied.

It is desirable to point out what we do not do in this
paper. We make no attempt to find aO solutions of the
type given above, but only those with a particularly
simple form. Further, for the case of more than one
pole, we shall impose slgcierit conditions for solutions
to exist; these may clearly be too strong. This is a
different approach to that of Martin" who, for the
general case of a left-hand cut plus bound state poles,
f&nds a necessary condition for solutions to exist at all.
It is clear, too, that we cannot include crossing sym-
metry. I.ovelace" has emphasized this defect of the
1V/D method. Finally, we do not consider solutions for
which f(x) has a zero in the physical region; fs(x) is
always positive. Solutions with a zero of f(x) at an
energy below the inelastic threshold, through which

ft(x) changes from negative to positive as x increases,
can easily be constructed. But the existence of such a
zero is, in principle, a matter for experimental test and
we therefore simplify the discussion by not considering
this possibility.

In Sec. II we consider the case of a single pole with
negative residue. In the case of a single pole with
positive residue, treated in Sec. III, a new type of
solution is easily found. The case of a single pole con-
tains all the features of the general case with any finite
number of poles, which is discussed in Sec. IV. Finally,
in Sec. V we consider a number of questions of physical
interest, like the behavior of f(x) for large positive x,
the sign of the scattering length fi(0) and the possible
existence of zeros of fi(x). We also look at the case of
higher partial waves.

as 2 approaches the cut from above is"

F " q(t)R(t) q(x)R(x)
) (x)=- d' ' for x&0. (6)

s (t+xt)(1—x) x+xi

Next we define

D& &(s) =—A+y/(z+xo)+X(z) . (9)

D& & (s) is an analytic function, regular in the whole z

plane cut along the real axis from 0 to ~, except
for a pole at s= —xo with residue y. In order that
D& &(s*)=D& &*(s) when s is not a singular point the
constants A, p, and xo are chosen to be real. We require
further that

D&-&(—x,)=Any/(x, —x,)+) (—h, )=r . (10)

In order to prove that D& &(s) does not have zeros for
Ims&0 it is sufhcient to restrict y so that

&& p.

It is clear from Eqs. (9), (7), and (11) that ImD& & (z)&0
for Ims&0. Further, Eqs. (9), (8), and (11) imply that

dD& & (x)/dx(0 for x(0. (12)

It now follows from Eqs. (12) and (10), together with
I'i(0, that if xo&xi then D& &(x) will have a zero be-
tween —xo and —x&. We therefore require that

Next, since
Xo& Xy.

lim D& &(x)=A,

(13)

The following simple results will be used later:

1 "
q (t)R (1)

Im)~ (s) = —Imz- dt for Imsx0, (7)
~ . (~+x,)(~—

z~

(dh(x)/dh)(0 for x(0.

II. SINGLE POLE WITH NEGATIVE RESIDUE

In this case Eq. (2) becomes

it again follows from Eqs. (12) and (10) that, for D& &(x)
tarot to have a zero for x(—xi, it is necessary (and
sufficient) that

A ~&0. (14)F "fs(t)dt I' t
] S for x&0,

p 1 xx+xi—
) (—xi)&I'i '

Since the first two terms of the sum in Eq. (10) are
nonpositive by Eqs. (11), (13), and (14), it is necessary

with I'i(0. (4)
Define

1 "
q (1)R(t)

)&(z) = ——
p (t+xt) (t s)—

then X(s) is an analytic function, regular in the whole
complex s plane cut along the real axis from 0 to ~,
and ) (s*)=X*(z) when z is not a singular point. By
Theorem 2 of Appendix II the boundary value of X(s)

"A. Martin, Nuovo Cimento 38, 1326 (1965)."C. Lovelace, CERN 66/1041/66-TH. 689, 1966 (unpublished).

for solutions of the type we are trying to construct to
exist at all. 's Equation (15) is a condition on the input
parameters xi, I'i of Eq. (4) and the prescribed function
R(x). The conditions laid down already are suf5cient
to ensure that D& &(z) can have zeros only for y=0,
x& —xs. Since the boundary value of D& &(z) as z ap-

"The function X(x) is denoted in Appendix I by X(x+i0),
since it is necessary there to distinguish the boundary values of
'A(s) as s approaches the cut from above and from below."It is possible for equality to hold in Eq. (15), and then there
is just one solution with A =y=0.
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proaches the cut from above is Eliminating y from Eqs. (18) and (19) gives

D&—
&(g) =A+y/(x+xp)+ReX(x)+i Im'A(g),

and since ImX(x)WO for x)0 by Eq. (6), D& &(z) can
have zeros only for y=0, —xo&x&&0. Ke shall shortly
state the conditions on A, y and. xp for which D&—

&(z)

has no zeros in this range. When these conditions are
satisfied we define

where

xo&
—r +X(—x)

x], p—I't '+X

x, "g(t)R(t)x=- dt.
t (t+xi)'

(20)

(21)

X(z)= 1/(z+xi),
f' '(z) =&(z)/D& '(z)

Then f& &(z) satisfies conditions (a)—(f) of Sec. I and,
in particular, its boundary value fi& &(x)+ifs& &(x) as
z approaches the cut from above satisfies Eqs. (3) and
(4). Conditions (d)—(f) are proved in Appendix I.
Condition (a) follows from Eq. (10) and the fact that
D& &(z) has no zeros by construction. Condition (b) is
obvious from the corresponding properties of 1l&'(z) and
D& &(z) and the first part of condition (c) follows
directly from Theorem 2 of Appendix II. The second
part of (c) holds since for x)0

ImD& —
&(x) q(x)R(x)

Imf& &(x)= — 1V(x)= L&(x)]'
ID' '(*)I' ID' '(*)I'

=&1(x)R(x) I
f&

—
&(x) I'.

