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Certain weak amplitudes exhibit non-Reggeistic behavior. These amplitudes have 6xed poles in the com-
plex angular-momentum plane which have the dual property of allowing a sum rule of the Dashen —Gell-
Mann-Fubini type to ho1d, although one might naively expect a superconvergence relation for this ampli-
tude, a~d insuring that spin-one particJe poles are reproduced correctly in the left-hand side of the sum rule.
We demonstrate the existence of the Axed pole directly by comparing the sum rule with the Froissart-Gribov
continuation to the complex J plane. We also study some models which exhibit this behavior.

I. Dt'TRODUCTION' AND STATEMEN'T
OF THE PROBLEM

1

~ N the basis of the postulated equal-time commu-
tation relations of the isovector current densities,

(j sa(&,t)j '(y, t)3=se-tt.7'"(»t)3'(* y)—
+Schwinger terms, (1)

Fubini, and Dashen and Gell-Mann' have suggested
sum rules, the simplest one of which is

ds' ImAp t(s', t, kp, ks) =+ Fr(t)e~s,-ei;, . (2)
sr s (2sr)'

Here F.(t) is the electromagnetic form factor for the
pion, and AP~(s, t,kP, ks') is one of the scalar invariant
amplitudes of the matrix element

T ~t'=—(4popo')'t'i d'x

where i and f are the isospin indices of the initial and
final pions. Many applications of the type of sum rules
which follow from local current commutation relations
have appeared in the literature. '

The questions we wish to discuss in this paper' have
to do with the analytic continuation of Eq. (2) from

*This work is supported in part through funds provided by
the U. S. Atomic Energy Commission under Contract No.
AT (30-1)-2098.' S. Fubini, Nuovo Cimento 43, 475 (1966); R. Dashen and
M. Gell-Mann, Phys. Rev. Letters 17, 340 (1966).

~ A fairly comprehensive bibliography, together with review of
the subject, appears in B.Renner, Rutherford Laboratory Report
No. RHEL/R 126, 1966 (unpublished).

~ A brief account of our results has been given in J.B.Bronzan,
I. S. Gerstein, B. W. Lee, and F. E. Low, Phys. Rev. Letters 18,
32 (1967); see also V. Singh, ibid 18, 36 (1967). .

the region4

kp) 0 kss) 0 t= —(ps —pr)'(0,
to the region where these invariants are timelike. The
possibility of making this continuation follows from the
fact that the right-hand side and, at least, the integrand
on the left-hand side of Eq. (2), are analytic functions
of t, k&', and k2'. The continuation yields nontrivial
information, since, if we first consider an amplitude
with t timelike (y+y~ sr+sr) and follow the steps
leading from Eq. (3) to Eq. (2), we do not obtain a
sum rule corresponding to the continuation of Eq. (2)
but, instead, a completely new sum rule of the type
recently discussed by Amati, jenzo, and Remiddi. s

Thus we are studying the constraints imposed on a
theory which has both a sum rule (2) and sufhcient
analyticity so that it may be continued. We treat this
problem in two parts. In Sec. II we assume the existence
of a continuation and find the constraints which make
this possible. In subsequent sections we discuss various
models which are sufficiently tractable to have such
continuations, in order to verify that our constraints
actually appear in such examples.

We shall also be able to answer the following ques-
tions: (1) How can the left-hand side of Eq. (2) repro-
duce the analytic properties, in the t variable, of the
right-hand sideP (2) Why does the right-hand side not
depend on the "masses, "kl' and k2', of the virtual pho-
tons' The erst question is not as trivial as it may appear
to be, since the only state which contributes to F (t) hasJ= 1 in the t channel, while the states which contribute
to A (rs,t, kPk )Pall have J~)2 in this channel. Thus,

' It will be clear in the next section that Eq. (2) is derived for
the region of spacelike k1, k2, and 6, with, in fact, the additional
restriction g(kP)+Q(krs) )g(—t).' D. Amati, R. Jenzo, and E. Remiddi, Phys. Letters 22, 674
(1966).
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NON —REGGE BEHAVIOR OF VVEAK AM PLI TUBES. I I

the sum rule may be seen as correlating the effects of
the various partial waves in an apparently complicated
manner. In particular, the point 7=1 (in the complex J
plane of the/ channel) corresponds to a sense-nonsense'
transition in Ai(s, 1, ).

In the next section we rederive Eq. (2), partly for
the sake of completeness, and partly, and more im-

portantly, to sharpen the issues involved. A Regge-pole
analysis of the amplitude Ai(s, 1, ) is presented here,
and it will be shown that the asymptotic limit of this
amplitude for large s, if given only by the exchange of
moving Regge poles in the t channel, is incompatible
with Eq. (2). In. fact, the usual Regge theory predicts
the superconvergent relation

ds' IrnAi(s, t,kP, kP) =0

in the region of timelike t, rather than the analytic
continuation of Eq. (2) ~ We will show that the existence
of a continuation of Eq. (2) requires the existence of a
fixed pole at J= 1 in the angular momentum plane. The
following sections will be devoted to the study of some
models. Our work in Sec. II yields the conditions which
a theory must satisfy if Eq. (2) may be continued. In
continuing the left-hand side of Eq. (2), the simplest
procedure is first to continue the integrand in t, and
then to perform the integration in s, as long as the
integral converges. However, the possibility that this
method of analytic continuation breaks down must be
considered, and this we do in our model. We also
illustrate in these sections the origins of the fixed pole
at J= 1 and its role in answering the questions raised
above.

