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The question of whether the entire hadronic electromagnetic current operator can be identical with a
linear combination of the renormalized field operators for the known neutral vector mesons p?, ¢°, and o is
investigated in the context of a Lagrangian field theory. It is found that such an identity is completely con-
sistent with gauge invariance, provided that these mesons are coupled only to conserved currents. The
general renormalization problem of the strong interactions of these vector mesons is discussed. It is shown
that the proposed identity between the hadronic electromagnetic current and the renormalized meson fields
can be related to the possible identity between the unrenormalized currents generating the neutral vector
mesons and those generating the photon; furthermore, this proposed identity leads to an exact relation
between the entire O(e?) hadronic contribution to the photon propagator and the renormalized propagators
of the neutral vector mesons, and such a relation implies, among other consequences, that to O(e?) and
neglecting leptonic contributions, the ratio of the unrenormalized charge ¢, and the renormalized charge e is
finite. Various experimental applications are given. In particular, the analysis of ¢-w mixing and their
leptonic decay rates is made independently of the approximate validity of the SU; symmetry.

I. INTRODUCTION

HAT vector mesons might play a dominant role in

the description of the electromagnetic interactions

of hadrons was first suggested by the interpretation of
the electromagnetic form factors of the nucleon.! Sub-
sequently, the idea of vector dominance has been ex-
tended to apply to all electromagnetic interactions of
hadrons.? It is evident from a study of the literature of
this subject that it is, at the least, of great heuristic
value to treat the vector mesons as elementary particles
in this context. The utility of this kind of treatment can
be substantially augmented by the inclusion of an
explicit statement of the meaning of vector dominance
(as described in dispersion theory) in the language of a
local Lagrangian field theory. The statement which we
propose for this purpose is the following: “To a very
good approximation the entire hadronic electromagnetic
current operator is identical with a linear combination
of the known neutral vector-meson fields.” The principal
purpose of this paper is to exhibit a Lagrangian field
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theory in which the approximate identification referred
to above becomes exact, and to examine its various
theoretical implications and practical consequences; in
this theory, the Maxwell equation can be written as

aFuv/axp= G(Appv‘l' >\¢¢v+ )\wwv) - e(jv) lepton » (1 1)

where

Fo=04,/0%,— 04,/ 3%,. (1.2)

4,, py, ¢y, and w, are, respectively, the field operators of
the photon, the neutral p meson, the ¢ meson and the
® meson, A,, A4, and A, are constants, e is the charge of
the electron, and (7,)iepton 1S the current operator of
the charged leptons.

The question of gauge invariance is studied in detail
in Sec. IT; it is shown that Eq. (1.1) is completely con-
sistent with the requirement of gauge invariance, pro-
vided that the currents generating the three neutral
vector-meson fields are all conserved currents.

In Secs. IIT and IV we examine the general re-
normalization problem of the strong interaction of a
single massive vector meson which can be either stable
or unstable. It is shown that if the unrenormalized cur-
rent generating such a meson is conserved, then in the
limit that the unrenormalized mass #, of the vector
meson is infinite, the renormalized meson field becomes
necessarily proportional to its unrenormalized current
operator. In addition, it can be shown that the nonzero
observed mass implies that the unrenormalized mass
mo#0, and mo must be o« if the theory is divergent.
These considerations can be readily applied to the
known neutral vector mesons. The proposed identity
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between the hadronic electromagnetic current and the
renormalized meson fields is, then, related to the possible
identity between the unrenormalized currents generat-
ing the vector mesons and those generating the photon.

Throughout the paper, the renormalizability of the
strong interactions of these neutral vector mesons is
assumed. As is well known, the interaction between a
neutral vector meson and a conserved vector current
composed only of bilinear products of spin-§ and spin-0
fields with the minimal order of derivatives can be shown
to be renormalizable in a perturbation series.

As we shall see, Eq. (1.1) implies that the isovector
part of the hadronic electromagnetic current (J,?) is
given by

<J‘47)isovect01‘= - (mp2/gp)pl“ (133')

where all symbols refer to the renormalized quantities;
m, is the observed mass of the neutral p meson, g, is the
renormalized coupling constant, etc. It will be shown
that the unrenormalized mass m,° of the neutral p meson
must be greater than 2., where m, is the observed pion
mass. If the theory is divergent, then m,° is «, and
consequently (1.3a) becomes identical with an alterna-
tive proposal® that the unrenormalized isovector part
of the hadronic electromagnetic current (J,”)? is the
same as the unrenormalized current (J,#)° which gener-
ates the p-meson field;

(J,"y) 0isovect0r= (]MP)O’

where both currents are normalized so that the spatial
integrals of their fourth components are all equal to ¢
times the z component isospin operator. The converse
statement is also true: (1.3b) becomes identical with
(1.3a), provided the unrenormalized mass m,%= .

On the other hand, these two proposals would be
different if the unrenormalized mass m,° were finite.
For example, (1.3a) implies that the isovector part of
any electromagnetic form factor F457(¢?), which can
be arbitrarily defined, for any real or virtual transition
A — Bty is related to the similarly defined form
factor Fap°(¢%) for the corresponding virtual or real
transition 4 — B-}p° at the same 4-momentum trans-
fer g,, by

(1.3b)

mp? 7 .
)
2 q2 AB (q ) )

[FAB7(q2)]isovector= (14€L)

My

where A and B can be any two hadronic systems. How-
ever, the alternative proposal (1.3b) leads to the identity

[FABy(qz):]isovector

= mP2 |-1+ qz
mpi+q 2'— (mpo) 2

3 See, e.g., J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960); M.
Gell-Mann and F. Zachariasen (Ref. 2).

]F a5#(g?), (14b)
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which becomes the same as (1.4a) only if the un-
renormalized mass m,9 becomes «. If m,% werefinite,
then the alternative proposal (1.3b) implies that

[FABy(q2>]isovector=0 at q2+(m,,°)2=0. (15)

Consequently, these two proposals (1.3a) and (1.3b)
can be distinguished by examining experimentally the
zeros of any isovector electromagnetic form factor in
the timelike ¢ region.

Similar conclusions can be obtained for the ¢ meson
and the » meson. The renormalization problem of the
actual ¢-w complex is slightly complicated because of
their decays and because of their mixing. The general
mathematical analysis is given in Sec. V and is in-
dependent of any assumption of the approximate
validity of SU;. This is based upon the fact that the
renormalized hypercharge and baryon number currents
can be defined independently of SUs. The renormalized
¢u(x) and w,(x) fields are defined in such a way that if
the ¢ and w mesons were stable, then (vac|¢,(x)|w)
= (vac|wu(x)|$)=0; i.e., the matrix elements of ¢,(x)
do not carry the w-meson pole, and those of w,(x) do
not carry the ¢-meson pole. We find it most convenient
to characterize ¢-w mixing by means of the resolution of
the currents which act as sources of these fields in terms
of the hypercharge and baryon number currents. Two
angles, which we designate by 6y and 0y, are in general
necessary to describe this resolution. The isoscalar
hadronic electromagnetic current becomes related to the
renormalized fields ¢, and v, and the angle 6y by

(]y’)isoscalarz' —%gy_l

X [(cosby)my2p,— (sinfy)m,%w,], (1.6)

where gy is the renormalized hypercharge coupling
constant.

In general, the two angles 6y and 0 are different even
to first order in the SUs symmetry-breaking interaction.
Of course, in the limit of SU3 symmetry, one must have
fy=0x=0. The actual values of 6y and 6y depend on
the nature of the SU; symmetry-breaking interactions
for which a number of models can be made. We shall
see, for example, that if one makes the ad koc assump-
tion that all SU; symmetry-breaking effects are due to
the off-diagonal matrix elements of the “bare” mass
matrix M, between ¢,° and w,% then

Oy =0x#0. 1.7

We call this model the “mass-mixing” model.# On the
other hand, one may make the opposite assumption
that the “bare” mass matrix M, is diagonal, but the

4 The “mass-mixing”” model is formally similar to the ‘“particle-
mixing” model considered by S. Coleman and H. J. Schnitzer,
Phys. Rev. 134, B863 (1964). We note that both this and the
current-mixing model are consistent with the transversality of the
vector mesons (i.e., the vector mesons are coupled to conserved
currents). See also S. L. Glashow, Phys. Rev. Letters 11, 48
(1963); J. J. Sakurai, Phys. Rev. 132, 434 (1963).
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SU3s symmetry is broken by certain current operators
terms. Such a model® is called the “current-mixing”

model; in this model 6y 8y, but
(1.8)

Within the model, this relation between 6y and 6y holds
to all orders of the SU; symmetry-breaking interaction.