We now discuss the conditions for which D' & (z) has
no zeros for y=0, —xo&x&~ 0. There are three cases to
consider.

(1) &=0. Equation (10) then gives

1 "
&1 (t)R (t)

A = I' '+— dt. (16)
(t+xi)'

Equation (15) shows that A (0.Hence
"

q (t)R(t)
D& &(0)=A —— dt

p t(t+xi)

is also negative; indeed from Eq. (12) D& & (x) decreases
monotonically as x increases from — to 0 and
D& &(z) therefore has no zeros for y=0, x&~0. Inserting
Eq. (16) into Eq. (9) we get

(z+xi)
D & &(z)=I'

q (t)R (t)
dt, (17)

p (t+xi)'(t —z)

and the resulting function f&
' '(z) =E(z)/Di& & (z) gives

the standard K/D solution.
(2) A=0. From Eq. (10) .behave

y/(xt —gp) =—I't '+X(—xi). (18)

—xo+x& 0 if and only if

Now as x ~ xp from the right D&—
& (x) —+~ by Eq. (11)

and therefore D& & (x) does not have a zero for

xo
y) —(xi—xp) (—I'i '+X) .

x]
(23)

But since A (0, Eq. (10) implies that

y((gt —gp)( —I'i '+X(—xt)). (24)

For Eqs. (23) and (24) to hold simultaneously, it is
clear that xo has once again to satisfy the inequality of
Eq. (20). For each xp in this range, there is a range of
values of p given by Eqs. (23) and (24) and for each
such y the value of A is given by Eq. (10).We therefore
have a double infinity of functions satisfying the condi-
tions of Sec. I, characterized by the continuous param-
eters xo and y. We shall denote a function of this class

by fs& '(z) =&(z)/Dp& '(z)

III. SINGLE POLE WITH POSITIVE RESIDUE

We now look for pairs of functions fi(x), fs(g)
satisfying Eqs. (3) and (4) with I't) 0. Define

D&+& (z) =A+y/(z+xp)+Bz+X(z), (25)

where the constants A, B, y, and xp a,re real and X(z) is
defined in Eq. (5)."The function D&+& (z) has the same
analytic properties as D& '(z). In this case the equation
corresponding to (10) is

D &+& (—x ) =A+ y/ (g,—x )—Bg,+&& (—x )=I' '. (26)

Hence it is possible, for each pair of pole parameters
xi, I"t allowed by Eq. (15), to find a range of values of
xp for which Eq. (19) holds. For each xp in this range
Lgiven by Eq. (20)j, Eq. (18) gives the corresponding
value of p and we therefore have a single infinity of
functions f& &(z) satisfying the conditions of Sec. I,
characterized by the continuous parameter xo. We shall

denote a function of this class by

f, &
—

& (z) =1&r (z)/Ds& &(z) .

(3) A &0, y&0. Again D& &(x) does not have a zero
for —xo+x&0 if and only if

1 "
q (t)R(t)

D& &(0)=A+y/—g, —dt)0. (22)
t(t+xi)

Equation (10) continues to hold and eliminating A

from Eqs. (10) and (22) gives

1 "
&1 (t)R (t)

D' '(0) =y/gp —— dt) 0.
p t(t+xi)

(19)

"Note that, for the case I'z (0,we see no simple way of showing
that D& &(s) has no zeros for Ims/0 without assuming that
8~&0, while the condition B&~0 is necessary to avoid a zero in
D( ) (x) for x( —x1. We therefore took 8=0 in Sec. II.
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~&O, a&0. (22)

To avoid zeros of D&+&(s) for Imz/0 it is sufhcient to
impose the conditions

A = I'i '—X(—xi) and therefore, from Eq. (25),

1 "
q (t)R (t)

Di&+&(s) =Fi '——(s+xi) dt.
, (t+x,)'(t—s)

Again it is easy to see that

dD&+& (x)/dx(0 for x(0.
Any solution f'+&(s) of the type we are going to con

struct will also satisfy Eq. (4) for x(0. It follows that,
for Fi)0, fi(x))0for —xi(x(0. Since fi(x) willhave
a zero at x= xp when y) 0, we must choose

(34)y/(xp —xi) =Fi—'—X(—xi),

while from Eq. (30) we have

1 "
q (t)R (t)

y/xp& — — dt.
p t(t+xi)

(29)Xp) Xy. (35)
For p&0 Eqs. (26), (28), and (29) imply that D&+& (x)
does not have a zero for eppes~& 0 if and. only if

1 "q(t)R(t)
D &+& (0) =A+y/xo —— dt& 0. (30)

vr p t(t+xi)
Moreover, if y)0 and B(0, then D&+&(x) ~ —~ as
x —+ —xp from the left and D&+&(x) —&~ as x —+ —m.
Therefore D&+&(x) has a zero for x(—xp. This case
must be excluded and so y)0 implies B=O, Further,
with 7)0, B=O, D&+&(x) will not have a zero for
x( xp lf and only if A &~0. D&+'(s) therefore has no
zeros in the whole z plane under the conditions

Eliminating 7 between Eqs. (34) and (35) gives

(36)
P$ X

Hence it is possible, for each pair of pole parameters
xi, Fi allowed by Eq. (33), to find a range of values of
xp )namely, that given in Eq. (36)] for which Eqs.
(26), (29), (30), and (31) hold. For each xp in this range
Eq. (34) gives the corresponding value of y. We there-
fore have a single infinity of functions f&+& (s) satisfying
the conditions of Sec. I, characterized by the continuous
parameter xp. A function of this class will be denoted by
fp'+'(z) =1q (z)IDp'+'(z)

(3) B=0, A NO, y/0. Equation (26) now reads

y)0, B=O, A&0, (31)

together with (29) and (30).
For &=0, Eqs. (26) and (28) show immediately

that D&+& (x) has no zero for x&~0 if and only if Eq. (30)
holds. Clearly A =0 is impossible in this case for then
Eq. (30) would not hold. It follows from Eqs. (26),
(27), and (30) that,

(37)A+y/(xp —xi)+X(—xi) =Fi '.
But A (0 by Eq. (31) and so Eq. (37) implies that

7) (xp —xi)Lri—'—) (—xi)). (38)

The resulting function fi&+&(z)=E(z)/Di&+'(s) gives
(28) the standard 1V/D solution.