We discuss various implications of our results in the
final section.

II. SUM RULE AND ANALYSIS OF
THE AMPLITUDE

The amplitude T„„~e in Eq. (3) is generally not
covariant. Instead of it, we choose to discuss the
covariant current correlation function as defined by
3rown7:

S„„e(P)K&h)=i(4PtsPss)'i' j'd4x e's'*

&&(~f(ps) I &(J:(x)i'(0)) —p. '(x) I~'(pt)) (5)

where we have defined

s(pl+p2)i K s(kl+k2)p + k2 kl pl ps

Mid
ks= pl+kl —ps 1

and p„„'(x) satisfies'

5(*.)l io.( ),i'(0)]=—~" „"(*), .o. = „-=0.
' M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, 3145 (1964).
'L. Brown, Phys. Rev. 150, 1338 (1966); M. A. B.Beg, Phys.

Rev. Letters 17, 333 (1966); R. P. Feynman (unpubhshed').

When the current j„(x) is conserved, we have

k;s„„-e=i(4p„p„)I:e (,(p,) I q„ l, (p, )&

2P.F (t)e p, ef;, .
(2')'

(6)

or

lim sAi"e(s, f,kP, ks') = F (t)e e,er,,
8-+ao (2 )s

ds' ImAi (s', t,kP, ks') = F(t)e I.er -~ (2)
(2~)'

for&~&0. Equations (8) and (2) are equivalent. Note
that only the amplitude corresponding to T= 1 in the
crossed channel is relevant here. (This amplitude is
odd under s+-+u crossing. ) We will write Eq. (8)
Pand Eq. (2)j as

lim ( s)Ai(—s,t,kP kss) = F(t), -
~00 (2')'

and understand A~ to mean the T= 1 amplitude in the
crossed channel. Equation (7) states that, if all the
amplitudes are O(1/s) as s —+", then Ai(s, t, ) must
be ProPor1ional 1o F (1)/s for large s. This asymptotic
behavior in s is required by the nonzero right-hand side
of the matrix element of the commutation relation (1),
together with our other assumptions.

It will prove useful to review the complex angular-
momentum representation of A t(s, t, ~ ) in some detail.
We consider the partial-wave expansion in the t channel:
(two virtual isovector photons) ~ (two pions) ~ The
amplitude At(s, 1, . ) corresponds to a flip of two units
of helicity:

fo s=—(OI1I+1, —1)=sP'sin'8 A&(g 1, )

=p' s7l J
=—P (2J+1)

2 J=2 2

&&d '(0)f'(1) (1o)

The covariant amplitude S„„~may be expanded in
terms of independent covariants. Suppressing the
isospin indices, we write

S„„(P,K,A) =P„P„A,+P„K„A,+P„~„A,
+K„P„Bt+K„K„Bs+K„A„Bs

+A„P„Ci+A„K„Cs+h„d,„C,+g„„D. (7)

The invariant scalar amplitudes A ~,
~ ., D are func-

tions of s= —(P+K)' 1= —LV kP and kss Let us now
assume that the invariant amplitudes A ~, . . ., D are
O(1/s), so that they satisfy unsubtracted dispersion
relations for some range of t&~ 0, and k~', k2'(4p, '. Then
Eq. (6) gives
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X[(J—1)J(J+1)(J+2)]'"

= P (2J+1)FJ(t, ~ )Pq" (cosset)
J=2

Fg(t )= dz
(2J—1)(2J+1)(2J+3)

X[(2J+3)Pg 2(s) —2(2J+1)Pg(s)

+ (2J-1)P.+.(s)]

XA (/i2 —k~ 2(P~+p~)i/~(ke —ki2)i+

+2pks, t, . ),

(11)

(12)
where k is given by

{[( (( k 2)1/2+ ( k 2)1/2)2]

X [~—((—k ')'/' —(—k,')'/')']/4~}'/'.

If A~ has a spectral representation in z such as sug-

gested by, say, the Mandelstam representation, then
Fz(/, ) may be given by the Froissart-Gribov'
de6nition:

Fg(t )=—

(2J+3)Q, (s)—2(2J+1)Q +(2J—1)Q (s)
X

(2J—1)(2J+1)(2J+3)
XImAi(/i' —ki' —2(P'+ p')'"(k' —ki')'"

y2pks, ~, ), (12')

for complex J. If FJ is finite at J=1, 0, —1, —2,
then we may extend the sum in Eq. (11)

A, (s,t, . ) = P (2J+1)Fg(t, .)(Pq" (cosg), (11')
J~0O

where

/p~(s)=(~ 'tanJs)Q J i(s),

8 See, for example, S. C. Frautschi, Regge Poles and S-Matrix
Theory (W. A. Benjamin, Inc. , New York, 1963), Chaps. 7 and 8.