If one makes the further assumption that the SU;
symmetry-breaking interaction transforms like the
isoscalar member of a SUj octet,® and equates the ob-
served masses of the nine vector mesons with the first-
order perturbation expressions, then one finds §y=233°,
6xy=221° in the ‘“‘current-mixing” model, but fy=0y
2=232° in the “mass-mixing” model (or, fy=0x=239°in a
variation of the same ‘“mass-mixing” model). The
details of these special models are given in Sec. V 3. It is
important to note that, independently of the dynamical
model, the actual values of gy, 6y, and 6 can be deter-
mined (at least, to a good approximation) by using the
known rate of ¢°— K+4-K~ and by measuring the
leptonic decay rates of ¢° — [++/~ and w® — T4~

In Sec. VI, a discussion of the photon propagator is
given. The entire O(e?) hadronic contribution to the
photon propagation is expressed explicity in terms of
the renormalized propagators of the vector mesons.
From this expression, it follows that to O(e?) and
neglecting leptonic contributions, the ratio of the un-
renormalized charge e, and the renormalized charge e
is finite. The upper limit of (e¢/€)? can be estimated,
and we find

1< (eo/€)2<14-1m, %2
X Lgo2m, 2+ 5 gv2(cos?0ymy2-+sin®0ym,2) ]1=21.03.

Various applications of the proposed identity between
the hadronic electromagnetic current and the vector-
meson fields are discussed in Sec. VII. Some of these
results have already been extensively studied in the
literature; they are included in this paper, but with
particular emphasis on the underlying assumptions and
approximations used in the derivations.

In this paper, we consider only the usual hadronic
electromagnetic current which is odd under the particle-
antiparticle conjugation operator C determined by the
strong interaction. The question whether there does, or
does not, exist an additional C= -1 part of the hadronic
electromagnetic current is not discussed.

me? tanfy=my? tanfy .

II. GAUGE INVARIANCE

To simplify our discussion we will consider first only
the isovector part of the hadronic electromagnetic
current. The corresponding part of the Maxwell equa-
tion becomes, according to Eq. (1.1),

(aFyv/axu) isovector = e)\ppv . (2 1)

®The “current-mixing” model is similar to the vector-mixing
model considered by S. Coleman and H. J. Schnitzer (Ref. 4).

¢ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Okubo,
Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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The complete Lagrangian can be written as (neglecting
the weak interaction)

L= £free+ £st+ oe'y .

In this section we assume that the free Lagrangian £¢ree
and the strong interaction Lagrangian £ are already
given, but demonstrate thatyfor arbitrary Lieet Lot a
gauge-invariant Lagrangian £, can be constructed
which will yield Eq. (2.1) as part of its dynamical
equations, provided that the neutral p-meson field is
coupled only to a conserved current.

As a consequence of the strong interaction, the neutral
p-meson field operator satisfies the dynamical equation

(2.2)

aG}tvp/axu'.mp2pr= gp]vp_l"o(e) ) (23)
where
<] <]
Guvp= TPy —Pu. (2.4:)
dx, Ox,

m, is the observed mass of p, and g, is a finite coupling
constant, depending on the normalization of the current
J#. Equation (2.3) is the “renormalized” field equation
of the meson field. The term O(e) shows that it is valid
only if one neglects the electromagnetic interaction. [ If
one wishes, one may also regard Eq. (2.3) as the
definition of g,J,.*.]
The current J,# is assumed to be conserved:

aJ,#/dx,=0;
therefore,

apv/axv= 0 (2.5)

on account of Eq. (2.3). The detailed form of J,” depends
on the strong interaction Lagrangian and the renor-
malization process which will be discussed in the next
section. Here, the discussion of gauge invariance can be
made independently of the detailed form of J,#, provided
that it is conserved. It can be readily shown that since
J,# is a conserved vector current and it transforms like
the I,=0 member of an isotriplet under the isospin rota-
tion, its spatial integral must be proportional to the
z component I, of the isospin operator. (See Appendix
A.) For convenience, we shall adopt the normalization

convention
—i/J4"d3r=Iz.

The isovector part of the hadronic electromagnetic
interaction is assumed to be given by the Lagrangian
density

(uey) isovector = e()\PgP/ml’2)
X(TwAut387' G F ) +0(e?).  (2.7)

The term O(e?) - depends on the derivatives of the
charged fields in J . It is zero, if J,# does not contain
such derivatives; otherwise, it can be easily generated,
say, by the usual minimal principle. Equation (2.7)

(2.6)
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gives a gauge invariant” Lagrangian £,. Upon varying
with respect to 4,, it gives
(anv/axn) isovector — G(Jv’y) isovector »
where
Ao

(] v‘y) isovector = —

2
<J S g,,*l——G,.,f'>+O(e) . (2.8)
my? 9x,

From Egs. (2.3) and (2.8), it follows that
(Jv’y) isovector — )\ppy 5

which is Eq. (2.1). By using the normalization condition,
Eq. (2.6), and the fact that the total hadronic charge Q
is given by
0=I+3Y,
one finds
No=—(m,*/g).
Thus,?

(Jv7) isovector=va—gﬂ_l(aGﬂvp/axﬂ) =— (mpz/gp)P# . (29)

7 Under the gauge transformation 4, — A,+0A/dx, the elec-
tromagnetic interaction Lagrangian density (2.7) plus (2.20)
(which is given below) transforms like £,— £,—eJ,.0A/dx,,
where °G7= (£7)isovecbor+ (£7)isoscnlal‘ and ]u=]nﬂ+‘12‘Yu; for
simplicity, all O(e?) terms are omitted. According to Egs. (2.6)
and (2.16), —ifJd*»=Q=1,+3Y. The difference J,’ between
the current J, and the minimal electromagnetic current opera-
tor (J.)min, which satisfies the same normalization condition
—1/ (J )mind’ =(Q, may not be zero, but it is obvious that this
difference J,’=J,—(Ju)min must satisfy [4J,'/dx,]=0 and
S J{d*>=0. An implicit assumption is made here that [9J,"/dx,]
=0 is satisfied kinematically, without the use of dynamical equa-
tions. For example, J,/ can be simply proportional to (8G,°/dx,).
Under the gauge transformation (of the second kind), the free
Lagrangian and the strong interaction Lagrangian density trans-
form like (LireetLst) — (LireetLot) +€(J ) min(0A/02,). [If one
wishes, one may also regard this as the definition of the minimal
current (Ju)min.] Correspondingly, the total Lagrangian £ = £ree
+Ls+£, transforms according to £ — £-+eJ,'(0A/dx,). The
gauge invariance of the action integral /" £d*x, and therefore also
that of the equation of motion, is consequently guaranteed. For
the p° meson, if we identify the unrenormalized current (J,)°,
which enters in Eq. (3.2) below, as the minimal z-component
isospin current, then the current J,* is defined by Eq. (3.13),
Ju#=(J»)%+(constant)dG,,»/dx,; therefore, the corresponding
difference, J,.»—(J,#)?, is J,'= (constant) 8G,*/dx,, which does
satisfy (8J,'/dx,) =01n a purely kinematical way.

It is important to note that a single direct coupling p,4, violates
gauge invariance. This can be most easily seen by observing that
such a term in the Lagrangian generates a non-gauge-invariant
contribution to the p-meson current proportional to A,. This
circumstance is associated with the fact that (9p,/dx,) =0 is not
a kinematical identity, but is derived only after using the dynami-
cal equation and the condition that (9J,/dx,)=0. This point
has often been incorrectly stated in the literature. [See, e.g.,
M. Ross and L. Stodolsky (Ref. 2) and L. Stodolsky (Ref. 2).]

The same gauge-invariant Lagrangian densities (2.7) and (2.20)
can also be cast into other different, but equivalent, forms. Some
of these alternative forms are discussed in Appendix B.