(2) B=0, A =0. Now Eq. (26) becomes

pX]r;~—X— )0
Sp—Sy

(32)

where X is defined in Eq. (21). Since the third term on
the left side of (32) is nonpositive by Eqs. (27) and
(29), it is necessary that

(33)

for solutions of the type we are trying to construct to
exist at all. Again Eq. (33) is a condition on the input
parameters xi, Fi and the prescribed function R(x).

%e have now written down the conditions under
which D&+&(s) has no zeros in the whole s plane. When
these conditions are satisfied we de6ne

1V(s)= 1/(s+ xi),
f'+'(z) =&(z)/D&+I(z),

and it may be shown exactly as in Sec. II that f&+&(s)
satisfies conditions (a)—(f) of Sec. I, so that its boundary
value fi&+&(x)+pfp&+&(x) as s approaches the cut from
above satisfies Eqs. (3) and (4). For convenience we
distinguish four separate cases.

(1) B=O, y=0. In this case Eq. (26) becomes

A —Bx,+X(—x,)=r;i,
- q(t)R(t)

A —— dt) 0.
p t(t+xi)

(40)

Since B(0by Eq. (27), Eq. (40) implies that

A(Fi '—X(—xi). (42)

Thus for each pair of pole parameters x~, I'~ allowed by
Eq. (33), there is a range of values of A permitted by

Eliminating A from Eqs. (30) and (32) gives

y( (xp/xi) (xp—xi) (I'i '—X) . (39)

Equations (38) and (39) can hold simultaneously if and
only if Eq. (36) again holds. For each xp in this range,
there is a range of values of p permitted by Eqs. (38) and
(39) and for each such p the value of A is given by Eq.
(37).Hence we have a double infinity of functions satis-
fying the conditions of Sec. I, characterized by the con-
tinuous parameters xp and y, for which we use the
notation fp&+&(z) =1&& (z)/Dp&+&(z).

(4) &=0, B&0. In this case Eqs. (26) and (30)
become
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Eqs. (41) and (42) and for each A in this range the
value of 8 is given by Eq. (40). Hence we have a single
infinity of functions satisfying the conditions of Sec. I,
characterized by the continuous parameter A and
denoted by f4&+& (z) =1V(z)/D4&+& (z).

b;=-P P;,x;,
1'~1 go —g ~

(51)

Similarly, inserting Eq. (49) into Eq. (44), we have

IV. FINITE NUMBER OF POLES tl fl e
A P ar+8 P b;+y P c;=1. (52)

Ã(z) =g v;/(z+x;), (43)

where

Ke consider now the general problem with e poles
which is formulated in Eqs. (2) and (3). The construc-
tion of functions f(z) from which solutions are obtained
proceeds as follows. Delne

From Kqs. (45) and (46) it follows that, for Imz/0,

1 "g(t)R(t)X(t) ~
ImD(z) = Imz~ — +8 dt f.

fz+xo)' ~ o

(53)

Since, for real x suf5ciently large, E(x))0 it is clear
from Eq. (53) that sufficient conditions for D(z) to have
no zeros for Imz&0 areoo

with
D(z) =A+y/(z+xp)+8z+X(z),

1 "q(t)E.(t)$(t)
X(z) = —— dt.

~&0, a&0.

(45) n gr m $; n

X(x) A P +8+ +~+ &0
S S &=& S X &=& S S

(46) for all x&&0, (54)

(55)

(56)dD(x)/dx(0 for x(0.
As in Sec. III, if y&0 then we must have B=O to

avoid a zero in D(x) for x(—xp. We therefore dis-
tinguish four cases in the same way as in Sec. III and
use the subscripts 1 to 4 and the superscripts (&) to
denote solutions which correspond to those of Secs. II
and III for the case of a single pole. We consider the
first and fourth cases to begin with.

(1) y=O, 8=0. From Eqs. (45), (46), and (56) it is
clear that there are two diBerent conditions under
which D(x) has no zero for x~& 0, namely,

ImD(x) = —q(x)R(x)1V(x),

and ImD(x)&0 for x)0 provided E(x)WO for x)0.
Define further f(z) =X(z)/D(z). Since f(z) must have
residues I'; at the poles —xi we require that

D(—x)= v I", ', i=i, 2, , n.

Using Kqs. (45), (46), and (43), Eq. (47) becomes

(47)

In order that D(z*)=De(z) when z is not a singular Under these conditions we see that
point of D(z) the constants A, 8, y, and xp are chosen
to be real. If D(x) is the boundary value of D(z) as z
approaches the cut $0, ~) from above, then

where

Q n;, v; =A+y/(xp x~) 8x;, — —
i=a

1 "
q (t)R(t)

;,= s,,r,—+-
~ p (t+x,)(t+x,)

(48) A) —X(0) or A(0.
But Kqs. (52) and (54) in this case become

A=(P a,)
—', (57)

and 8;; is the Kronecker delta. Let (p;;) be the matrix
inverse to (n;;); we must of course assume that the
matrix (n@) is nonsingular. Then the linear equations
(48) give

v'=20*(A+V/(xo *;) 8x;), —i=1—, 2, , n, (49)

and therefore from Eq. (43),

n g ~ n

X(z) =A Q +8 Q +y Q, (50)
'=i (z+x;) '=r (z+x;) '=r (z+x;)

'0 gi
A P &0 for all x&~0.

