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relating the H's immediately fixes do/dt(t=0). ' This
result is independent of other equations we may choose
to use. To 6nd o. (s) we must, of course, know H(t)
and thus the possible choices of 3 dependence cannot
easily be resolved from various choices of H(0). In
any case, reasonable assumptions of t dependence while

varying (H, (0)} are not likely to change o (s) by more
than a factor of 2, with do/dt(t=0) fixed by PCAC.

It is possible to generalize the results obtained here
to t/0 by keeping q 6nite. Also, similar equations, such
as those obtained by Albright' by dispersive methods,

' S. Adler, Phys. Rev. 140, 3736 (1965).

could be obtained for the X-X* vector form factors.
These would follow from the commutator

$F', V„sf=is,s,A„'.
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Fxperimental information now exists on the behavior of electromagnetic form factors E(q) at very high

momentum transfer g. This has led to speculations on the asymptotic behavior of the form factors as q
—+ ~ .

In this paper we consider nonrelativistic Schrodinger models of composite systems and correlate the asymp-
totic behavior of F (q) with the nature of the forces in the limit of zero interparticle separation. Conditions
for falloff more rapid than powers oi 1/q are analyzed, and comparisons with proton and deuteron data are
presented.

I. INTRODUCTION

'HE extension of experimental information on the
electromagnetic form factors' F(q) to very large

values of q and to very small values of F(q) has spurred
increasing interest in the asymptotic behavior of
electromagnetic form factors for large momentum
transfers q

—+ ~. Analyses of the observations for both
electron-proton and electron-deuteron elastic scattering
show that the F(q) continue to decrease very rapidly
with increasing q and that this rate of decrease is

suKciently rapid to defy attempts at simple models.
In the case of the proton, ' the falloB is at least as fast
as 1/q'; to reproduce this rate theoretically in terms
of the usual narrow resonance model requires a carefully

*Work supported by the U. S. Atomic Energy Commission.
f Present address: Department of Physics, San Francisco State

College, San Francisco, California.
' In this paper we take h=c=1, and 9=

~ tt~ is the magnitude
of the three-momentum transfer in the center-of-mass system.

~ W. Albrecht, H. $. Behrend, F. W. Brasse, W. Flauger, H.
Hultschig, and K. G. Steffen, in I'roceeChngs of the Thirteenth Inter-
national Conference oe High-Energy Physics, Berkeley, 1966
{University of California Press, Berkeley, 1967).Earlier work was:
K. W. Chen, J. R. Dunning, Jr., A. A. Cone, N. F. Ramsey, J. K.
Walker, and Richard Wilson, Phys. Rev. 141, 1267 I'1965); K.
Berkelman, M. Feldman, R. M. Littauer, G. Rousse, and R. R.
Wilson, ibid. 1%, 2061 (1963}; B. Dudelzak, A, Isakov, P.
Lehmann, R. Tchapoutian, in Proceedings of the IZth Annstat Inter
national Conference on High Energy Physics, Dtthna, 19-64 (Atomiz-
dat, Moscow, 1965), Vol. 1, p. 916.

arranged cancellation between the contributions of two
or more states in the spectral representation of F(q).
In the case of the deuteron for which F(q) drops to less
than 10 ' F(0) for q 1 GeV/c, an elaborate param-
etrization of the forces and of the deuteron wave
function is required3 as the internucleon separation

0.
Wu and Yang' have conjectured on the basis of

general statistical arguments that the nucleon form
factors approach asymptotically

F(q)-e

with a = (0.6 GeV/c)-'.

This behavior is correlated with the Orear' 6t to elastic
high-energy nucleon-nucleon scattering at large mo-
mentum transfers

(da/dO)-se "v. ,
-

where q&—=q sin8 is the transverse momentum transfer.
Wu and, Yang go further to suggest that Eq. (2) is a
law for all strong interaction processes. This suggestion
has stimulated further more elaborate studies based on

' J. I. Friedman, G. Hartmann, H. W. Kendal], and Leon Van
Speybroeck I'unpub1ished).' T. T. Wu and C. N. Yang, Phys. Rev. 137, 3708 (1965).' J. Orear, Phys. Rev. Letters 12, 112 C', 1964).
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the assumption of scale, or dilation, invariance of high-
energy processes, ' as well as on more detailed statistical
analyses of multiple-production processes7 which also
predict a form-factor behavior as in Eq. (1).