8 We emphasize that (2.7)-(2.9) are equations in renormalized
quantities. The term J, 4, may be regarded as the ‘“direct”
photon-hadron coupling while the term G.fF, is the gauge-
invariant photon-p meson mixing term discussed by Feldman and
Matthews (Ref. 2). We note that Eq. (2.9) is achieved not via
the introduction of a term of the form p,4, in the Lagrangian, but
by the assumption of a special relation between the ‘“‘direct”
source term and the mixing term. In the case of free photons, it is
the direct source term rather than the mixing term which couples
the photon to the hadrons, but nevertheless, Eq. (2.9) holds. This
would seem to resolve the issue raised by Feldman and Matthews
in their Ref. 14. A related resolution has been given by Barton
and Smith (Ref. 2, Sec. 4.3) in the context of dispersion relations,
with reference to the connection between fory and f,r¢. See case 2
of Appendix B for further discussions.
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Although we have established Eq. (2.9) only to the
zeroth order in e, the inclusion of all orders in e is
possible, but a full discussion will not be given in this
paper. Furthermore we observe that the definition of
g, has not yet been completely given as it requires a
specification of a normalization condition on p,, to be
given in Sec. ITI. For the present, however, we point out
that the combinations g,7'Gw*, g 'ps, and \,g, which
appear in Egs. (2.7) and (2.9) are all independent of this
specification.

For any real or virtual photon process 4 — B, the
isovector part of the matrix element of J, is then
related to the matrix element of J,* for the correspond-
ing virtual or real process 4 — B-+p° provided the
4-momentum ¢ of v is the same as that of p° By using
Egs. (2.3), (2.5), and (2.9), we find

(B Ju*(x)] A)iswem,=-———m" (B| T (x)|4), (2.10)
q2+ 2

mp

where 4 and B can be any single- or multiple-particle
states of the hadrons. Sometimes, it is convenient to
express the matrix elements of J,” and J,# in terms of a
sum of form factors:

(Bl () [A)y=2 Fap"(g)us'T'us explipr) ,
and (2.11)
(Bl ()| 4)=2 Fap*(q)us'T'us exp(ipn) ,

where upT,'u4 denotes the appropriate choice of some
spin-momentum functions. If 4 and B are, say, single
nucleon states, then T',? can be either the usual vy, or
v40,q and %4, up the corresponding spinor functions.
If A and B are multiparticle states, then #5'T' %4 would
depend not only on the spin-momentum variables but
also on all other dynamical parameters that characterize
the states 4 and B. The definitions of the form factors
F457(¢%) and F 45°(¢?), of course, depend on the explicit
forms of up'T,us and therefore also on the index 4.
Equation (2.10) states that for whatever choice of such
definitions, the form factor F45°(g?) is related to the
corresponding isovector part of F457(¢% at the same ¢*
by Eq. (1.4a):

m 2
[FAB'Y(qz)]isovector="'—L_FABP(qz) . (1 43')
q2+mp2

Thus, compared to F4z°(¢%), the electromagnetic form
factor [F4p7(g?) Jisovector always vanishes more rapidly®
at [¢?|=o.

Identical considerations can be applied to the isoscalar
part. Let the dynamical equation of the ¢ and w mesons
be given by

aGur¢/axu_m¢2¢r= gvd, )

9 This property can be related to the Barton and Smith “bound-
ary condition” [Ref. 2, Eq. (4.14)].
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and

G w°/ 9%, — mtw,= J,°, (2.12)

where ¢, and w, are, respectively, the “renormalized”
field operators of the ¢ meson and the w meson, 4
and m,, are the observed masses,

(i} 9
G;u¢ = ~———¢l’_—¢# )
dx, axy
and (2.13)
d d
Gl =—w,———w,.
ox,  Ox,

Both currents g,?and g,* are assumed to be conserved:
49,4/ 9%,= 0 g,/ %,=0. (2.14)

Consequently, as will also be proved in Appendix A, the
hypercharge ¥ and the baryon number N must be linear
functions of the spatial integrals of g4 and g4. With-
out any loss of generality, we may express this linear
relationship in terms of four real constants gy, gw,
By, and GN:

gyV= —-i/[cosﬁy54¢—sin0yg4‘"]d3r,
(2.15)

and

gvN=—1 _/ [sinfy g+ cosly ga*Jd%r .

It is convenient to define two conserved currents ¥,
and N, which satisfy the normalization conditions

—i/Y4d3r= v, (2.16)
and
—i/N4d37=N; (2.17)
these two currents are related to g% and g, by
gr¥ = cosfy §,0—sinfy g,*
and (2.18)

gvN ,=sinfy 9,2+ cosfy 9,.¢.
The inverse relations are
gu2=[cos(by—0x) T '[cosOngy¥ ,+sinfygyN ]
and (2.19)
Iu®=_Lcos(fy— O0x) ][ —sinfngy¥ ,+cosbygnN,].

It is important to note that the above definitions of gy,
gw, Oy, and Oy depend only on the conservation of ¥V
and N, and are independent of any assumption concern-
ing the approximate validity of SU; symmetry. The
constants gy and gy are the renormalized coupling
constants, and the angles 6y and @y relate the currents
grY, and gyN, to ¢, and g, In general, these two
angles are different, 6y £ 6y, even to the first order in the
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SUs symmetry-breaking interaction. Estimations of the
actual values of fy and 6y can be made by making
specific dynamical assumptions; these discussions will
be given in Sec. V.

In order to identify the isoscalar part, (J,")isoscalar, Of
the hadronic electromagnetic current with a linear sum
of the renormalized field operators ¢, and w,, we assume
that the corresponding isoscalar part of the electromag-
netic interaction is given by the following Lagrangian
density:

(se‘y) isoscalar™ — %e{]MYA u+%gY_1
X [cosbyG ¢ —sinfyG 2 IF .} .

As a consequence, the isoscalar part of the electromag-
netic field is given by

(aFW'/ax“) isoscalar — E(Jv‘y)isoscalar;
where (J,")isoscalar 1S given by Eq. (1.6).

(2.20)

(2.21)

For any real or virtual photon process 4 — B+, the
isoscalar part of the matrix element of J,7 is then related
to the matrix elements of g,? and g, for the correspond-
ing virtual or real processes 4 — B+¢° and 4 — B+w°
at the same 4-momentum transfer. By using Eq. (1.6),
we find

<B ] J;ﬂ I 4 )isoscalar

2
= %gy‘ll:c050y< e >(B | gu?]4)
q2+m¢2

M2
- sin0y(
q2+mm2

) gel) |- )

The matrix elements of §,¢ and g, are, in turn, related
to those of ¥, and N, through Eq. (2.19). We have,
then, the following alternative expression:

2<B I ]#'y [ A4 )isoscalar

¢2
= Cy » N »
(o FerBITI A EOuBIN, 47
M
(S =GB P =B, 4],
q2+mw2
(2.23)
where
Cy={[cos(fy—0x) 1 cosby costy,
and (2.24)

Cn=_[gv cos(0y—0x) T 'gn cosby sinfy.
Equation (2.23) shows that at ¢2=0,
(B 7| AYisoscatar=5(B| ¥ ,u| 4).
III. RENORMALIZATION OF THE NEUTRAL
¢ MESON

In this section, we will discuss the renormalization
problem of the siromg interaction of the neutral p
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meson, but only in the absence of the electromagnetic
interaction.

Let us assume that the part of the Lagrangian density
describing the neutral p meson and its strong interaction
is given by

Lo=— %(GMVO)Z_ %(mpopuo)z'_' gpopuo(]np)o ) (3 . 1)
where the superscript 0 denotes the unrenormalized
quantities; thus, p,° is the unrenormalized meson-field
operator

0

Guvo = —_—on - —‘pMO )
Xy dax,

m,° is its unrenormalized mass, (J,*)° is the unrenor-
malized current and g,° is the unrenormalized coupling
constant. The equation of motion is given by

aGuvo/axu'— ('mpo) %p,0= gpo(va)O .

In Eq. (3.1), we assume for simplicity that (J,#)°
does not depend on p,°; otherwise, Eq. (3.1) has to be
modified so that the equation of motion [Eq. (3.2)]
remains valid.