where f, /, /,
=—(O~t~X,X') is the t matrix for isovector

virtual photons of helicities A and X' producing two
pions; p is the magnitude of c.m. pion momentum, with
P'=4r(t 4p—'); and 0 is the scattering angle in the 3

channel. [We shall ignore the signature factor
(1—e '~~)/2 whenever it is inessential. ]Using the table
provided in Appendix A of Ref. 6, we may rewrite
Eq. (10) (using a slightly different definition of F~
from that of Refs. 3 and 6) as

00

dern'(~)

Ai(s, f, )= Q (2J+1)F~(t, ~ )
J=2 sin'8

(see Ref. 6). The formula (11') can now be transformed
into the Sommerfeld-Watson integral. If the leading
singularity of Fz is a moving pole of the form y(t)
X[J—n(/!)] ', the asymptotic form of Ai(s, t, )
becomes'

(2n+1)~
V(~)~p-( —s) ~—(2n+1)7r I'(n+-,')

sinza sinn+ I'(u+1)gw
Xy(&)a(t)[u(t) —1](—2s) -'. (13)

The quantity ImAi(s', t, ) appears under the integral
in Eq. (12') because a dispersion relation at fixed t is
written for Ai(s, t, ) and substituted in Eq. (12).
Thus, as the notation implies, ImAi(s', t, ) is the same
quantity which appears in the integrand of the sum
rule (2).

Before discussing the compatibility of the Regge
behavior expressed by Eq. (13) with the high-energy
form of Eq. (8), let us first consider one of the problems
involved in generating the t™variable singularities on
the left-hand side of Eq. (2). It has been suggested by
Fubini and Segre' that, since F (t) has a pole" when
1=m,' (where m, is the mass of the p meson), the left-
hand side of Eq. (2) should develop this pole as a
consequence of the integral diverging. This divergence,
they argue further, will occur because of the asymptotic
form (13), since (13) implies

ImA i(s, t) ~y'(t)n(/) [o.(t) —1]s~&'& ' (14)

and the integral diverges when the p trajectory passes
through one at t=m, '. That is,

lim
t -+ ntp&—

00 s ~p(0
ds Sap(|l)—I~

SQ n, (~)—1

However, the complete asymptotic form Eq. (14) con-
tains a factor [n(t) —1] characteristic of a sense-non-
sense transition, and although the integral does diverge,
the left-hand side of Eq. (2) approaches some finite
limit as t approaches m, ' and does not develop the p
pole. Thus, a pure Regge-pole picture is incompatible
with a continuation of Eq. (2) up to t —m, '. This result
is not surprising: the amplitude Ai(s, t, . ) does not
have a pole at t=m, ', since this would be unphysical;
and the factor [o.(p) —1] is precisely what is needed to
cancel this pole in Eq. (13).

In fact, the inconsistency between the Regge-pole
picture and the sum rule is much more fundamental
than problems involving the p pole. As already pointed
out, the sum rule predicts that A i(s,t, ~ ) ~ F (t)/s for

~ For details see Ref. 8.
S. Fubini and G. Segre, Nuovo Cimento 4$, 64t (]966l

G. Furlan and C. Rosseti, Symposium on Weak Interactions,
BalatonviBgos, Trieste report, 1966 {unpublished); D. Amati,
in Proceedings of the Thirteenth International Conference on BigJz-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967).

» We treat the p meson as if it were stable. To be more precise,
"the pole at t =mp~" or the like should be understood as the pole
in the second sheet corresponding to an unstable p meson.
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large s and a range of t. This is certainly in contradiction now write
to the large-s behavior Ai(s, t, ) s "l ' provided by
the Regge picture. Another way of stating this is to
note that in a region in which u(t)(1 (which includes
t(2r2, 2), Eqs. (13) and (14) imply

ds' ImAi(s', t, . )

S —S
t'

ds—ImA(s', t, ~ )=0
7r

lim (—s)Ai(s) =lim (—s)

(15)

~ —lim s-'X-sslim (J—1)Fs(t, )J-+1 J—+1

(2u+1)2r I'(u+-,')
u(t)

sin2ru (/2r) I'(u+1)

rather than Eq. (2).
The resolution of these difficulties is easy to find. We

assert that if the amplitude A i(s, t, . ) has the property
that the analytic continuation of Eq. (2) to time-like t

is possible amd that a continuation of the partial-wave
amplitude in the 3 channel may be made to complex J,
then this partial-wave amplitude has a fixed pole at
J= 1. The existence of this pole may be inferred
immediately from Eq. (12'). The Legendre function

Q~(x) has a pole at negative integral values of J with
residue F~„i(s).So

1 4
lim (J—1)Fg(t, ~ )=—X— ds
J~l 3 ~

XImA ( 2 k2 2 (P2+~2)1 t2

X (k'+kr')'"+2pks, t, )

1 1 4=+- — ds
3 2Pk 2r p

XImA 2 (s,t, ) . (16)

Thus, a superconvergence relation I Eq. (15)] is the
condition that F~ be regular at J'= 1 (the residue of the
pole vanishes), while the sum rule implies

2 1 4
hm {J—1)F,(t, ")=+- -F.(t) (17)
J-+1 3 2pk (22r)'

That is, the sum rule is an integral form of the statement
that FJ(t ) has a pole at J=1 with residue propor-
tional to F,(t).