The exponential form of Eq. (1) has one appealing
theoretical feature: within a polynomial factor, it is the
maximal rate of decrease consistent with polynomial
boundedness of F(t) in the complex t=qss qs p—lane. '
Without polynomial boundedness, it is impossible to
write a dispersion relation for F(t) with a finite number
of subtraction constants (a circumstance too un-
attractive to entertain seriously).

Figures 1 and 2 show the latest measurements of
proton and deuteron form factors. For the proton, a
universal form factor is assumed for t large and negative
with Gsr (f) =tt„Gtt (t); po= 2.79. I—n relating the deuteron
cross section to a form factor, the isoscalar nucleon-
charge form factor is not divided out.

Thus far, only very weak bounds on asymptotic
form-factor behavior have been constructed within the
framework of relativistic local quantum field theory. '
With the aim of gaining some insight into the physical
significance of the asymptotic behavior of F(q), we
shall work within the framework of nonrelativistic
potential theory. The recent studies of Serber, '
Sertocchi, Fubini, and Furlan, "and, Tiktopoulos" have
related the decrease of the nucleon-nucleon scattering
amplitude at large momentum transfers to the nature
of the internucleon force as r —+ 0. Since all partial waves
contribute to the scattering amplitude which is a
function of energy as well as of momentum transfer,
this is a much more complex problem than is the study
of F(q) which involves the momentum transfer only.

Our primary interest in this paper is to correlate the
asymptotic behavior of the electromagnetic form factor
of a compound system with the nature of the forces in
the limit of zero interparticle separations. We shall
group the form factors into three broad. categories
according to their rate of decrease:

(a) with a power law: F(q) 1/qo, p&0,

(b) exponentially: F(q) e 'P(q), tt&0,

or

(c) with a fractional exponential:

F(q) expL —ttq"'&o+'l]P(q), tt, p&0,
6 G. Mack, Phys. Rev. , 154, 1617 (1967).' H. A. Kastrup (to be published).

A. Martin, Nuovo Cimento 37, 671 (1965). See also A. M.
Jaffe, Phys. Rev. Letters 17, 661 (1966) where this result is de-
duced from more general assumptions.

~ $. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 136,
81439 (1964).I R. Serber, Phys. Rev. Letters 10, 357 (1963); Rev. Mod.
Phys. 36, 649 (1964).

» L. Bertocchi, S. Fubini, and G. Furlan, Nuovo Cimento 35,
599 (1965); 35, 633 (1965).

~ G. Tiktopoulos, Phys. Rev. 138, B1550 (1965).
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FIG. 1. The proton magnetic form factor from recent experi-
ments at DESY. The works referred to are, respectively, those of
H. J. Behrend, F. %. Brasse, J. Engler, H. Hultschig, S. Galster,
G. Hartwig, H. Schopper, and E. Ganszuage, in Proceedings of the
Thirteenth International Conference on High E~nergy -Physics,
Berkeley, 1966 (University of California Press, Berkeley, 1967);
W. Albrecht, H. J. Behrend, F. W. Brasse, W. Flauger, H.
Hultschig, and K. G. Steffen, in Proceedings of the Thirteenth
International Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1967); W. Bartel, et at
in Proceedings of the Thirteenth International Conference on High
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967); and Phys. Rev. Letters 17, 608 (1966).
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II. ÃONRELATIVISTIC POTENTIAL THEORY
FOR TWO PARTICLES

In this section we discuss the deuteron form factor
at large momentum transfer in a potential-theory model.

where P(q) denotes a polynomial in 1/q and/or an
oscillatory factor in q.