'=r (x+x;)
(58)

Qi n

(0 for all x&&0 and P a;&0, (59)
i=1

then P"; r a;(0, the constant A determined by Eq.
(57) is negative and Eq. (58) is satisfied. We thus
obtain a function fr ' '(z) which gives the standard N/D

op Actually E(x) could have isolated zeros of even order for
x)0; we do not consider this exceptional possibility.
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solution. The condition (59) reduces to (15) for the case
l
B

l
(k2 'A, where

of a single pole with negative residue.
If, on the other hand,

n n

k,=(l P xP;l/(1 —P z;a;)).
i=1 i=1n gi n

)0 for all x&~0 and P u;&0, (60)
'= (+*;) i~1 Since B(0 it follows that we have a single infinity of

functions f4&+&(s) for which
then P"; ~ a;)0, the constant A determined. by Eq.
(57) is positive and Eq. (58) is again satisfied. However,
we require the further restriction A& —X(0), which,
on using Eqs. (46) and (50), becomes

A) 0, 0(—B(A min(k~-' k -')

A P a+B P b;=1.

where

n

g a,X,(1,

1 "
q (t)R (t)

df) s= 1) 2)~, t(t+x,)
(62)

(61) The conditions to be satisfied by the input parameters
and the function R(x) are just (60) and (61) as in
case (1).

We turn now to the other two cases.
(2) B=O, A =0. Equations (52) and (54) become

D(0) =A+), (0)&0.
Equations (52) and (54) become

(63)

We therefore obtain a function f~&+~(s) which gives the
standard E/D solution if the two conditions (60) and,

(61) hold. For a single pole with positive residue, Eq.
(60) is no restriction at all while Eq. (61) reduces to
Eq. (33).

(4) y= 0, B&0.Since B(0, D(x) —+~ as x~ —~.
Equation (56) then shows that D(x) has no zeros for
x&~ 0 if and only if

yg c;=1, (67)

)0 for all x~&0,
'=i (x+x;)

(68)

since y) 0 by Eq. (55). If P",=& e;AO, Eq. (68) implies
that g"; &c;)0 and so Eq. (67) will correctly give a
value of y greater than 0. From Eq. (51) it is seen that
the constants ci depend on xo. There are two cases where
we can be certain that values of xo can be found for
which Eq. (68) is satisled, namely,

n n

A g a;+B P b;=1,
i=1 i~1

(64) n ij(0 for all x&~0 and P —&0, (69)
',i=& x;(x+x~) i, i=& Sy

+BQ )0 for all x&~0. (65)
'=i (x+x;) '=i (x+x;)

We restrict ourselves to functions corresponding to
small negative values of B. If then Eq. (59) holds it
follows from either Eq. (64) or Eq. (65) that we must
take A (0.But then Eq. (63) cannot hold, since X(0)(0.
Therefore we can have only functions f4&+&(a), for the
case when Eq. (60) holds. When Eq. (60) is satisfmd
it is clear that there is a positive constant k~ such that

n gi

'=i x+x;

n

)0 for all x&~0 and P a;&0. (60)

1/xp —Q X;c;)0
i 1

(70)

In either case there will be a further condition which
ensures that D(x) has no zeros for x&~0, namely,
D(0)&0, which reduces to

'=i (x+x,)
(kg g'-i (x+x;)

for all x&~0;

n n

A (1—P Z;a,)—B P X,b;&0,

then Eq. (65) holds for

A&0, lBl&k A.

Using Eqs. (46) and (50), Eq. (63) becomes

(66)

n m P, ~

& —k, P
', ~'=~ x;(x;—-', x&) (x+x,) '.~=~ x;(x+x;)

Then) lf

for all x~& 0.

on using Eqs. (45), (46), and (50).
When condition (69) holds, Eqs. (68) and (70) are

satis6ed for all s~~Nciently small xo. For we can Gnd a
positive constant ks such that

where X; is given by Eq. (62).Hence, provided condition
(61) holds once again, Eq. (66) is satis6ed for A&0,

- l~'ll~', I

i,j=l g.——Xj.
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and

n X~,~
n

(kgb
4, i=i x+x; &=i x+x;

for all x&~0

n n

kg ——g [ P,;[ [)„(x;/(1 —g X,a,).

Again there is a range of values of xp for which there are
functions fg&+&(z) satisfying the conditions of Sec. I.

(3) B=O, &NO, A NO. We write Eqs. (52) and (54)
once more for this case:

it follows from the definition of the constants c; in
Kq. (51) that Eqs. (68) and (70) are satisfied and that
Q"; i c;)0 for xp(min{kg ',k4 ', gxi}. There is there-
fore a range of values of xp for which there exist func-
tions fg& &(s) satisfying the conditions of Sec. I.

Similarly, if Eqs. (60) and (61) hold, then Eqs. (68)
and (70) are satisfied and Q"; i c;)0 for

x)x„+max{kg, kg'},

where

and
n

kg ——)1—P 1&;a,~,

—7/A)kg/(*p '—k4). (76)

Moreover, we can Gnd a positive constant kg such that

then it is found after some work that Eqs. (72) and (74)
are satisfied for

0(—A/y(min{kgb '(1—kgxp), kg (xp —k4) } (75)

the constants k3 and k4 having been dined earlier.
Thus for each xp(min{kg ',k4 ', —,'xi} there exist func-
tions fg& &(s) satisfying the conditions of Sec. I. For
each xp in this range there is a single infinity of functions
for which A, p are restricted by Eqs. (71) and (75).