The current operator (J,°)° transforms like the z com-
ponent of an isospin triplet, and it is assumed to be
conserved; i.e.,

(3.2)

(J,#)%/dx,=0. (3.3)

Therefore, according to the general theorem established
in Appendix A, the integral f « 4P)°d3r is proportional
to the observed z-component isospin operator I,, and
we may, without any loss of generality, choose

f (Ja#)'d%r=il,. (3.4)

Since the normalization of p,° is fixed by the Lagran-

gian density (3.1) and the canonical rules, condition

(3.4) defines the unrenormalized coupling constant g,°.
To obtain renormalized equations we first set

pu0=2"%, 3.5)

where Z is a wave-function renormalization constant.
The Lagrangian density £, given by Eq. (3.1) may be
written in terms of p, in the form

eep = £free+ Lt ) (3 -6)
where
eefree: ._l(G’wp)Z__ %mp2pﬂ2 ) (3'7)
Lov=—1(Z—1)(Gw")*—35[(m,0)2Z—m,*]p,?
- gpozllz(]vp)opv ) (3*8)

and m, is the observed mass of the p meson. The above
expression of £, is convenient for a perturbation series
expansion in terms of £, since the free Lagrangian is
constructed so that it would have the correct energy
spectrum if the neutral p meson were stable.
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The equation of motion of the renormalized field p,
is given by

3G,
— mp2py= Z“‘1/2gPOZO(Jyﬂ)O
0x,
3G,y
+(1—Z2y) =gJr, (3.9)
X,
with
Zo= (m,/m,°)?, (3.10)
and
gp
g Z'? 8o axu

The renormalized current J,* is the same current as
that used in Eq. (2.3). Its normalization condition
[Eq. (2.6)] fixes the relation between g, and Z; the rela-
tion being

Zog,0= 212, (3.11)
Hence,
y 100 G, 1GL°
b e (3.12)
g% Zog' & Zo &°
and
1 0G,
Jr=)4+1—Zo)— (3.13)

8o 0%y

It follows from Egs. (3.12) and (3.13) that the ratios
0v/g and G,,/g,, and the renormalized current density
J,» are independent of Z as expected. The factor Z is, of
course, of utility principally in connection with diverg-
ence difficulties and is introduced in order to make it
possible to express the theory in terms of finite quantities.
Apart from this requirement it can be chosen for con-
venience and has no physical consequences. Some
convenient choices will be discussed later.

By using Eqgs. (3.9), (3.10), and (3.13), one finds the
important relation

9GP

M2
(va)o:: ( >Pv+gp ( > .
8o mY  Ox,

While the precise value of m,° depends on the form
(J,#)° assumed in the particular strong-interaction
theory, it can be shown that [see Eq. (4.7) in the next
section | #,9> 2m., and that

(3.14)

(3.15)

if the theory is divergent. Consequently, the right-hand
side of Eq. (3.14) contains only finite quantities. In
particular, if the theory is divergent, then #,°= «, and

(J#)0=—(m,%/g,)py. (3.16)

In this case, the unrenormalized current (J,#)? becomes
proportional to the renormalized field operator p,. The
renormalized current J,* is, of course, different from the
field operator p,.

m0= o,



1382 KROLL, LEE,

The proportionality between the unrenormalized
current operator and the renormalized field operator is
a general consequence of a vector field interacting with a
conserved current, provided that the unrenormalized
mass= c. If the unrenormalized mass were finite, then
one would have Eq. (3.14) instead of Eq. (3.16).

Next, we discuss the relation between the electro-
magnetic current J,” and the unrenormalized current
(J,#)° of the p meson. If we assume Eq. (1.3a),

(Jv’y)isovector= - (mFZ/gﬂ)pH (138.)
then, by using Eq. (3.14), we find
(I isoveotor= (J,#)°— g, (m,/m,0)? (3G w*/ 9x,) ,  (3.17)

which implies that in the case of an infinite unrenor-
malized mass m,?

(Jv‘y)isovector= (va)o- (318)

Since we do not consider the renormalization problem
of the electromagnetic interaction, there is no difference
between J,” and the unrenormalized electromagnetic
current operator (J,7)°.

There exists an alternative possibility in which one
assumes that, instead of (1.3a),

(JV’Y)Oisovectorz (va)o y (1‘3b)

and therefore, neglecting higher-order electromagnetic
corrections,

m,? mp\? 0GP
(]v‘y) isovector = <—_)Pp+gp_l<_—> . (319)
8o m,° 0xy
In the case of m,°= o, one has
(]v’y)isovector= ('—'mp2/gp)p“. (320)

It has already been mentioned in the introduction
that these two views become identical if m,°= o ; but
if the unrenormalized mass #,° turns out to be finite,
then the proposal (1.3a) implies the form-factor relations
given by Eq. (1.4a) while the proposal (1.3b) implies
the alternative form-factor relation given by° Eq. (1.4b).

IV. THE ¢-MESON PROPAGATOR

Let us consider the usual spectral representation of
the vacuum expectation value of the commutator
[pu(%),0,(0)] in the Heisenberg representation:

(Lou(@),(0) J)vacuum
= / Up(d)l:‘sm—a—l—i]Aa(x)da, (4.1)

9x,0%,
where

Ag(x)=—i(2r)~? / w™! sinwt exp(iq- r)d®q,

10 Equation (1.4b) may be compared with Eq. (4.7) of the paper
by Gell-Mann and Zachariasen (Ref. 2).
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and
w=(q2+a)1/2.

The function ¢,(a) is related to the matrix elements of
the spatial components of p, by

o,(a)=3% Zrl 8(a—mr?)|(T|(0)| vac)|?20, (4.2)

where the sum extends over all eigenstates |T') of the
strong interaction Hamiltonian that satisfy

(momentum)r=0, (energy)r=mr,

and (spin)r=1, (4.3)

and the factor § is due to the further sum over all
three components of o(0). Throughout the paper, all
boldface letters denote 3-vectors.

By using the Lagrangian given by Eq. (3.6), one finds
that the components of the canonical momentum
II(x) of the field variable p(x) are given by

;=—1ZGjs.
From the equation of motion, II is also related to ps by
ps=m,[i(Zo/Z)V - TI—g,(J #)°]. (4.4)

The comparison between the spectral representation
[Eg. (4.1)] and the equal-time commutator between
IT and g leads to the sum rule!!

Z 1= /a,,(a)da . (4.5)

Similarly, by using the equal-time commutator between
ps and g, and assuming that (J4)° commutes with o
at equal time, one finds

Z7Hm,) 2= (Zo/ Z)my2= / alo,(a)da, (4.6)

where Z, is given by Eq. (3.10). For the physical p
meson, the integrations in (4.5) and (4.6) extend from
4m,® to o, where m, is the observed pion mass. By
taking the ratio of (4.5) and (4.6), one obtains

0

(m,,°)2=[ L mfza‘lap(a)daIl ﬁ : op(a)da. (47)

Since 0,20, Eqgs. (4.7), (4.5), and (4.6) imply,
respectively,
(m,0)*>4m.*,
Z71>0, and (Zo/Z)>0.

In order that the theory be renormalizable [i.e., that
the renormalized propagator given by Eq. (4.10) below
exists ], the behavior of o,(@) as @ — must be such that

11 Equations (4.5) and (4.6), together with Eq. (3.5), are the
same as Eqs. (12) and (11), respectively, of K. Johnson, Nucl.
Phys. 25, 435 (1961).
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J o l5,(a)da is convergent. Thus, (Z,/Z) must be finite.
On the other hand, the integral S o,(e¢)da need not be
convergent. If it in fact diverges, then both Z—! and
the unrenormalized mass ,° must be infinite. Con-
sequently we establish (3.15).

Combining Egs. (4.5) and (4.6) we find

1-—Z0=Z/a—1(a——mp"’)ap(a)da. (4.8)

For the hypothetical case of a stable p meson (i.e., if m,
were less than 2m,), Eq. (4.8) implies the inequality
0=Z,=1, and hence (m,%)?=m,2 on account of
Eqg. (3.10).

The renormalized p-meson propagator

D)= —i(2m)* f Du(g) explignn)d'q  (4.9)

is given in terms of o,(a) through the relation

uv+ nqv
DMV(Q) / —*‘—‘ﬂd‘;(d)dd ’

a—-ze

(4.10)

where e is a positive infinitesimal quantity, g, denotes
the 4-momentum (q,igo) and ¢*=q*—gy*. Using 4.6),
(4.1), and (4.2), one easily sees that D,,(x) is related
to the time-ordered product of the renormalized fields
via

D () = { TLpu(%)p+(0) 1} vacuum

—im,; 2o/ Z)04(%)Bsubsy.  (4.11)

In our notation, both d% and 6*(x) are real. The last
term in Eq. (4.11) cancels the noncovariant part in
{T[p,,(x)p,(O)]}vamum The appearance of this non-
covariant term is due to the fact that the commutator
[pu(x),p,(0)] does not vanish for x,=0.