As mentioned above, the data as well as theoretical
reasons permit us to ignore the possibility of a more
rapid d.ecrease than the exponential one. In order to
emphasize that the di6'erences between power, ex-
ponential, and fractional exponential decreases in F(q)
are not just a purely mathematical nicety but are
indeed of experimental relevance, we show in Fig. 3
the three alternatives adjusted to go through two fixed
points.

Section II is devoted to the analysis of the asymptotic
form factor behavior for a nonrelativistic spinless
"deuteron" —i.e., a spherically symmetric bound state
of two spinless particles of equal mass, one electrically
neutral and, the other charged, interacting via a central
static potential in the Schrodinger equation.

In Sec. III we generalize the discussion of Sec. II to
a bound, system of three particles —the motivation for
this being a quark model for the proton structure as
well as the existence of He', H', and heavier nuclear
targets.

Finally in Sec. IV we discuss a new way of presenting
the form factor data in order to make more readily
apparent the "approach to asymptotic behavior. "
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FIG. 2. The deuteron form factor.
The points are due to: J. A. McIntyre
and S. Dhar, Phys. Rev. 106, 1074
(1957); J. I. Friedman, H. W. Ken-
dall, and P. A. M. Gram, ibid. 120,
992 (1960); E. F. Erickson, in. .Pro-
ceedings of the International Con-
ference at Stanford University, 1963
edited by R. Hofstadter and L. I.
SchiG (Stanford University Press,
Stanford, California. , 1964); D.
Drickey and L. N. Hand, Phys. Rev.
I.etters 9, 521 (1962); D. Benaksas,
D. Drickey, and D. Frerejacque, ibid.
13, 353 (1964); C. D. Buchanan and
M. R. Yearian, in Proceedilgs of the
International Symposium on Electron
and Photon Interactions at High Ener-
gtes (Deutsche Physiiralische Gesell-
schaft e.V. Hamburg, 1966), and J.
Friedman, G. Hartmann, H. Kendall,
and Leon Van Speybroeck, in Pro-
ceedings of the Thirteenth International
Conference on High-Energy Physics,
Berkeley, 1966 (University of Cali-
fornia Press, Berkeley, 1967), and
(private communication) .
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For simplicity we assume that the deuteron is an S state
formed of two scalar nucleons obeying a Schrodinger
equation and bound by a static, central potential V(r).
The charge form factor is dered as the Fourier trans-
form of the charge density; i.e.,

4x
=—Im rdr e""P'(r)

p

r sinqr P(r)tt(r)dr,

where

of square integrability which rules out infinities as
strong as or stronger than 1/r at r = 0, the only types of
singularities that are possible at the origin are essential
singularities of the type e ~t'" with A and 0.&0 or
discontinuities of the form re with p& —1. We want
to correlate the singularities of P(r) for r —+ 0 with the
nature of the singularities of the potential at the origin
and in this way relate the asymptotic behavior of Ii (q)
as q~ ~ with the internucleon forces.

First, in order to illustrate the inQuence of the
singularities of it (r) on the form factor, we derive several
general results from the form of Eqs. (4) and (5):

THEQREM (A). If the product of factors rp(r) exists as
an ordinary function for r&0 and is well behaMd at
infjnity, then asymptotically" for large q

and P(r) =f(r), since it represents a stationary S-state
solution with no Aow of current.

The behavior of the form factor at large momentum
transfer q ~ ~ is determined by the behavior of the
wave function at its singularities. We assume that the
potential is infinitely differentiable for real positive r
except possibly at the origin. In this case, the asymp-
totic behavior of the form factor is determined by the
nature of any possible singularities in the wave function
at r= 0. Since ib(r) must satisfy the boundary condition

where g(r)=rlPs(r). We note that Ii(q) will decrease
faster than 1/q", for any p as q

—+~ if and only if

g(r) and all the even derivatives of g(r) vanish at r= 0.
One example of such behavior is a solution f(r)

which has an essential singularity at the origin so that
tp(r) and all its derivatives vanish at r=O. Another
example is a solution such that P(r) can be analytically

» M. J. Lighthill, Fourier Analysis and Generalized Functions
(Cambridge University Press, Cambridge, 1958), p. 56.
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continued in a neighborhood of r =0 with de6nite
parity, i.e., P( r) =—&f(+r). We can then drop the
e(r) in Eq. (5) and note that the even derivatives of
rP(r) vanish for r =0.