We now go back to the transition from Eq. (11) to
Eq. (12), which requires some modification. We assert
that when the isovector photons are off the mass shell,
the amplitude Fs(t, .) should be written as

s= cos8 s/2pk as s —+ oo.

The last line of Eq. (19) follows from converting the
sum over J to a Sommerfeld-watson integral" and
taking the limit s~eo. The amplitude Ai(s, t, ) is
seen to approach, as $ —+~,

—-', s-'(2pk) lim (J—1)Fs(t, ),J~l

the 6xed pole providing the asymptotic form as long
as u(t)(1. We also see that the imaginary part of the
amplitude goes as

lim ImA i(s,t, )

1(u+ )= —-', (2u+1)rr uI'. (t, )s--2 (20)
(V' )r( +1)

and does not vanish as u(t) —+ 1, so that the mechanism
suggested by Fubini and Segre now works. Here again
the Axed pole at J=1 of FJ saves the day, and allows
the continuation of the sum rule up to 3 fop'.

In concluding this section, it is worthwhile to note
that t=m, s, with u(2r2, 2)=1, is not a singularity of
Ai(s, t, ). If it were, we would have a physically
unacceptable result, since J=1 is a "sense-nonsense"
point of Az. That 5=m, ' is not a singularity of 3& can
be seen from Eq. (19). As t ~ 2',2, singularities of the
term proportional to s ' and the leading Regge-pole
contribution cancel exactly.

III. CURRENT CONSERVATION

The remaining sections of this paper will be devoted
to showing that the type of behavior discussed above
actually holds in a model of strongly interacting mesons.
Here we wish to point out that, for the case of a con-
served current, we can prove that there exists a line in
(krs, k22, t) space along which Eq. (2) can be continued,
so that the pure Regge behavior leading to Eq. (15)
must be modified,

where I' (t, .) is nonzero and analytic in the neighbor- atson contour integral encircling the entire real axis counter-
hoods of J= 1 and u(t). In place of Eq. (11'), we must clockwise plus a contour integral encircling 1=1 clockwise.
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then we have

so that
iai(v, —k22, 0, k22)=0,

ai(v, —k22, 0, k22) ~b(v), (24)

if there exists an intermediate state in Eq. (21) de-
generate in mass with the final pion. If no such state
exists, then ai(v, —k2', 0, k2') =0 [it is easy to verify
that neither b~ nor c~ is singular at the point where their
coefficients in Eq. (23) vanish). Of course the inter-
mediate state in equation is the pion itself, and so from
Eq. (21) we can compute ai(v, k2', O,k2') exactly, Eq. (24)
ensuring that the continuum contribution vanishes.
Then, we can do the integral appearing in Eq. (2)
exactly, and we obtain,

dsu (i's, kp,', 0, kp,
')= P (kP)P (0).

(2~)'

Since we have assumed current conservation, F (0)= 1
and Eq. (2) is seen to be exactly true for a/l values of k22,

positive and negative.
The point of this demonstration is that for a con-

served current we can find a line in the variable t,
including both timelike and spacelike values, where
the continuum contribution to Eq. (2) vanishes and
the single-particle pole saturates the sum rule. Thus we
may state with certainty that the pure Regge-pole
picture, which leads to Eq. (15), must be modified.

IV. EXAMPLE IN FIELD THEORY

We will now discuss the validity of Eqs. (16) and (17)
in a field theory. The field theory we have in mind is
that of self-coupled scalar pions (say, lie e~g pe4»
theory). We assume that the sir scattering amplitude

We write the expansion for the absorptive part of
5„„,dined by

ImS„„e(P,E,A) = (4PioP20)'" J'd4x e'~'

X (z f (P2) ~ Lj;(x),j'(o)) ~ z;(P;)) (21)
as in Eq. (6),

ImS„„(P,K,A) =P„P~i+P~~z+P„h„as
+K„P„bi+E„E„b2+E„h,bg

+EL„P~i+DI„K,cg+D„d„c3+g„Q (.22)

If B„j&(x)=0,then we have

kil' ImS„„=P.[—vai+ki Ebi+ki Aci)
+K,[ki Pa2+ki'Eb2+ki &cz+d)

+h, [ki Pa3+ki Eb3+ki Aca ——,'d)=0.
The coefIicient of P„of this equation, written in terms
of the invariants t, k~', k~', and p= —k~ P, is

i ai+[4i—kP+4it+ ~zkP)bi

+[-,'k22 —-'ki2+-,'t)ci= 0, (23)
so that if we take

kx'= 0, k2'= —t,

Tl„(D,K,P)=I„„(A,K,P)+—d4Q
2'

I„„(A,K,Q) T (B,,Q,P)
X . (26)

[( ~z+Q)'+~' —ie)[(l~—Q)'+p' —~e)