Because the p meson is an unstable particle, it is con-
venient to define the renormalized mass m, in terms of
the inverse propagator. Writing

Dyu(q) = 8,F (¢*)+9u0,G(q%) , (4.12)
and noting the relation
F4+q°G=(Zo/ Z)ym;*, 4.13)

which follows from Egs. (4.10) and (4.6), we obtain
D) =[F (@ T [ow—qugZo Zm,’G(g®)]. (4.14)

The renormalized mass is then defined as that value of
—g? at which the real part of the §,, term of the inverse
propagator vanishes; i.e., by the equation

Re[1/F(—m,?)]=0. (4.15)

For the physical p meson, [F(—m,2) 1! is pure imagin-
ary; the same must also hold for F(—m,?), and we find

® 1
ReF(——m,,Z)=/ o',,(a)(P[ ]da=0,
4my? a—m,?
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where ® denotes the principal value. If, as is usually
assumed, the imaginary part of (1/F) as well as the
derivative of the real part can be regarded as constant
within the resonance width, then the width is given by
the formula

=[Zro(m,?) 12, (4.16)

where we have written Z/Z; for the derivative of the

real part. Thus
Z d 1
L]
Zy Ldg¢? F/ g,

The definitions of ,? and v given by Egs. (4.15) and

(4.16) correspond to those given by a pole approxima-
tion for F in the resonance region of the form

F(g)=(Z1/ Z)(g*+m,— iym,) 1.

In the hypothetical case of a stable p meson, the re-
normalized mass may still be determined by Eq. (4.15),
while the derivative designated in Eq. (4.17) deter-
mines the matrix element of the renormalized field p,
between the vacuum state and the state of a p meson
at rest; thus,

(vac|(0) | p)= (2m,)*1*(Z,/ 2)"'%s,

where s is the polarization vector (s?=1). The spectral
function ¢,(a) contains a delta function of the form
(Z1/Z)8(a—m,?) so that Eq. (4.6) implies

(4.17)

(4.18)

(4.19)

0

Zy Z
=—+tm,*— / a'o,(a)da, (4.20)
Zy ZoJo

where b is the lower limit of the continuous spectrum
in this hypothetical case. Hence one concludes

0<Z1/Zo< 1. (4.21)

So far, except for the requirement that the renor-
malized p-meson propagator D,(q) should be free
from divergence difficulties, the choice of the wave-
function renormalization constant Z is completely
arbitrary. It is clear that different choices of Z can differ
from each other only by a finite positive multiplicative
factor, and such different choices all lead to exactly
the same physical result. On account of Eq. (4.19), the
conventional choice for the renormalization constant is
Z=2Z,;. On the other hand, the fact that the p meson is
unstable makes this choice less compelling, and we note
that the choice Z=Z, simplifies a number of formulas.
For the remainder of this section and in the applica-
tions of Sec. VII, we shall use the convention

Z=Zy=(m,/m,")?, (4.22)

and therefore

Pu(x) = (mpo/mp)pﬂo(x) . (4-23)
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With this convention, it follows from Eq. (3.11) that

&= (m,/m,*)g,°, (4.24)
and from Eqgs. (4.12) and (4.13) that
F(O)=mp—2;
and (4.25)

D,(q=0)=1m,"25,,.

The width v can also be explicitly expressed in terms
of the transition matrix elements. Let us define a
modified current operator J,#(x) whose matrix element
between any two eigenstates 4 and B of the strong
interaction Hamiltonian is given by!2

(B[j,/’(x) | A>= - [ngﬂv(Q)]——l<Bva(x) |A> ’ (426)

where ¢, is the difference between the 4-momenta of
the states 4 and B. This modified current operator
J.#(x) does not satisfy either the usual Hermiticity
condition or the locality condition. Nevertheless,
since the integrated operator [ psd® is, according
to Egs. (34) and (3.14), —i(g,/m,})I., one has, by
using Egs. (4.25) and (4.26),

/ Jeddr=il,.

The modified current operator J,#(x) is useful since
the matrix elements of J,°(x) must, by definition
[Eq. (3.9)], satisfy

(B|Jp(x)|A)=0 at g¢*+m,2=0, (4.28)

while those of J,» do not. By using Eqs. (4.2), (4.16),
(4.18), and (4.26), we find that the partial decay width
of the p® meson to the final channel I' is given by

rate(p® — T)=23mg,(Z1/ Zo) | (T'| 3(0) | vac) | *(2m,) !
X (density of states)r, (4.29)

(4.27)

where J¢ denotes the spatial component of J,#(x). The
total width v is

vy=2 rate(o"—T),

where the sum extends over all different channels T
The factor (Zi/Zy) is due to our choice [Eq. (4.22)] of
the wave-function renormalization.

Equation (4.29) can be readily used for calculating
the various decay rates of the neutral p meson. These
applications will be discussed in Sec. VIIL. It is clear
that all above discussions can be applied to any vector
meson provided its current is conserved. The detailed
treatment of the ¢-w mixing problem will be given in
the following section.

12 For single-particle states 4 and B, (B]j |4) is, of course,
related to the conventional vertex operator I'u(ps,pa) via the
formula .

(B|J (%) | 4)=up'Tu(pp,pa)ua exp(igrr),

where pp, p4 denote, respectively, the 4-momenta of the states B
and 4, and ¢=pp—pa.
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V. RENORMALIZATION OF THE o AND ¢
MESONS AND THE MIXING PROBLEM

1. Renormalized Equations

Although the renormalization problem of the w-¢
complex is complicated by the possible mixing (i.e.,
virtual transition we=>¢) between these two fields, it
can nevertheless be carried out in a manner which
parallels our treatment of the p meson. Let ¢,(x) and
w,(x) denote the renormalized fields, and ¢,%(x), w,%(x)
the corresponding unrenormalized fields. We write

Yulx)= C::z;) (5.1)
" B >—<¢”o(x) ) (5.2
S e/ '

The part of the Lagrangian density describing the ¢,
w mesons and their strong interactions can always be
written, in analogy to Eq. (3.1) for the p-meson
problem, as

£¢——w= - % NWOKOQ/.WO_ %J;#OMO?#/#O— ‘Z”Ogojno ) (5 3)
where
I¢] d
.__¢y0 — _qs”()
0x, ox,
glﬂ‘o = b
l¢] d
—w, 09— —w,0
ox, dx,
and
v,e
Jb= ( ) ) (5.4)
N,

which denotes the unrenormalized current operators;
2o 1s a (2X2) real matrix, Ko, M,? are both (2X2) real
symmetric positive-definite matrices, and ~ (the tilde)
denotes transposition. The currents V,® and N, are
conserved; they satisfy

—1 / (Y 0)d% =hypercharge=Y

and (5.5)

— i/(N4°)d3r= baryon number=%,

and will be referred to as the unrenormalized hyper-
charge current and baryon number current.

There is a certain arbitrariness in the matrices Ko,
M ¢?, and go so long as the normalization and orientation
(in the internal space) of the fields ¢,° is not specified.
That is, by linearly transforming the fields,

‘I/uo = A‘l/ul s

where A is an arbitrary nonsingular real matrix, and

(5.6)



157
defining
9“,,'=A"19,,,,° )
K/=AKA,
M?2=AM 24, 5.7)
g0,=gg0 )

the Lagrangian density (5.3) becomes
£¢—w= _% ~#”,K0,9#V,— %‘ZMIMO”‘pMI'—‘ZMIgOIJ#O-

One may therefore specify the normalization and
orientation by imposing certain restrictions on the forms
of Ko, M¢? and go. The conventional specification is
the “canonical form,” defined by requiring that K, be
the unit matrix and M? be diagonal. It will, however,
prove to be more convenient in connection with SU;
considerations to use what we will refer to as the
“aligned form.” The aligned form is defined by requiring

go to be diagonal,
g =
0 0 gNU y

and the diagonal elements of K, to be unity,

1 «
we(, 1)
« 1
where « is a constant which may, or may not, be zero.
Both the canonical and aligned forms are always
possible and specify the normalization and orientation
of ¥,0 completely. We will for the present, however,
leave the choice unspecified.
As in the case of the p meson, we assume that J,°
does not depend upon ¢,°. The equation of motion im-
plied by Eq. (5.3) is then

Ko(8/0%) Gu'— M o0 = goJ,°.