THEoREM (8). If we make the stronger assumPtion
that f(r) can be contsnued as a function of the complex
variable r into the complex r plane with definite parity
p(r) = &p(—r) and with a strip of analyticity extending
along the real r axis from —oo to + eo of minimum width
—a(Imr(+a as illustrated in Fig. 4, then the form

factor falls og at least as fast as e ".This theorem is
readily verified with the aid of Cauchy's theorem. We
can once again drop the 0 function, since by assumption

Jl
™s

Re s

FIG. 4. In6nite strip of analyticity of width 2a
about the real axis in the complex r plane.

P(r) = les( —r), and write

I
0- } 2'

F(q) = Im-
g

dr e""nP (r) .

10

Displacing the contour as shown in Fig. 5 we have

2x
F(q) = Im—lim ie '&R dy

g~oo

Xe '"(—&+iy) I 4'( &+iy) I

'—
+e—sa dx 'e"( x+z )alp(x+za) I

U

10
+ie'st dy e 's(R+iy) Ip(R+iy) I

' . (8)

Since it (r) is assumed to represent a bound-state wave
function, the 6rst and third terms vanish as R -+ ~ ~

lo 4

10 5

-R+ia +R+}a

+R

10-'
1 2 5 4,5 6 7 8

q(F ~}

FIG. 3. Logarithmic plots of e '&, e ~ v'& and q
' with a, b, and c

chosen so that the values of the functions coincide at 1 and at S. FIG. 5. Displaced iutegratiou coutour discussed below Eq. (7}.
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By the assumed analyticity in the strip, P(x+ia) is
analytic for all x, and, the integral in the second term
goes to zero as q

—+ ~ by the Riemann-Lebesgue lemma.
This establishes our claim.

We now turn to the physically interesting problem
of relating the behavior of (p(r) as r ~ 0 to the proper-
ties of the potential V(r) as r~ 0. Almost any V(r)
will lead to form factors with a power falloff as q

—+ ~.
For example, the Hulthen potential"

2/V/V(r) = —p[1/(1 —e
—'"))

leads to a bound solution (e "—e e")/r, where cr = -', (y/8
+8) and p= r, (y/8 —8), and to a form factor

1 q q qF(q) cc — arc tan —+a,rc tan ——2 arc tan
q 2a 2P n+P

1
as q~ ~.

q4

The failure to meet cond. itions A or 8 above for faster
than a power falloff may be traced in P(r), or V(r), to
this fact: if we continue (p(r) into the complex plane
with a definite parity we must write

P(g(r')) = (1/r')(e '~ ("'/+e 'e ("'/ 2e (~—+e& ("/)

In this case the potential dominates the behavior of the
Schrodinger equation at the origin, and we may write
for the radial equation

d'u(r)/dr'=3IIV(r)u(r); r —+ 0.

The square integrable solution to this equation near
the origin is

u(r) =C exp-
p(r!ro)"

(12)

and the form factor becomes (asymptotically for
q~ ao)

4x "dr
F(q) ——

)
C')' Im

~00
o

conjectured, by Wu and Yang, it is at variance with our
usual physical notions. When working within the frame-
work of potential models, a more singular repulsive core
behavior for the potential as r~0 is indicated by
experimental comparisons. We turn then to potentials
increasing at the origin as a power

1 /r, q'('+»
V(r) =

~

—~; p&0; r,&O.

and, thus have a singularity at the origin. Alternatively,
we may make the continuation simply by writing

2 1
Xexp iqr-

p(r/ro)"--
(13)

f2 (r) —(1/r2) (e 2ar+ e 2er 2e—(a—+e)r)—
and since we do not have a definite parity, i.e., P(r)
W &+(—r), the step function 8(r) in Eq. (5) introduces
singularities into F(q) and prevents us from invoking
the Riemann-Lebesgue lemIna.