The interesting point is that there is another condi-
tion under which we can obtain functions fg& &(s),
namely Eq. (59). This was the condition under which
the function fi& '(s) could be found. As above, Eq.
(74) is satisfied if

n n

A P a,+yP c,=1, (71) (—kg Q — for all x&&0,
'.i'=i (x—-'xi) (x+x ) i x+x4

n gi
A P +p P )0 f r all x~&0. (72) and then Eq. (72) holds if'=i (x+x,) '=i (x+x;)

D(0) =y/xp+A+1&(0) )0. (74)

Now there are three cases under which it is possible
to obtain functions fg(s) in a straightforward way.
The simplest case to consider is that for which Eqs.
(60) and (61) hold. A little work then shows that Eqs.
(72) and (74) are satisfied if

(1+Axp/y) (xp —x„))max{kg, kg} =X, say.

Hence for each xp&x„+X, there exist functions of the
type we have called f4&+& (s). For fixed xp in this range,
there is a single infinity of functions for which A, y are
restricted by Eq. (71) and

Xp Xp gn—~/A &
Xp—X„—X

Next, if the condition (69) holds we can find functions
which join on to the functions fg& & (s). If

Since y)0 it is clear that to avoid a zero of D(x) for
x&xp we must have

(73)

Finally, in view of Eq. (56), the function D(x) has no
zeros for x&~ 0 if and only if

xp(-', xi, —y/A (kg '.
Thus, for xp(min{ gxi, (k4+kgkg) '},Eqs. (76) and (77)
permit a range of values of y/A for which Eqs. (72)
and (74) hold and functions fg& &(s) exist.

This completes the three cases. Note that for a
single pole with negative residue the conditions (59)
and (69) are equivalent. In that case the functions
fg& &(s) for —y/A large and those for —y/A small
continue into each other; there are functions for all

X(0)x—y/A)xp 1+
(xi—xp) (—I'i—'+x)

for each xp given by Kq. (20). However, for more than
one pole the conditions (59) and (69) are no longer
equivalent. A simple numerical example quickly shows
this. Take E(x)=1 for all x&~0, g&gi=g&gg ——1 and two
poles with xi ——16, xg ——25. Then for I'i ——144/23,
I'g ———10, say, it is easily verified that Eq. (59) holds
but Eq. (69) does not. On the other hand, if say
I'i ———15, I'g ——20, Eq. (69) holds but Eq. (59) does
not. Thus all the functions f&+& (s) exist under the same
conditions (60) and (61), while the functions f&

—
&(z)

divide into two classes which exist under the two
&geqgig&aleggt conditions (59) and (69), respectively

V. DISCUSSION OF THE RESULTS
Gi n U(—k, +-

'=i x+x, ', i=i x, (x+x;)
for all x~&0 In order to apply the mathematical results of Sees.

II—IU to partial-wave amplitudes for elastic scattering
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it is necessary to assume that the lowest inelastic
threshold is above the elastic threshold. . If an inelastic
channel is open at the elastic threshold, R(x) ~pp
(like x '~') as x & 0 and R(x) cannot satisfy a uniform
I.ipschitz condition in any finite interval $0,$). Further,
the results as they stand apply only to the case of an
s wave and for the present we consider this case only.

For an s-wave amplitude below the inelastic threshold
f(x) =sinI&(x)e" &*&/&7(x) and the scattering length a is
given by

sink (x)
a= lim

q(x)
=f(o)

ImX(x) rpx& '*—, (78)

ReX(x) —rp cotpr(-', —&&i)x& '. (79)

From Eq. (78) it follows that

We therefore look at the sign of f(0) =iV(0)/D(0) for
each of the functions f(s) constructed in Secs. II—IV.
In every case, D(0) has a definite sign and iV(0))0.
It is readily seen that fi& '(0)(0 but that f(0))0 in
all the other cases. Thus, when the left-hand cut is ap-
proximated by a finite number of poles, a solution which
gives a negative scattering length is obtained only when
the pole parameters satisfy Eq. (59); then only the
usual 1V/D solution has a negative scattering length.
On the other hand there are clearly various conditions
and several types of solution which give a positive scat-
tering length.

We next consider the asymptotic behavior of f(x) for
large x. To make a definite statement about the asymp-
totic behavior of D(x) we need to postulate some definite
behavior of R(x) for large x. We want to apply Theorem
3 of Appendix 2 and therefore assume that

x-~R(x) = r,+r(x),

where rp)0, 0~&&ti(-', and the function r(x) satisfies
the conditions laid down in the theorem for gi(x). The
function q(x)R(x)X(x) then satisfies the conditions on

g(x), with A =rp and n=-,' —p. Applying the theorem,
then, we see that, for large x,

It is not possible in this case to say anything about
the sign of

Ref�(x)

for large x.
(2) A=B=O, 0(p(g [fp&+&(x) with p)0j. Now

Eqs. (45) and (79) give ReD(x) —rp cot~(—,
' —p)x&

—'*,

so that, using Eq. (80),

Ref(x)-—
cotter(p —y)x "

rp csc'm (-,' —p)

Imf (x)
rp csc'ir (-,' —p)

(3) B=O, AAO, 0&p( —,'Lf &+&(x), f,&+&(x)]. It
follows from Eqs. (45) and (79) that in this case
lim, „ReD(x)=A and so, from Eq. (80),

Ref(x) A 'x '

Im f(x) -rpA 'x~-

The different classes of solutions we have constructed
thus exhibit quite different behavior of Ref(x) and
Imf(x) for large x.

It will be seen that, in cases (2)—(4) above, Ref(x)
has a definite sign for all sufficiently large x. On taking
account of the sign of the scattering length f(0) it is
clear that Refp&+&(x) (for 0(p(-,') and Refp&+'(x) and
Ref4&+'(x) (for 0&~p(ip) must change sign at least
once on the positive real axis. However, no such state-
ment can be made about Refi&+& (x) or about Refp&+& (x)
for p, =0.