By setting go=0 in (5.10), one easily sees that the
squares of the mechanical (i.e., unrenormalized) masses
of the ¢ and w are the eigenvalues of the matrix M meen?,

(5.8)

(5.9)

(5.10)

M=K 12M K 12, (5.11)
Under the transformation (5.7), we have
MmechlzzKO/—1/2M0/2K0/—1/2
— (Kol/2AKof—l/z)—1Mmech2(Koll2AKol—-1/2) , (5‘12)

which is a similarity transformation. Hence, as expected,
the unrenormalized masses are unaffected by the
transformation.

To obtain renormalized equations we set

¢“0=SI//”, (5-13>

where the matrix .S corresponds to the renormalization
factor Z1/2 introduced by Eq. (3.5) for the p meson. We
may call S the renormalization matrix. Similarly to
Eqgs. (3.6) to (3.8), the Lagrangian density £4—, given
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by Eq. (5.3) may be rewrittea in terms of ¢, in the form

£¢—w = £¢—w free+ £¢—w sty (5 14)
where

oeda—w free™— _%gnvguv—% MnM2¢# 3
£¢——w st= — i‘guv(SKOS_ 1) 9,w
—Hu(SM 2S— M2, —,Sgo] 0, (5.16)

e <m¢2 0 )
- 0 Mo ’

Guw=3571G,,° and m,? m.,? are the observed masses of
the designated mesons.

The equation of motion of the renormalized field ¢,
can, in analogy to (3.9), be written as

G

ox,

(5.15)

(5.17)

—M,= (MZS_1M0“2g0)Jy°

9Gu
+(1—=M25"M 2K ,S)—
ax,

=9=¢/, (5.18)

where g, and J, are related to the currents g,%, g,%, V,,
and N, introduced in Sec. II by

Il¢ Yl’
g,,=<5 ), and J,=< >
9 N,

We recall that ¥, and N, satisfy the normalization
Eqgs. (2.16) and (2.17) and they represent, respectively,
the renormalized hypercharge current and the re-
normalized baryon-number current. The matrix g is,
according to Eq. (2.15),

g=T""¢gp, (5.19)

where T" and gp are, respectively, related to the angles
0y, 6y and the renormalized coupling constants gy,

g by .
cosfy —sinfy
T=< ) , (5.20)
sinfy cosfy
and
gr 0 3
gp= ( . (0.21)
0 N
Similarly to Egs. (3.11) to (3.13), we have
Mg 2go=SM?g. (5.22)
Hence
M= gi MW, =g MY, , (5.23)
§M2G=gi M *Gw'= go" M "* G, '
and
69 v — 89 v
Jy= 0 g M e M= | (5.24)
0%, 0x,
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where

-Z‘_Z'meclzt-_2 = (K0~1/2g0)m1Mmech_2(K0~1/2gO)

= (Ko””2go')‘leech'—2(Ko'_1/2go') . (5'25)

The matrix M e~ ? is not necessarily symmetric, but
it differs from M necn~? only by a similarity transforma-
tion and hence has the same eigenvalues. Equations
(5.23) and (5.25) show that g M%), g M?G., and
M meen? are independent of the choice of the renormaliza-
tion matrix S and also of the normalization and orienta-
tion conditions imposed on the unrenormalized fields.
We shall refer to this property as normalization-
orientation invariance. The current J, is, because of the
presence of the term g1(8G./0%,), normalization-
orientation invariant only for the hypothetical case of
degenerate M 2. This is to be expected, since application
of a linear transformation to both sides of Eq. (5.18) in
general does not leave M? diagonal.

The isoscalar electromagnetic current is given by
Eq. (1.6), which can also be written as

(]p‘y) isoscalar™ % (g_ 1M2'//u) 1,

and is therefore normalization-orientation invariant.
The notation ( ); means the upper component of the
enclosed column matrix.

Equations (5.18) and (5.22) imply that, in analogy
to Eq. (3.14) for the p-meson case

]y0= —g—le‘pv‘I'Mmech—zg_le(a guv/axﬂ) » (527)

For a divergent theory, the mechanical (i.e., unrenor-
malized) masses of the ¢ and w fields are infinite, and
hence M mean—? vanishes. Comparison with (5.26) and
(5.27) then shows

(]f’) isoscalar — %(]v0)1= %YVO )

(5.26)

(5.28)

which plays the same role as Eq. (3.18) for the isovector
current. Hence the alternative identifications of the
isoscalar electromagnetic current with the wumrenor-
malized hypercharge current on the one hand, and the
renormalized ¢-w fields on the other become identical
hypotheses for a divergent theory.

2. The ¢-w Propagator and Normalization-Orientation
Conditions for the Renormalized Fields

Let us consider the spectral representation of the
vacuum expectation value of the commutator
[¥.0(x), ¥,°(0)] in the Heisenberg representation:

([‘pno(x);&vo(o)])vacuum
FY
= / a¢w°(a)[5"y—a‘l————]Aa(x)da. (5.29)

X,0%,

The function A.(x) has already been used in Eq. (4.1),
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and 04.%a) is a (2X2) Hermitian matrix given by
aga’(@)=% X 8(a—mr?)(vac|{(0)| T)
T

X(T[4(0) [ vac),

where the boldface letters denote the space components
and the sum extends over all =0 eigenstates |T') of
the strong interaction Hamiltonian which satisfy
Eq. (4.3). From time-reversal invariance, or CPT in-
variance, it follows that ¢4.%(a) is also a real matrix.
Similarly to the derivation of Egs. (4.5) and (4.6), one
can show that the following two sum rules hold for the
unrenormalized spectral function ¢4.,%(@):

(5.30)

/ v (a)da=K i, (5.31)

and

/a‘la¢w°(a)da=Mo“2. (5.32)

For the realistic case of unstable ¢ meson and w meson,
both integrations extend from 9m.,? to . It follows
from these two sum rules that the squares of the un-
renormalized masses (m,°)2 and (m,°)? (i.e., the eigen-
values of M meen?) satisfy

(m”)*>9m,> and (m,%)*>9Im,2.  (5.33)
The above inequalities can be most easily established
by choosing the canonical form Ko=1 and M ¢?*=M meen®
diagonal.

We now discuss the question of a convenient specifica-
tion of normalization and orientation conditions for the
renormalized fields. It is sometimes convenient to
specify normalization and orientation separately. We
note that the renormalization matrix .S is a real non-
singular matrix and that any arbitrary real non-
singular matrix can always be uniquely decomposed in
the form

S=Ts 'R, (5.34)
where the matrix R is diagonal and positive,
R, O
R=< ) (5.35)
0 R,
and
cosa;  —sinay
Ts= < > s (5.36)
sinag cosay

with ay, o real. We shall refer to R as the normalization
matrix and Tg as the orlentation matrix of S. As an
application of the above separation, we note that the
renormalized current J,(x), defined by Eq. (5.18), is
independent of the choice of the normalization matrix
R. This can be verified by using Eq. (5.24) and noting



157

that the only normalization-orientation noninvariant

term in the right-hand side of (5.24) is
£ (0Gw/ 0%,) = g M *SM 251 (8Gw"/ 9%, ,

which is independent of the normalization matrix R
since M2 is diagonal by definition.

In the hypothetical case of a stable ¢ and » meson,
a convenient orientation may be defined by the
requirement

(vac|,|w)=(vac|w,|$)=0, (5.37)

where |¢) and |w) are the ‘“physical” ¢-meson and
w-meson states in the hypothetical case. Thus, the
angles ;1 and a» in the orientation matrix T'g are given
by

tana; = (vac|$,’|w)/{vac|w|w},

(5.38)

and

tanay= — (vac|w,0| @)/ {(vac|p.L|d);

Equation (5.37) and the equation of motion (5.18) then
imply
(vac|J,|¢)=(vac|Ju|w)=0, (5:39)

and, therefore, the matrix elements (4|J,(0)|B) are
free of poles at ¢?=(ps—pp)?=—my? or —m,? for
arbitrary hadronic states 4 and B. The converse is
also true; i.e., the requirement that (4|J,(0)|B) be
free of ¢-w poles implies Eq. (5.39) and, consequently,
Eq. (5.37). The normalization matrix R can be fixed
by specifying values for (vac|¢|¢) and (vac|w|w), the
conventional choice, analogous to Z=Z; in Eq. (4.19),
being

(2my)1%s- (vac| ¢ |p)y= (2m.)'/%s- (vac|o|w)=1, (5.40)

where |¢) and |w) refer to the ¢-meson and w-meson
states in their respective rest systems and s is the
polarization vector (s?=1).