From the form of the radial Schrodinger equation
[6=1;&=nucleon mass; F~&0 is the positive binding
energy and u(r) = rP(r) is the radial solution)

We can evaluate the asymptotic value of this integral
as q ~ ~ by the method of steepest descents. Let

r —(2rop/q)r/(r+n)s

Then we have

4m.

F(q) =—)C'(' Im
q

( 1
Xexp [2(qro)&)"('+»~ is

S~

4m.
=—

~

C')' Im exp i[2(qro) &)(/('+»

q

we see that if P(r) is to satisfy condition. 8 above for
exponential form factor decrease, the potential must
have the analytic properties of the right-hand side of
the equation

So

ds
p —

L (q 0)")""'"'
o so

1 d'u(r)
V(r) =

Mu(r) dr' (s—so)' (p+ 1)X, (14)
2 so"+V(r) must thus be of even parity when analytically

continued for coxnplex r, and must be analytic in the
complex r plane along the real axis within a strip of
minimum width —a&Imr&+a as in Fig. 4 for iP(r).
[The potential V(r) = Vo/r' can also lead to exponential
falloR for certain discrete values of Vo.

where so is the saddle point through which we d,etour
the contour along a path of constant phase. so satisfies

$= —1/so~ (15)

Although such a potential would lead to the behavior In general, Eq. (15) has more than 1 root, possibly
infinitely many. We choose the root such that the

i4 i.. Hu]then, Aviv Mat. Astron. Och, Fysik A28, No. 5 {1942). following rules are satisfied:
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So= e'~I'g+7 (16)

(i) The contour will be deformed into the first
quadrant so that the integrand remains bounded at ~
for real, positive q.

(ii) In the case that p is not integral, we want the
root to be on the sheet corresponding to 1/(1)'+&=1
so that we may deform our exponent continuously from
the real axis to the saddle point without passing through
cuts.

Thus we have

normalization constant C", the "range" of the repulsive
potential rs, and the power of the singularity p as
defined by Eq. (11).We have thus far suppressed the
appearance of a fourth parameter by insisting on the
form of Eq. (12) for the solution as r -+ 0. In fact, N(r)
in Eq. (12) can be multiplied by an arbitrary power"
r" to read

1/rs)"
~l-l(r) =«xp ——

I

—
It,r)

With this choice, the remaining integral is 6nite and
the asymptotic behavior of F(q) is

l~"
I

F(q) = Im exp I 2(rsq)oj' '+"i
&~+~i2O+~&

-i~/2+ p
— i~ px exp —

I +
2 E1+p 4 1+p

Ic„l
F„(q) exp-

(&+(@+4~)/2 0+a)

-p+1 (~ 1 )sin-
p &2 1+p/

which also satisfies Eqs. (10) and (11) for p)0 as
r —+ 0. The added polynomial r'" thereby introduced
into Eqs. (13) and (14) can be replaced by its value at
the saddle point. The form factor is found to be

Ic"
I

exp
&~+»2(~+~)

p+1 /sr 1 qsin-
p &21+pl

p
XL2(qrs) &J'&'+» sin — +

4 1+p 1+p

&&L2(qr )&J ~'+"i sin—
4 1+p

p+1 t~2+ pq
sinl —

IL2 (rsq) ")"&'+"i . (20)
l21+ p)

p+1 sr 2+p
+ sin — L2(rsq) ]"'+"'

p 21+p

For the special case p=1 corresponding to V~ 1/r',
we have

Ic"
I

F(q) = e-' '&'o sinLssr+2(qrs)'"),
5/4 III. THE THREE-BODY CASE

In the asymptotic region, this additional polynomial
(17) factor should not conceal the dominant qualitative

feature of a fractional exponential decay modulated
by the sine factor.