Finally we consider the case of higher partial waves.
Here one expects, from the theory of potential scattering
and from empirical experience, that

x'

(4) B&0,A&0, 0&~ii(ipff4&+&(x)$. Using Eqs. (45),
(79), and (80) once more, we have, for large x,

ReD(x) Bx,
Ref(x)-B—'x—',
Imf(x)-r, B '~—x:—. -

ImD(x) -—rpxp-l (80)
lim &0,
$~0 x

(82)

lim x'~' ReD (x) =0. (81)

It follows from Eqs. (80) and (81) that

lim x'"

Ref�(x)

=0,

Imf(x) rp 'x '".

in all cases. Also, from Eqs. (43) and (44) we have
X(x)~1/x for large x. We can now distinguish four
separate cases, with a different asymptotic behavior of
Ref(x) and Imf(x) for each.

(1) A =B=0,@=0 Lfp&+& (x) with &«=0). From Eqs.
(45) and (79),

where l is the orbital angular momentum of the ampli-
tude fi(x). Our solution in Secs. II—IV were constructed
so that f(0)&0 and so they do not satisfy Eq. (82) if
I)0. To try to obtain solutions which satisfy Eq. (82)
for the case of an amplitude with l) 0, it would be neces-
sary to approximate the left-hand cut by more than one
pole (the number of poles will increase with increasing
l) and to impose restrictions on the pole parameters.
This diKculty is a very serious one in practice.

For the case of a p wave, however, a modification of
the previous method can be used. If f(x) =fi(x)+ifp(x)
is a p-wave amplitude we define Fi(x) = fi(x)/x,
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F&(x)= f&(x)/x and consider the system of equations

F "F,(t)dt 1'

Fi(x)——
p t x— ~ ix+x,

D(s) =A+Bz+z'A(s),

A&0, 8&0.
(83)

The essential point to notice is that xX(x) ~~ as
x —& —~. Following through a calculation exactly like
that in Sec. IV, we find that functions F(s) exist, for a
range of small non-negative values of —8/A, which
satisfy the correct conditions if

F2(x) =xq(x)R(x)LFi2(x)+FpP(x) j.
One then looks for an analytic function F(s) satisfying
conditions (a)—(f) of Sec. I, except that, in condition
(c), Eq. (3) is replaced by Eq. (84). By using the
methods of Sec. IV it is not de.cult to show that to
avoid zeros of D(s) the constant y must be zero and
that possible functions F(s) will be of the form
F(z) =iV(s)/X(s), with E(s) as in Eqs. (43) and (44)
and

of the iV»" resonance given by the 1V/D solution through
a range of several hundred MeV. This diQiculty of the
N/D solution for the p-wave case is not shared by the
E/D solution fi&+& for an s wave; this can be seen by
writing D(s) in the form

s "q(t)R(t)E(t)
D(s) =A' —— dt.

7r p t(t—s)

But, in view of the variety of solutions which have been
constructed, in this paper, it is clear that additional
criteria are required to decide which solution, if any,
is an approximation to the physical s-wave amplitude
under consideration.
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/
'v )0 for all x~&0,

', ~=i x+x,

where (P, ) is the matrix inverse to (n, ) and

x, " q(t)R(t)
0. '=S "r ' '—— dt.

p (t+x,) (t+x,)

(87)
APPENDIX I

We prove here that the function f(s) constructed in
Secs. II—IV satisfies the conditions (d), (e), and (f) of
Sec. I. Now f(s)=X(s)/D(s); X(s) is an analytic
function, regular in the whole 2' plane except for poles
at —xi . —x„,and/(s) 1/s as ~s~~pp, uniformly
with respect to 8.2P D(s) is defined as follows:

For a single pole, Eq. (87) becomes simply

xi "q(h)R(t)
dt.

p (t+xi)'

Since a range of values of 8/A is allowed, the—solution
to the problem is not unique for this p-wave case also.

There are two further points to notice in connection
with the p-wave case. First, the scattering length is
always positive; it is impossible to obtain a p-wave
amplitude with a negative scattering length by solving
Eqs. (83) and (84) for Fi(x) and F2(x). Second, even
if it is believed that the E/D solution is the "correct"
physical solution there is a practical difficulty in the
p-wave case, namely that the convergence of the
integral defining X(s) is very slow (even if, say,
R(x) —+ constant as x —+~) and therefore the solution
F(x) depends very strongly on the values of R(x) for
large x. For example, from actual numerical calculations
on the pion-nucleon scattering amplitude with /=1,
J= ~, I= ~, using a realistic three-pole approximation
to the left-hand singularities, it is known" that small
changes in R(x) in the GeV region can move the position

2' G. C. Oades (private communication).

where

7
D(s) =A+Bs+ +X(z),

s+xp

1 "Ckq(t)R(t)E(t)
X(s)=- for 0(0(2x,

F "dtq(h)R(t)A (t)
~(x~ia)=-

W�iq(x)

R (x)E(x)

for 0=

22 Henceforth, "uniformly with respect to 8" will mean that the
range 0&~8~&2+ is intended, unless the contrary is specifically
stated.

The constants 8, y satisfy 8~&0, y~& 0. The angle 0 is
defined by s=re", 0&&0&&2m, it is necessary to dis-
tinguish the upper and lower sides of the cut by the
values 0, 2m. of 0.