Next, we turn to the realistic case of unstable ¢
and w; it is convenient to discuss the normalization and
orientation conventions with reference to the pro-
pagator. The unrenormalized propagator D,°%(g) is
related to 4,%(@), defined in Eq. (5.30), by

Suwta7qug
D= / Ml ry os.0(a)da. (5.41)
¢*+a—ie
Its inverse can be written as
(D) =M+ (q26nv—' QuQV) Ho(qz) , (542)

where IIy(¢g2) is a (2)X2) matrix related to o4.%(a) by

o o5 (a)daT!
(g )"[/ q"’-l—a—ie]
74.°(a)

x[ / mda]mz, (5.43)
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which, in view of Eq. (5.32), is also equal to

Ho(q2)=q‘2{[ / %TLM&}. (5.44)

From (5.43), we find that II,(¢?) at ¢?=01is given by
Ho(O) = Mo—2/0_20¢wo(d)da M02 ’

and from (5.44) it follows that ITy(g?), like 04.,%(a), is a
symmetric matrix.

The observed masses of the ¢ and w mesons are
determined by the two roots ¢?=—my? and ¢*= —m,*?
of the equation

det | M2+¢? Rello(g?) | =0,

where Rello(¢%) denotes the real part of IIo(g?).

At ¢*=—m,? and ¢*=—m,? the vanishing of the
determinant requires that the matrix M*4-¢*I14(g?)
must be, respectively, of the forms

M 2—m,? ReIIo(—'mwz) = Nwzu(w)ﬁ(w) ’

(5.45)

(5.46)
M02— M¢2 ReHo(—m¢2) = —N¢2M(¢)ﬁ(¢) ’

where N, and N, are real numbers, and #(w) and %(¢)
are two real column [i.e., (2)X1)] matrices, both
normalized to unity,

f(w)u(w)=a(o)uld)=1. (5.47)

The difference in signs in the two equations in (5.46)
corresponds to the assertion that the diagonal elements
of the left-hand sides of these two equations are,
respectively, nonnegative and nonpositive. This is rigor-
ously true in the case of the pole approximation (which
will be discussed in detail later), since (¢>+my%)>0 at
¢?=—m,? but (¢*+m.»)<0 at ¢*=—my2 We regard
these sign assignments as highly probable in the actual
case. The treatment which follows can obviously be
tailored to fit whatever signs actually occur.

A general orientation convention [that reduces to
Eq. (5.37) in the hypothetical case of stable ¢ and w
mesons | can be obtained by choosing the orientation
matrix T, defined by Egs. (5.34) and (5.36), as

’141((.0) u2(w)
T~ wiw)’
wi($) ()
where #1(4), u2(2) are the two matrix elements of the
(2X1) matrix #(7), and i=¢ or w.

Let ©,,7(¢) be the inverse of the renormalized pro-
pagator, related to the inverse of the unrenormalized
propagator by

D)= S[Dw(@) TS, (5.49)
By using Egs. (5.46) to (5.48), we find that, at the two

and

(5.48)
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roots 2= —m,? and ¢®= —m,? of Eq. (5.45),

RN 2
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——(g*+my?) 0

2

SCM 4¢* Rello(g9) 1S =

me“—m

(5.50)
Rw21V¢2

0 ——(¢*+m.?)

me2—m,?

Correspondingly, the real part of the renormalized propagator becomes

R¢21Vw2

____(q2+m¢2) 0

M2 —m,?
Re[ 9,7 (g) 1=

at the two roots ¢*= —m,?and —m.? where - - - denotes
the part of D, ! that is proportional to g¢.g. [In
the hypothetical case of the stable ¢ and w mesons,
Eq. (5.51) implies that, independently of the constants
N4y and N, the orientation condition, Eq. (5.37),
is satisfied.]

So far as the renormalization problem is concerned,
the only requirement on the renormalization matrix .S
is that the renormalized propagator

Dpw(q)=572D,,%()S* (5.52)

should be free from divergence difficulties. Thus, just
as for the renormalization constant Z in the p-meson
case, Ry, or R, is determined only up to an arbitrary
finite multiplicative factor; all different choices of such
finite multiplicative factors clearly lead to the same
physical results. As we shall see below, a particularly
convenient choice of Ry and R, is to set simply

RAN=RAN2=(md—m2);  (5.53)

consequently, Eq. (5.51) becomes
q2+m¢2 0

repou@=( "

>6uv+' s, (5.54)

at the two roots ¢g*= —my? and —m,%

For practical applications, it is reasonable to as-
sume that in the resonance region from ¢*==—m.,? to
¢*=~—my,? the propagator is dominated by the two
poles; i.e., only these two-pole contributions are in-
cluded in D,(¢). [With this approximation the nor-
malization choice (5.53) becomes, for the hypothetical
case of stable ¢-w mesons, the same as the normalization
condition given by Eq. (5.40)7. Thus, Eq. (5.54) should
hold for the entire resonance region M S —q>Smgy?
and, in particular, the transformation matrix .S satisfies

m¢2 0

M2=SM2S5= ( ) , (5.55)
0 Meo?

RN St (5.51)
w iV

———(gm.)

MyE— M2

and

- _ 10
S Rello( —mg?)S=.S Rello(—m,2)S= (O 1) . (5.56)

We note that Egs. (5.55) and (5.56) can also be
derived by making a weaker approximation in which
one neglects only the difference between the real part
of IIy(g?) at ¢*=—m, and that at ¢?=—m,?; i.e., we
assume

Rello(—my2) =Rellg(—m,?2). (5.57)

[The imaginary parts of II(¢%) at ¢*=—my? and
—m.? are clearly very different.] From Eq. (5.56), it
follows that the pole approximation implies this weaker
condition (5.57). Equation (5.57) is, in fact, equivalent
to the pole approximation, for a hypothetical stable
¢-w system, but does not require the full extent of the
pole approximation for the realistic case.

Finally, we wish to relate the renormalization matrix
S with the matrices go and g occurring in Egs. (5.3)
and (5.18), respectively. If in the resonance region,
my? 2 —q> 2 m.?, the pole dominance is a good approxi-
mation, then by combining (5.22) and (5.55) one obtains

(5.58)

If, in addition, the aligned form is chosen for the un-
renormalized fields, then according to Eq. (5.8) g is
diagonal and, using (5.19) and (5.21), we have

0
S-i= T(gY fer 0 ) :
0 an’/gn

ggo'=3S.

(5.59)

We recall that the matrix 7' depends on two angles
6y and 6y which are introduced in Sec. IT [Eq. (2.18)]
to relate the currents J,¢ and g,° to grV, and gyiV,;
Egs. (5.59) and (5.13) show that the same matrix
also transforms the unrenormalized field ¥,9 after
multiplication by a diagonal matrix gogp~!, into the
renormalized field ¢,. Note, however, that 7 is not
equal to the T'g defined by Eqs. (5.34) and (5.36); these
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two matrices are related to each other by
R'Ts=Tgogn™,

where R, g, gp are all diagonal matrices.

(5.60)

3. Special Models

Hitherto, our discussions have been completely
general. In this section, we will discuss two specific
models. As we shall see, the angles 6y and 6y become
related, though in different ways, in each of these two
models. For the definitions of these models it is con-
venient to adopt the aligned form for the unrenor-
malized fields. Accordingly go has the diagonal form
(5.8) and K, the form (5.9). (In the limit of SU; sym-
metry, the aligned form also implies Ko=1 and M?
diagonal. Therefore, in this limit the aligned form be-
comes the same as the canonical form.)

Current-Mixing Model

We consider first the special model in which the
matrix M ¢%is assumed to be diagonal:

M= (@100)2 <:°>2) '

The matrix K, may, or may not, be diagonal. If K,
is also diagonal, then according to Eq. (5.9), K, is a
unit matrix, and (u1%)?, (u2?)? become, respectively, the
(unrenormalized mass)? of the ¢ meson and the w meson.