Practical implications of these results will be explored
in more detail in Sec. IV.

which agrees with the exact evaluation. " These solu-
tions are examples of case 2 discussed earlier wherein
solutions of the type in Eq. (12) with essential singu-
larities at the origin, such that P(0) and all its deriva-
tives vanish, lead to faster than a power falloff of the
form factor.

These fractional exponential falloffs are of especial
interest since the strength of the singularity in V(r) at
the origin d.etermines the fractional power of q in the
exponent of F(q).

Naively one might expect to be able to derive re-
s trictions on the parameter p by continuing our result
analytically into the region of timelike q' and assuming
polynomial boundedness of the form factor for deuteron
pair production; however, since our result is only an
asymptotic form, its continuation would not have to be
bounded, even if the true result were.

The form factor in Eq. (17) has three unknown
parameters appearing in it: The magnitude of the

We now consider the asymptotic behavior of the
electromagnetic form factor of three point particles,
only one of which is charged, under the assumption
that the forces are two-body forces of the type con-
sidered in the previous section. We also assume scalar
particles and use nonrelativistic quantum mechanics
as before. For simplicity, we consider the equal-mass
case, although different masses give essentially the same
result.

The three-body Schrodinger equation is

(V„'+V, '+V, s)+ V(lr, —r, l)2'
+V(lri —"I)+V(I"—rsl) if=&4, (21)

where r~, r2, and r3 represent the position vectors of
particles 1, 2, and 3, respectively. Index (1) refers to

"See, e.g., A. Erdelyi et A. , Bateman Manuscript Project,
Tables of Integral Transforms (McGraw-Hill Book Company, "In particular, a=(p+1)/2 removes the most singular term
Inc. , New York, 1954), VoL I, p. 75, Eq. (31). in P—Vs+MV(r)ga(r) for V= (1/ros) (rs/r)s&~+»
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of the angles. This givesthe charged particle. Defining

=r, r, „=-,'—) s=-', (2rg —r2—ra),R=r,+r,+r„r=-,(r,—r„,
~ the center-of-mass coo drdinate E, weand eliminating e

rewrite Eq. (21) as

1d 3'
F (q) = —Re——

I

— (2~)' ds
2 p

1

4r r ds
—I

3
p 2

4M
v,'+ v(l s—r I)+ v(l s+r I)

4M

+v(I2rl) p=zp. (22)

Xexp iq Ss -2—a —+

, „, —n(, ,-), (26)
(r'+ 2szr+ s')"

. &22~ rather, in order to searchWe shall not solve Eq. , » a
es in the form factor behavior efor any differences in e

e shall confine ourid three-body cases, we s a
'

l that increase as 1/do-bod otentia s ay
between each pair o pap

ince this case isnot exac y
assume that the asymptotic behavior o e
tion is of the form:

OQ

F (q) — ds sin3qs
q p

ds dr r's

/1 1

(2r (r'+ 2srz+ s')'"

where q(r, z,s) —==2 r, s), z=r s/rs
We can now use Theorem A o ec.

e re ulsive core poe r 1 potential gives risen this case aga n t p
a form factor w ich' h decreases more rapi y—+ ~. To do this we writepower of q as q

—+ ~. o o

(lr+sl)'(Ir —sl)'

less singular terms. The three-body
-b d t rms only in the

at least some ~usti6-t r=s=0; therefore, there is at easlimit r=s=
cation for assum g t t '

sor asmin t at t is sor

hll fid h

'
ht form to solve t e mos sin

po an case, wes a a
as ptotic behavior o e

in or er o o
'

h into the actualbehaviorin order to obtain some insig t in o e
he three-body case.

state we may assume tha tSince
'

ce we have a boun s a e, w
the function f takes the formfor large separations t e unc io

f=exp( —2pr —p I
r—s

I

—p I
r s

—e—2y(r, s) (24)

irnate by this form everywhere. WWe must
inte ral for the form factorevaluate the following integra or e o

/1 1
F d ~&2i~&&'dar exp —2al —+

2 s

+ I

—2 y(s, r)
I s+rl)