Here 6 is the center-of-mass momentum of the system;
p is the mass of the pion; the momenta of the isovector
photons are ziA+P, ,'6 —P, and tho—se of pions i2h+E,
—,'6—K; T(A,Q,P) is the pion-pion scattering amplitude
off the mass shell. t= —xi'' is the usual (energy)'
variable in this channel, and we have suppressed the
isospin indices: all amplitudes refer to those of T= 1 in
the t channel. The anal pions may be taken to be on
the mass shell, so that d P =0 (—'6)'+P'= —p'

We can decompose I„„and T„„just as in Eq. (7):
I„„(A,K,P) =P„P„I,+ . (27)

We now extract the coeflicients of P„P„from Eq. (26).
This can be achieved most readily in a special frame of
reference. We choose the frame in which 6= (0,/t)
and E= (kea, ko) and the vector P lies in the 31-plane.
In this frame we write Q= (il,w). Then

1 (q)' sin'8
A (h,K,P)=I (A,K,P)+ d'Qi —

i
e"

(2~) kp& sin'n

I i (E,E,Q) T(A,Q,P)X,(2g)[(,'a+Q) +-p ie)[(,'~ Q)'+-u'—~e)

where 0 and P are the polar and azimuthal angles of q,
and o. is the polar angle of p. Let us assume thatI (Bi, KQ) has a spectral representation inE. Q= cos8= z

dz
Ii(A,E,Q) = p(z', t; k,ko,' q,w),

Z —Z
(29)

"The Bethe-Salpeter amplitude in ladder approximation is
analytic in the entire J plane. See B. W. Lee and R. F. Sawyer,
Phys. Rev. 127, 2266 (1962); G. Tiktopoulos, Aid. 133, B1231
(1964). We assume here the full amplitude is analytic forReJ) 1—e. Proof for this is lacking, but so is a counter example.
We ignore the probable inconsistency of cubic-interaction field
theories.

'4We shall deal with the mass-renormalized, but otherwise
unrenormalized version of the theory.

(even when some of the external lines are off the mass
shell) is analytic" in the region ReJ& 1—e, e&0.

In such a theory, the current j„~(x) is given by

j:(*)= e"A(x)~.4.(*) (23)

We consider the T matrix for the process: (two virtual
isovector photons) -+ (two pions). We shall call a graph
for t,his T matrix reducible if it can be split up into two
disconnected parts by drawing a line which cuts only
two pion lines, such that two external pion lines are in
one part and two external lines are in the other, and
each of the two resulting parts is a connected graph.
Let us call the sum total of irreducible graphs the
irreducible kernel I„,. We then have'4
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so that Ij may be expanded as
tO dps~(8)

It= Q (2J+1)P(t; k,kp, q, to) — [(J—1)J(1+1)(1+2)]'"
J=2 sin'8

(2J+3)Q —(s') —2(2J+1)Q (&')+(2J—1)Q + (s')
I~(t )=— dz'p(s't )

7r (2J—1)(2J+1)(2J+3)
We define the partial-wave as. amplitude:

1

Tz(t; q, to; p,0)=— ds Pz(s)T(A, Q,P),
2

where we have written P= (y,0). Inserting Eqs. (11), (30), and (32) in Eq. (28), we finaHy obtain

(30)

(31)

(32)

F,(t;k,k„")=P(t;k,k„" )

+2 d~ q'dql —II'(t;k, kp;q, ~)
p (pf

XF (q,w)t)Tg(t; q,to, ),
F(qp' t) =Lq'+ '—(to+-'v t)'—s 3

X[q+"-( —:et)-'& (33)

Equation (33) can be defined for complex J: the
function IJ is de6ned by the Froissart-Gribov defini-
tion (31), and we use the usual definition of T~ for
complex J.

In lowest order in the coupling constant X, there are
two graphs contributing to I„„[seeFigs. 1(a) and (b)j.
In second order, aside from self-energy and vertex
correction graphs, there is one graph, Fig. 1(c). The
lowest-order graphs give

4
I,&»(a,z, P)=—

(2 )'2-(&—P)'+t' (&+ P)'+ 't-
(34)

4 ( 1 ) (2J+3)Q (x )—2(2J+1)Q (x )+(2J—1)Q (* )
I~&'&(t; k,kp, q, ro) =- +(x+~x ), (35)

(2s)s (2kq) (2J—1)(2J+1)(2J+3)

(36)

where x~——[k'+q'+p' —ie—(kpWro)']/2kq. I~&el is sin-
gular at J=1, since Qz s(x) ~ (J—1)—'as J-+1.The
second-order graph, Fig. 1(c), gives I~"& which is not
singular at J=1. To see this we compute the high-s
limit of Fig. 1(c). It is known that this diagram goes
as 1n's/ss as s-+pe, so that I~"& is in fact regular at
J=i.'~ We conjecture that, in general, IJ('"& goes as
s-&"+'&, disregarding logarithmic factors. This means
that the power-series development in X' of the ir-
reducible kernel is convergent as s —+~, and that the
singular part of I~ at J= 1 comes entirely from I~&":

4 (1y2
lim I~(t; k,kp, q,w) =-

(2s.)'(2kq) 3 J—1

Therefore, it follows from Eq. (33) that
—(2kp)-', lim (J—1)Fg(t,k,kp, p,0)

One recognizes immediately that the quantity in the
square bracket on the right-hand side of Eq. (37) is
exactly F (t), which is in our theory"

P~F, (t) =P~+—d'QQ~
2'

T(A,Q,P)
X

L(Q+ s~)'+t '—sej[(Q—s~)'+t '—se3

Thus, we have seen that Fg is singular at J=1 and
Eq. (17) is verified.