To prove condition (e), we first show that

1 "Chq(t)R(t)A'(t)
X(z) ~ ——

0
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(f

( (dh/t")(g(t)/»- ),dt q(h)Z(h)X(t)

Thent to 8 The integral on
ts. Ill fact, we

I ()I(
asz~ ~un

converges
0 an

ig" y
need consisider only the range o
IzI . Now

e d»I» —*I""
hi 5(t—x)

=x~" seep E
u'"Iu —1I' i'

0

t dh g(t)

0 ~~/2 ~—Z

for 0(8(2x,

&dh g(t) gx(x) 0i
p(x&i0~ = — s~ or

0

o the sector p&~8&~2vr —p, whereFirst restrict z to the sector ~ ~ — wh

0(P(m/2. Then

'"(t'+r —2»r cosP)'i'0

1/2u'"(u'+1 —2u cosP

(r'/2M
1/2u'"(u'+1 —2u cosP

0&8&&P and 2m —P~the sectorsNow consi er
Here

IsImy(s)I &xsec8MIyI («)
0 t'i'I (t—x)'+y'g

=x'" sec8 M
I
tan8

I

(tan8A0)
u'"L (u—1)'+tan'8 j

hil2 Since R(t) satisfies a

«, ], the same is true or g

M= -(g(t):t~«,n .
De6ne p(s) by

(x~" seep E
u'~'Iu —1I '-~

—' asust tak.e p(-„weFor the last integraal to exist we m
certainly can.. Also

Is&2(s) I
&~x sec8 M

= x'/2 scca M

dt(t —x)

tilmL(t x)2+y2)

du(u —1)

Hence

u'~'L(u —1) +tan 8$

(2 ln(v2+1)Mx'" seep fofor x & f/2.

1 "
dh q(t)R(t)E(t)

D(s) ~A+—— as z —+0,

~& IImD()I
"

dh q(t)Z(t)X(h)
+By

(t—*)&+y&

yI "dt g(h)R(t)1V(t) IyI "dh q t

(h x)'+y2 (t—x)'+y'
= II'(s) I,

where "dt q(h)X(t)
4(s) =-

Xp

limit on the right sideres ect to 8. The lmnt on
' '

e
D 0 . In all our solutions,we have denoted by D(0 . n a

th i hth lf 1 &0.To prove d) consider first t e rig
Here, for y&0,

ID() I

&x'(' sec8 M
I
tan8I If we define

, u'i2I (u—1)'+tan'8j

(x+i0)=——(~Mx'" seep,

x Imp(xaiO) I
=s.g(x)x'"&~Mxwhile, for y= 0, I

x Im x — x'"& ~Mx
Finally,

fol 8=

Rey(s) =

=4 i(s)+42(s)

dt (t—x) (g (t) —g (x))

hi»L(h —x)'+y'j

+g(x)
dh(t —x)

~ t'"L(t—*)'+y'3

s for all s such thatthen we have ID(s)I ~& IImf{s for all s such tha

Now

q(t)iV(t) = +» (h),
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uniformly with respect to 8. Hence

I
z'I'D(z)

I
&

I
—, cos—8+r' s Iml x(z)/z I I

~& I-', cos-', 8l —r—'~'lx(z) I,
provided this last expression is non-negative. Hence we
can choose R such that lz'I'D(z)

I ~&4, say, for all z

such that r~&R, x~&0.
We consider finally the left half plane x~& 0, and take

the various cases in turn. If 8/0, then (D(z)/z) -+ 8,
f(z)=N(z)/D(z) 8 'z p as lzl —+~, uniformly with
respect to 8 for ir/2 &~ e ~& 3ir/2. Next, if 8=0, A W 0, then
D(z) ~ A, f(z) A 'z ' as lzl~, uniformly as
before. Lastly, if B=O, 2=0, we have

—Reh(z) & Re( (z), I Iml~(z) I
&

I Img(z) I,
so that

l~(z) I
& 14(z) I

lx(.) I

lz'"D(z)
I ~& s—

&X/2
7

xo

provided this last expression is non-negative. Hence we
can choose R' such that lz'"D(z)

I
&~st, say, for all z

such that r~&R', x&~0.
Since X(z) 1/z as lzl~po, uniformly with respect

to 8, it is clear that (d) holds for f(z) =E(z)/D(z).
Finally, note that,

E(x) ImD(x+i0)
for x&0, fs(x) =-

ID(x+ io) I'

and that ID(x+i0) I
&0 for all x)0. Condition (f)

on the function fs(x) then follows from condition (y)
on R(x) and Theorem 2(a) of Appendix II. LIn fact a
stronger condition than (f) clearly holds. ]

APPENDIX II

We collect here three theorems which are used else-
where in this work. s' In each theorem, g(x) is a real-
valued, function de6ned for x&0 and satisfying the
following conditions:

(i) g(x) QI.(l a,bj) for any choice of a, b with 0(a&b;
(ii) the limits J'

p g(x)dx and J' "g(x)dx/x exist.

23Theorems 1 and 2 are proved by straightforward analysis;
the techniques are given, for example, by N. Muskheliskvili, in
Siegulur Integral Egla&'ops (P. NoordhoB Ltd. , Groningen,
The Netherlands, 1953). The results of Theorem 3 are due to
W. S. Woolcock (to be published).

where Ih(h) satisfies the conditions of Theorem 3 of
Appendix II. Therefore

x(z)
P(z) ='iz '~'+

where

x(z) ~ — h(h)ch as lzl~ ~,

Theorem I. Suppose that g(x) satisfies a Lipschitz
condition at xp() 0); that is, there exist numbers E&0,
p(1~&hi)0) $(xp) $&0) such that

lg(xp+Ih) —g(xp) I ~&Elhi s

Then

(a)
""g(h)ch

P exists;
~o ~ xo

g(h)ch —+P
p (h —xp) —iy

"g(h)dh
+is-g(xp) as y40.