(25)

e c
' '

f nii the integrals over threeWe can inimediately per orm e in

some less singular function. T is corre-
sponds to a two-body potentia ~ r
body terms of the form

I

—
g (r,s,z)

(r' 2srz+ s') '—~')
(2&)

at the function in brackets (corre-and observe th
ndin to g in the theorem is an o

and that all of its derivatives ex'

CO

-Sa/re —8prr —e
0 ru

r2e—a/rF(q) ~ ——Re dr r e
qdq 0

Xexpl i-,'qs — —
gr' s

f the absolute convergencewe have made use o e

point met o yieh d lding the asymptotical y ea ing

f . all p. Thus for all e, the g
~"& 0) exist, andexists fol a

indeed applies.

power fallo8, we now turn to t e pro
s m totic behavior.

l
' F() b fo d"g

dismiss the s integration y no
'

—1«+1) d th t th

t'fication we set the s
=0) d rit

no further ]us i c
integran ed equal to its maximum i.e., s=
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for q
—+ ~. First we scale the coordinates: I et

k= (8/3)aq; then

s 4 s (2a/-', q)"'= 4as/Qk i r —& 4ar/gk,

so that
oO eo

F(q) ~ ————Re dr r'e ~'/4' ds
fedk k2 p p

A and 8 are given by

(35)

1 4ag The positions of the roots are shown in Fig. 6. We
Xexp (Qk) is —— —— . (29) must choose the root in the first quadrant, s"&, for the

(r'+ s')" Qk reasons given in Sec. II. Then the form factor is

For fixed r, the s integral is in the standard form for
evaluation by steepest descents as done in the last
section in Eqs. (14)—(17). However, the subsequent r
integration extends over the entire range 0&r& ~,
and it is not apparent from the form of Eq. (29) that
the variable r does not itself grow Qk or larger and
so spoil the asymptotic approximation. One way to
verify that this region of r&gk does not affect the

leading term in the asymptotic series for F (q) given by
the method of steepest descent is as follows:

We can write the s integral as

Re
4') '

exp (gk) is- ds
(r'+s')'" Qk

&
~
—(&Ip) r—

2

1

(r'+ 2 r'rr) '")
4ai/(s+ir, r, 0)-

ds, (30)

where we have used the fact that the exponent has a
strip of analyticity —ir & Ims& ir to translate the
contour as in Theorem 8 of Sec. II. The Riemann-

Lebesgue lemma implies that the integral in Eq. (30)
vanishes as k approaches inanity. For r) Qk the

exponential factor outside the integral is less than e ~.

Hence the region r&k can be ignored in comparison
with the other region to which we now turn.

The saddle point of the exponent of the s integral in

Eq. (29) occurs at sp where

1
F(q) —R—e —r'dr

k dk k'/4

where

(r'+spP) 1
Xexp (Qk) isp+i

4rsp

4ai/ (sp, r,0)) (3/i)

)I
G()

G(r) —=
d' 1

-ds (r +s ) I —~=84(ri

—1/2

Irn so

is a slowly varying function of r, and sp is given by Eqs.
(33) and (35).

In principle, we could once more resort to the method
of steepest descents to find the asymptotic form for
the remaining integral. However, in practice, the
algebra is too complicated to enable us to locate the
saddle point exactly. Therefore, we restrict ourselves to
the easier task of finding the location approximately
which suffices for our purposes.

Recalling from our discussion of Eq. (30) that the
region of large r is unimportant, we expand the exact
expression for sp and for the exponential factor in Eq.

is —(ries p)p/2 (31)

There are three roots of this equation consistent with

the branch g(s') =s for s real and positive. They are

spo&= if (A+8—)}'/P,

where the positive square root is taken;

(32)
Re s

sp "& = i (——,
' (A+8)+ip&3(A —8)—}'", (33)

where the root lying in the upper half-plane is taken;
and

g(t)
0

)/

sp"' ———if ——', (A+8) —i ',V3 (A —8)}'", -

where the root in the lower half-plane is taken.