Near J=a(t), Tq(t, . ~ .) behaves as"

t(t" )
Tg (t ~ ~ ) (38)J a(t)—

Substituting Eq. (38) in Eq. (33), we see that

Fg(t; k,kp, p,0)

1+2
(2s.)'

qsaql —
l

I'5
kp&

I'.(t; k,k„p,o) (39)'"'" (~—1)LJ—~(t)j
XF '(q,w, t)T&(t; q,pp; p,0) . (37)

"See, for example, P. Federbush and M. Grisaru, Ann. Phys.
(N. Y.) 23, 262 (1963). The other second-order graphs, being
vertex and self-mass insertions, go ss 1/s' ss well, disregarding
$ogaritbw~c factors.

"In accord with the remsrlr made in Ref. 14, F (t) here is
the unrenormalized form factor and does not satisfy I" (0)=1.
The condition F (0) is restored ss s consequence of vertex snd
vrave-function renormalizations.

r'The form of Tq in Eq. (38) can be guessed st on general
grounds and veri6ed in a model. See B.W. Lee and R. F. Sawyer,
Ref. 13.
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I' (t;k,kp, p, 0)

=2(n —1) dw
t'q&'

qsdql —II (t kkp qu)
0

XF '(q, to, t)t(t; q,w; p,0). (40)

--P2

—-K —+Kh
2

t
(o)

—-K —+K
2 $ 2

t

(b)

Therefore, the pole at J=n(t) gives rise to the asymp-
totic form Eq. (20):

lim ImA, (s,t, )
$~00

I'(u+s)ir ( s
= —(2 +1) I'.(t, )I

(Qpr)I'(rr+1) (2kp)

As t ~ m, ' such that n(m, ') = 1, we have

—-p —+p2 2

00

llm
t-+ mti~ ~ so

ds' ImA i(s,t, )

=+-,'(2kp) I'r(m, s; k,kp, p,0).
n(t) —1

—-K —+K2 $ 2

t
(c)

Now as n ~ 1, I becomes singular, as in Eq. (36), so
that I'i is given by )see Eq. (40))

FIG. 1. Some lower-order Feynman diagrams for the irreducible
kernel I„„(d,E,P). Solid lines are pion lines; wavy lines, current.

Hence

00

4m-
+ fop~ ~ so

4 2 1
2

(2~)' 3 (2kp)

fq
dw q'dqi-

Ep

XF-'(q, ro, t)t(t; q,w; p,0).

ds' ImA i(s,t, )

eo

2
(2s.)'

(q'i

tpf

t(t; q,w; p,0)
X F'( wq, t) . (41)

1—rr(t)

hard to see, since the low-energy part and the high-
energy part contribute equally to the integral.

Lastly let us discuss why the amplitude A &(s,t,krskss)
has a fixed pole at /= 1. Equation (28) shows that Ai
is linear in I~, the irreducible kernel, which has this
singularity. This situation arises because we are dealing
with the current correlation function. ' That is to say,
we are considering the process: (two virtual photons)~ (two pions), to lowest order in the photon-meson
coupling. On the other hand, the amplitude for the
process, Ltwo physical vector particles (say, p-mesons) j—+ (two pions), cannot be linear in its Born approxima-
tion and cannot have a Axed pole at J=i. let us
consider this case more carefully. We shall denote the
xx channel and pp channel" by i= 1 and 2, respectively.
The unitarity condition for complex J reads

The right-hand side is just 4(2s-) times F„(t) in the
Regge-pole representation Eq. (31) of Tr Lsee Eq. (37)],
which should be a good approximation in the neighbor-
hood of 1=m,'.

In our argument, we have inferred the singularities
of 8J' in the complex J plane from those of I and T&.
It is possible that there are other singularities, arising
from the q or w integration in Eq. (33). We have
veri6ed that no such singularities arise in the ladder
approximation' of Tg, at least in the region ReJ & 1—~,

e&0.
The reason why the left-hand side of Eq. (8) does

not dePend on krs, kss (or k, kp) is now clear. It is because
the residue of (2pk)I~ at J= 1 is independent of these
quantities. In Eq. (2), the way in which the left-hand
side becomes independent of k~' and k2' is somewhat

t', (~,J)—4*(~,J*)=» E t;.(;J)p.~&t„(.,J*), (42)
k~1 p2 p

~ ~ ~

where pI, is the appropriate phase-space factor of the
kth channel. Assume that the amplitudes trr(s, J) are
analytic in J, J)1—e. Equation (42) tells us that it is
inconsistent for trs(s, t) to have a simple Axed pole at
J= i. For, if it did, then t~~ would have a double pole
at J=1 and, using Eq. (42) again, we would conclude
that /~2 must have a triple pole. But for the erst process
the unitarity condition reads as

tp;(s, J)—tp, *(s,J*)=2iQ tpp(s, J)ppty„*(s,J*), (43)