~p $ xp

Theorem Z. Suppose that there exists a closed interval
I=

I xp —$, xp+$$ (0(((xp) such that, for any two
points xi, xs+I,

Ig(x,)—g(») I &~EI»—»I ~, (0&„~&1).

(a)
"

g(h)dh
fi(x) =P

(b) f(xy)=
g(h)ch

~p I—S-ZP
~ fi(xp)+i~g(xp)

as x ~ xp, y40.

I In full, given e&0, there exists b) 0 such that

I f(x,y) ft(xo) i~g(xo—) I
«—

for all x, y such that 0( lx—xpl (8, 0&y(k)
Theorem 3. Suppose that x g(x) =A+gi(x), where A,

n are constants (0(ts(1) and gi(x) is a finite sum of
terms, each of which satisfies use of the three following
conditions:

(i) (a) gi(x) satisfies a Lipschitz condition, uni-
formly for all sufFiciently large x. More precisely, there
exist constants E)0, $)0, p, (0(hi&~1), a&$ such
that lgt(x+b) —gi(x) I &~Elhi~ for all x~&a and all
lbl ~&); (b) gi(x) lnx~0 as x —+po.

(ii) Given e)0, there exists X (depending on e)
such that

I gi(») —gi(*.i) I

x2 $$

for all x», xm for which x2&x~~& X.

(which exists for xp —P(x(xp+$) satisfies the uniform
Lipschitz condition

I fi(») —fi(») I
& E' I»—»I"', («h '&h )

for any two points xi, xs+I'=I xp —$', xp+$'], where
0($'($. (The constant E' will depend on the value
of &' chosen. )
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(iii) gi(x) = 1/p(x), where p(x) satisfies the following uniform with respect to 8 for 0~& 8~& 2tr. Here
conditions:

z=rete, (r)0, 0&~8&~2sr)

(a) p(x))0 for all x~&a()0),
(b) p(x) is concave in Ltt, ~ ),
(c) p(x) ~ac as x~ao.

Then

"g(t)dt
f(s) = for 0(8&2sr,

p f—S

s f(s) -+ Asr(cotsrtr+i)

as ~s~~~ in any direction, the convergence being

"g(t)dt
f(x+i0) =P

p $—g

/0
ai7rg(x) for 8=

~ 2'
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Neutral Semileptonic Decays of X Mesons*

EDUAEDO DE RAFAELt

Brookhaven ¹tiona/ Laboratory, Upton, Rem York

(Received 19 December 1966)

The question of the existence of neutral leptonic currents coupled to the neutral strangeness-changing
current is discussed in the light of recent experimental limits on E2' ~ p+p and E2' ~ e+e decay rates.

I. INTRODUCTION

"EW experimental results on E2 decays into
lepton pairs have been reported recently. ' At

present, the total branching ratio corresponding to the
mode EqP ~ p,+p,

—ls2

I'(Its'~t+t )
&2.5X10 '

F(Ere ~ all modes)

and for E2P —& e+e, '

ever, the question arises whether or not they could also
appear as a consequence of the existence of direct weak
couplings' between neutral leptonic currents and neutral
strangeness changing current. We should like to discuss
here some implications of the new experimental upper
limits mentioned above, upon the possible existence of
such weak couplings.

By analogy to the usual semileptonic weak Hamil-
tonian, one expects neutral strangeness-changing semi-
leptonic decays to be described by an eRective Hamil-
tonian of the type

F(lt. ss ~ e+e—)
&5X10 '.

F(Ess ~ all modes)
(2)

G
H(neutral) =—p gt(Jss) slit„(1+its) l+H.c. , (3)

Such decay modes are expected to occur from electro-
magnetic induction of neutral leptonic currents. How-

*Work performed under auspices of U. S. Atomic Energy
Commission.

$ On leave from Centre National de la Recherche Scientifique,
Paris, France.

' See N. Cabibbo, in Proceedings of the Thirteenth Internajtonal
Coeferertce ol Htgh Ertergy Physics, Ber-keley, 1966 (University of
California Press, Berkeley, California, 1967).

' W. Vernon et al. (communication at the Berkeley Conference).
Qther recent experiments on this branching ratio give the fol]ow-
ing results: PP (Zs ~ y+gs )/I'(Zs' ~ all modes) J&SX10 ' PM.
Bott-Bodenhausen, X. de Bouard, D. G. Cassel, D. Dekkers,
R. Feist, R. Mermod, I. Savin, P. ScharG, M. Vivargent, T.
R. Willits, and K. Winter, Phys. Letters 23, 277 (1966)g;
I' (Zse -+ ts+ts /F (Ipse ~ all modes) &5X10 ' LA. Abashian et al
University of Illinois Report (unpublished) j.All these figures are
90%% confidence limits.

3 M. Bott-Bodenhausen et al. , see Ref. 2. See also A. Abashian
et al. , Ref. 2. The latter group finds (I'(Ese ~ e+e )/p(Ase —& all
modes)) &SX10 ' (90% confidence limit).

1=v., e—,v„, p,—.

Here, we have assumed that neutral leptonic currents
have t/'-A structure, like the charged currents, an.d that
(Js')" is the ES=1, AQ = 0 component of the usual octet
of hadronic currents, consisting of a vector part plus
an axial-vector part: (Jss)&= (Vss)&+(Ass)". The con-
stant 6 is the Fermi coupling constant: 6= 1.02
&(10 '/ttt„'; and gt are dimensionless unknown parame-
ters (in principle different for each lepton pair) which
depress the intensity of the neutral decay rates with
respect to the corresponding charged modes. We assume
that the parameters g~ are real or pure imaginary, and
we shall discuss the physical implications accordingly.
We shall also comment on some implications of the
upper limits given above upon the predictions of a

' Perhaps mediated by neutral intermediate vector boson(s).