(34) FIG. 6. The trajectories of the three roots s0 of Eq. (3i) as a
function of increasing, real r. Each trajectory starts at r =0. The
dashed lines represent Reso ——&Ims0.
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(36) for r(1.We get Using this approximation, we 6nd the only relevant
saddle point to be at

sp = —L(1+i)—4 (1—i)r'3
q'(1

and the exponential factor

i(r'+sp') 1
w (sp, r) =is()+—

Sp

(3 /)

This gives

where

rp ——4 '"e "~'"&=(0.61)—(0 16)i.

F(q) cc ——Rep(k)e"""'~p
k dk

k= (8/3)aq,

(39)

(40)

1 (1+i)
v2 (1—i)— r'.

4r 2v2
(38)

allcl

w(sp, rp) = —1.98+ (1.26)i,
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or
1 cE

F(q) ~ ——e "'~"Re(P(k)e '"26& "].
kdk

(42)

In conclusion, we may attempt to assess the value of
constructing asymptotic forms such as Eqs. (19) and
(20) for comparison with elastic electron-deuteron
scattering data. At what values of q do we arrive at
the asymptotic region, for example?

A priori we can give no answer. In practice, we look
at the data in search of clear evidence that one or
another of the asymptotic behaviors is emerging. This
is not easy to do and requires a very broad range of
accurate data. From Fig. 3 it appears that power,
exponential, and fractional exponential falloffs have
grossly different appearances. The situation is much
less clear if we remove the arbitrary restriction that the
curves go through two specific points in common and
demand instead that we construct the best fit to the
available data. The latest proton form-factor data can
be plotted over several decades of values and as is seen
in the three graphs of Fig. 7 is fully compatible with all
three asymptotic decay laws of 1/q', e ", and e t'~~.

For the deuteron, the detailed functional forms of
elaborate theoretical models have had no difficulty in
reproducing accurately the data over more than two
decades. Now for the first time the simple exponential
form e ' appears to be inadequate. The latest precision
data of Friedman, Hartmann, Kendall, and Van Spey-
broeck, when added to all earlier work on the deuteron
form factor, show positive curvature in a logarithmic
scale in Fig. 2.

Zoic added im proof. We emphasize that we have as-
sumed the deuteron is made up of point particles, so
the isoscalar nucleon charge form factor must be

E(k) can vary as some finite power of k as k —+ ~.
We have confirmed this result by using a computer

(Burroughs B5500) to plot the real and imaginary parts
of w(so, r) and then locating the saddle point. The saddle
point is at ro ——0.651—0.126i, and w(so, ro) is found to
be —1.979+1.285i, which is in good agreement with
Eq. (41).

IV. CONCLUSIONS

divided out to obtain F(q) from the experimental form
factor.

The form of Eq. (20) is free of all details of the
deuteron bound state and depends only on the nature of
the assumed repulsive core singularity as r —+0. For
it to be of any real value we must be able to demon-
strate that the function

where

lnLF(q)/sin(A„„q"~~"+'~+ p )j
qu/(u+&)

p+1 p~ 2+pq
sin~ —

~
(2ro) '"+&,

p k2 1ypi
s P+4m

and py, n—
4 1+p

(43)
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approaches a horizontal straight line for some values of
p)0, e, and ro. We expect that the length ro should be
approximately 0.3 to 0.4 F, corresponding to a re-
pulsive core that is neither too large to interfere with
low-energy deuteron parameters not too small to
prevent the data from being in the asymptotic region
of pro& 1 for q 4 to 5 F '. The normalization
constant of Eq. (20) does not appear in Eq. (43). The
polynomial power n will be important in collaboration
with the parameters ro and p in locating the nodes of
Ii at the appropriate q values for experimental agree-
ment. Thus far, there is no evidence for the oscillating
behavior of the sine factor but further extension of
observations to larger q values is needed. At present
the nodes can be avoided, successfully as apparent from
the dashed curve of Fig. 7(c). In any event, it will be
of great interest to see whether nodes appear in the
nucleon or deuteron form factor as the momentum
transfer increases.