' Qf helicity ) —)L' =~2.
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Fio. 2. (a) The (@+1)-rung Feyn-
man diagram for the amplitude S„,.
The solid lines are the pions, the
dashed lines are scalar isosc alar
mesons, and the wiggly lines represent
the currents. The. quantities x;, y;, s;
are the Feynman parameters intro-
duced in Eq. (A1) so that the integrals
over the internal momenta q; may be
performed. (b) The Feynman diagram
for the vertex corresponding to
Fig. 2(a). This diagram is not a func-
tion of k& and k2 separately, but only
of the di8erence k& —k&, as may be
veri6ed by a simple calculation. We
have chosen labels for internal lines
so that the comparison with Fig. 2(a)
is simple.

q - k2))"n

q k 1PYp
2

MA O.~q —q

1P

X„»,

Xp
~ W

Zn-l
&& q -k,

X

q2 X2

q -k ~rXjl 2 ZI)( q
Pl +k, -q, X,

r,

i| k2-kf
I

~

)
~

q A l k2$I p Z„,» q„;kt
qn-2 R-Iq

+
3F

q -k '&&)
I 2 ql- k)P +k, -q X~

(a) (b)

where i=0 stands for the channel made up of two
virtual isovector photons. Equation (43) is linear in
the amplitudes tpl„and it is entirely consistent for tpg to
have a simple fixed pole at 7=1 if the ti s (k, j&0)
do not.

V. CONCLUDING REMARKS

A few remarks are in order:

(1) It is interesting that the non-Regge behavior we
have found applies to an amplitude that is not directly
measurable, i.e., scattering of charged photons. Our
arguments specifically do not apply to the scattering
of real photons, nor in their present form to the photo-
production of (e+,v) or (ti+, v), since in the latter case
there are extra amplitudes present which cannot be
analyzed in terms of two-body processes.

(2) The high-energy limit of the amplitude Ai we

have deduced here does not have any detectable
consequence in high-energy scattering of strongly
interacting particles. In the approximation of treating
the p mesons as stable particles, the T matrix for ~p
scattering is given, to within a well-de6ned multipli-
cative factor, by

lim (kis+m, ') (k'ss+m, ')$„„(P,E',6), (44)
k12,king ~ ~ 2

where S„„is defined in Eq. (3).The asymptotic behavior
of Ai(s, t, ) we have deduced, i.e., F (t)/s, gives no
information for mp scattering, as this leading term is
independent of k~' and k2', and gives a vanishing
contribution in Eq. (44)."

In the same vein, we caution against using a naive
version of PCAC (partially conserved axial-vector

"Stated in the context of Kq. (2), this forms the basis of the
superconvergent sum rules discussed by V. de Alfaro, S. Fubini,
C. Furla. n, and C. Rosetti, Phys. Letters 21, 576 (1966).

current) in deducing high-energy pion-hadron scatter-
ing.""For, here again, the axial vector current corre-
lation function has a quite different asymptotic behavior
from that of the physical pion-hadron amplitude.

(3) While the current correlation function does not
have quite the same asymptotic behavior as the T
matrix of strongly interacting particles, our study (in
Sec. III) indicates that if that T matrix satisfies an
unsubtracted dispersion relation (by the Regge
mechanism, for instance), then so does the current
correlation function. This conclusion is in support of
the independent observation by Dashen and Frautschi, "
who have used it in establishing the algebraic structure
of (bootstrapping) self-consistent currents.

APPENMX: EXAMPLE IN
PERTURBATION THEORY

In this appendix we will prove that the sum rule (2)
is true, order by order, for ladder graphs in perturbation
theory. This section is complementary to Sec. IV, since
here we will work throughout in the physical region of
the s channel, while in Sec. IV we worked in the physical
region of the t channel.

For simplicity we shall consider a slightly different
model from that in Sec. IV. We take a theory of pions
(with mass p) interacting strongly with scalar, isoscalar
mesons (with mass m). We shall ignore the explicit
complications of renormalizations; we have checked
these and they are correct. We shall content ourselves
with showing that A~, computed from the Feynman

"As opposed to low-energy scattering; as shown by S. steinberg
and others (see S. Weinberg, Phys. Rev. Letters 16, 879 (1966)g,
the Adler-Weissberger relation is a low-energy theorem.

2' We are indebted to Dr. H. T. Nieh for discussions on this
point.

~ R. F. Dashen and S. C. Frautschi, Phys. Rev. 145, 1287
(1966).
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diagram given in Fig. 2(a), when inserted in the left-
hand side of Eq. (2), reproduces the functional depen-
dence of F (t), computed from the diagram given in
Fig. 2(b).

We compute the scattering amplitude corresponding
to the diagram of Fig. 2(a) by the usual techniques"
and obtain

by

At(s, t, ~ ) 3tt! g (Ch;dy;tgs;)tEh„+t
i=1

Xbl 1—p (h,+y;+s,)+h.+, lj

S„. (3N)!

where'4

d'4q'1 de e

Q (dh;dy, Zs,)dh,
(2tr)' (2tr)' e=r4

~ ~ ~

4 ~

4

~

I~~
i ~ i

Xbl 1—p (h;+y;+s;) —h„+,
l

(2q„—ks)„(2q„—kt).
(A1)

3n+1

Xl P*; l
(5 )" '/D"+'(, t, ). (A3)

Here D is given by either of the two equivalent forms

n;,. b;
D=det

nD=ca„Pg—~;/~;, )t; )t;.
i 1

Q= g n;;q; q, +2+ k; b,+c,

n;;= h;+y~+S;+h~t,

0!i,i+1=(Xi+1,i= Si+

0.,-;=0 for j/i, i&1,

bt =—ht (Pt+kt) —ksyt —ktst,

bi= —k2yi —kl2i, a~ 1,

(A2) The denominator D contains the variable s linearly.
The use of the second form of D, together with

bl'bl sht(hr+y1+sl)+ ' ' ',
2bt b;=shr(y;+st)+

C=Nr+ '

and the identity

( nk, k+1)—z(;+ )rr
k-t ~k/~k t

Ot 1 Q2 ~ ~ ~ Or

c= (k,'+t ') P y+ (k,'+t s) E s.+st s P h,.+,h, . yields

The change of variables

«+1
D(,f, ")=.n*;+ ", (A4)

where

q =P P;;q;+R;, where we have explicitly displayed all the s dependence
of D(s t, ).

A calculation of F (t), the coeKcient of P„ from
Fig. 2(a) yields

Pcs b;;+b~t, ,n;, ;+th t//6——;, .

R;=)t;5 t/6;,

n

P, (t)-(3N—1)! p (~h.~y'ds')
i~1

~i= Z bi-s+1 Q ( nik, ik+t)~ik+t-/i)'i-k--
n

Xbl 1—Q (h;yy;+s;)
l

a,=det ln;;l, sj & p, Xl IIh; l(~.')=s/D'-(t" ), (AS)

diagonalises Q, and it is easy to see, after doing the loop
integrations for the coeKcient of I'„I'„, that Al is given where the prime indicates that x„+1 is to be set equal

to zero."
J. D. Bjorken and S. D. Drell, Relativistic Qstasttttm Fields

(McGraw-Hill Book Company, Inc. , New York, 1965).
~ In this section @re leave the index p o8 of four-vectors.

"It is easy to verify from Eq. (A5) that F (t) is not a function
of kts or ks' separately but only of t = (ks —tt&)'.
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We define a function F(s,t, ; X) by

F(s,t, ; X)=3m. II (dx;dy;ds, )dx„+i

where we have used Eq. (A4), so

00 1 dn —1

ds'A i(s', t, ~ ) (—1)"—
+t dpn —I

n

)&8 1— Xi yi Zi X„+1
i=1

X3ip! II (dh,dy, ds;)dx„+,

n

X II, (~.)"-'/LD(, t, ")+lj, (A6)
i=1

XS~ 1—P (*;+y,+z,)+x.+, ~

i~1

so that
1

Ai(s, t, ) (—1)"— F(s,t, ; X) . (A7)e!D," ) O

x;f

(g )n 1—
A standard analysis" reveals that Ai(s, t, ) has a cut
in the s variable starting at the normal threshold,
sp ——(iim+p)', and from Eqs. (A7) and (A6)

tt' m+1

XS~ IIh,s'y "yX . (A10)
' ep X~O

ImAi(s, t, . ~ ) (—1)"— ImF(s, t, ~; X)
n! dX-

where
n

I~(s,t,";7) =3m II. (dx;dy, ds;)dx.+i

It is easy to verify that the right-hand side of Eq. (A10)
vanishes at the normal threshold (this is because phase
space vanishes at sp), so that we may use the second
delta function in Eq. (A10) to do the integration over
x„+i, setting s'= pp afterward. Since, from Eq. (A4),

Xr~ 1—g (*;+y;+z;)+h., ~

i=1
we obtain

&n+1 s' II x;+

Now

n 2

Xi IIx; i
(5„)"—'5(D(s, t, . )+l%). (A8)

i
1 dn —1

ds'Ai(s', t, . ) (—1)"—
e!D," '

dn —1

ds' ImAi(s', t, )-(—1)"—
e!dP" '

a t' m

X3N t II (dx dy dz.)$~ 1—P (x +y yz~)

x3n! II (dx,dy, ds;)dh +i
n

xl II 'I(&.')"-'
i

(A11)
D'(t )+Xi g=p

n

xll(1 —r. (~;+y;+s.)+~.ii
~

i=1

1 8
X~ IIx; (d )" ' ds'—

x, Bs'

( a+1
X&~ II*,s'+ +& ~, (A9)i ~=p

which, after doing the X differentiations, is identical to
Eq. (A5). Thus, we see that doing the integration
over s in Eq. (A11) has the effect of putting the
I'eynman parameter x~& equaI to zero and turning
Fig. 2(a) into Fig. 2(b).

Having established the validity of the sum rule for
the n-loop ladder, it is clear that we can continue it,
order by order, into the region of timelike t, since we
have explicit expressions available for all the quantities
involved and there is nothing to block the continuation.