The SUs symmetry is assume #not to be valid; as a
result, the matrix IIy(¢?) is not diagonal. A likely
mechanism is that in the absence of the SU; symmetry,
the vacuum expectation value {(vac|¥,°(x)N,%0) | vac),
for example, is no longer zero. Such mixed-current
matrix elements can give rise to the off-diagonal matrix
element of ITo(¢?), but not of M2 For convenience, we
call any model, in which M,? is diagonal but II,(¢?
is not diagonal, the ‘“current-mixing” model. For our
analysis, the precise mechanism of the SU; symmetry-
breaking interaction is, however, immaterial.

Assuming the validity of (5.55), it is easy to verify
that Eqgs. (5.55) and (5.61) imply that S has the general
form

(5.61)

— (u1%) ", sing

_ ((“ 1)y cosd ) . (5.62)

(u2®) "y sind (42°)~m,, cost

where the angle 6 is real and its value depends on the
matrix Rello(—m,?) =Rello(—m,?). Upon comparing
(5.62) with (5.59), we find

g 0y 2 u 0y 2 m. 2

(—f—-) = (—1—> (Coszﬁ-l——"— sin20> , (5.63)
8y Lz Me?
gNO 2 #20 2 mw2

(———) = (—-> <cos20+— sin"’()) ,  (5.64)
N Mo My?
tanfy = (mg4/m.) tand, (5.65)
tanfy = (m./my) tand , (5.66)
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and, consequently
(5.67)

It is important to note that these results hold to all
orders in the SU; symmetry-breaking interaction, pro-
vided that the “current-mixing” model is valid.

An estimation of the values of 6y and 0y can be made
if one assumes that the SU; symmetry-breaking inter-
action transforms like the /=0 member of an octet
under the SU; transformations. To simplify our dis-
cussions, we will further approximate ReIlgp(¢?) by a
constant matrix, as is the case in the pole approximation.

In the limit of SU; symmetry, the matrix IIo(¢?)
must be a diagonal matrix. Let us denote its real part by

02 0
hm Rell 0= ( ) .
SUs sym 0 ()\ 20) 2

m.? tanfy =my? tanfy.

(5.68)

The renormalized masses of the octet and singlet vector
mesons in the SUs symmetry limit are, respectively,
given by

Moctet= (Mlo/ >\10)
and (5.69)

Msinglet = (M?O/AZO) .

The inclusion of the SU; symmetry-breaking interaction
in the current-mixing model does not change M2, but
it alters ReIl, from (5.68) to

(Ap)?
kn (AZ)?) '

If the SU 3 symmetry-breaking interaction is assumed to
transform like the /=0 member of an octet, then to the
first order of such a symmetry-breaking interaction
one must have

ReHo=( (5.70)

Ae=\o0. (5.71)

Adopting the notations of Coleman and Schnitzer,? we
define € and 8 by

)\1 = )\10(1+2€) 1/2
and (5.72)

A\ =4.

To first order in the SU; symmetry-breaking inter-
action, the observed masses of K*, p, ¢, and w are related
to the zeroth-order renormalized masses #,ctet, Msinglot
and the two parameters e and 8 by

(5.73)
my=(1—2€)7*m,qtes,, (5.74)
m¢~2+mwﬂ2=msinzlet~2+ (1+26)mocteg_2, (575)

Mmg*= (1 + 5)_1/2mocbet )

and

(m-bmw)_2(moctetmsinglet)2= 1+2€_62. (576)
Thus, one finds

Moctet= 839 MeV y  Msinglet= 817 MeV 5
e=—0.115.
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and
B=—0.18. (5.77)

From Egs. (5.75) and (5.76), it is clear that 8=--0.18
is also a solution. However, since under the transforma-
tion ¢,° — +¢,.°%, w,— —w,’, B transforms — —p3, we
may, without any loss of generality, choose 8 to be
negative (so that tanf becomes positive). The angle ¢
in Eq. (5.62) is related to these parameters by

tanf= (Bmu Msinglet)  Moctet(Mw?— Msingret?) , (5.78)
which together with Egs. (5.65) and (5.66) yields
92226°,
0y=233°,
and
Oy=221°. (5.79)

For convenience, we have chosen 6, and also 6y and 0y,
to be in the first quadrant, instead of the third quadrant.
(Under ¢,— —@y, wy— —wy, but ¢,°— +¢,° and
w,® — 4w, one finds § — 6+180°, 6y — Oy+180° and
Oy — 0x+180°.)

Mass-Mixing Model

Next, we consider a different model in which the ¢-w
mixing is assumed to be due entirely to the off-diagonal
matrix elements of Mo% In general, if the matrix M? is
nondiagonal, then Il,(¢?) would also contain nonzero
off-diagonal matrix elements. However, in the mass-
mixing model, we make the ad soc assumption that

(A\)? 0
5.
' Qﬁ), (5.80)

but My? can be any arbitrary (2)X2) real symmetric
matrix. By using Egs. (5.55) and (5.56), one finds that
the matrix S'is given by

)\1_1 0
s=( Yo,
0 )\2_1
where U is the real orthogonal matrix which diagonalizes
)\1_1 0 >\1_1 0
Co by 1)
0 A (U P

By comparing (5.81) with (5.49), one derives in this
mass-mixing model

ReHo(—m¢2)=ReHo(——mw2)=<

(5.81)

(5.82)

Oy ="0x, (5.83)
(gv’/gv) =M1, (5.84)

and
(gn°/gw) =Aa. (5.85)

The matrix M,? is real symmetric matrix; therefore,
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it can be diagonalized by a real orthogonal matrix, say
V:

/(u)? 0
M= V< >V , (5.86)
0 (ug)?
where
cosa sina
V=< ) (5.87)
—sing cosa

and u12, uo? are the two eigenvalues of M2 In the limit
of SU; symmetry, a=0; therefore, to the first order in
the SU; symmetry-breaking interaction, we can neglect
a?, and (5.82) becomes

((#1/ A)® £

, 5.88
£ (ua/N2) 2> (59

where
E= ()\1)\2)—1([112—‘#22) sina COSGE()\1>\2)—1(M12—}122)(1.

The values of (u1/A1), (u2/A2), and £ can be determined
from the known vector-meson masses, if we make the
following further dynamical assumptions:

(i) The eigenvalues of My? are not changed by the
introduction of the SU; symmetry-breaking interaction;

ie., in the limit of SU; symmetry, one has from
Eq. (5.86), V=1 and

i <(M<;)2 <y(:)2> '

This assumption appears natural if one imagines the
unrenormalized theory to be in the canonical form, in-
stead of the aligned form which is used here. In the
canonical form this theory is characterized by a non-
diagonal go’ given by go'= Vg.

In addition, we approximate the matrix Rello(¢?) by a
constant matrix, and denote its limiting form by

(5.89)

| (0 0
< ll/lsns;ym Relly(g )—-( 0 ()\20)2> . (5.90)

The renormalized octet and singlet masses in the SU;
symmetry limit are, therefore, given respectively by

Moctet = (,U'l/>‘10) )

and (5.91)

Msinglet= (ﬂ2/)\20) .

(ii) The SU, symmetry-breaking interaction trans-
forms like the isoscalar member of an octet. Thus, to
first order in the SU; symmetry-breaking interaction,

A0=)s. (5.92)

The parameter A\ is assumed to be different from its
SU; symmetry-limiting value A%, We write

M=M0(14-26) 12, (5.93)
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The SU; symmetry-breaking interaction mixes ¢-w
through the angle a, or the parameter ¢ in (5.88), but
the difference between the observed vector-meson
masses and their zeroth-order masses #,ctet and Mgingiet
depend on both £ and e We have, as in Egs. (5.73)
and (5.74),

Mmg*= (1+ E)allzmoctet ’ (5.94)
my= (1 - 26)_1/2m09tet , (5.95)
but, instead of Egs. (5.75) and (5.76),
m¢2+mw2= (1+26)—1moctet2+ ”Zsinglet2 y
and (5.96)
My2mo2= (14 2€) 1 (MoctetMsinglet) > — £2.
From the known masses mg*, m, my and m., we
determine
Moctet = 839 MeV ’
Mingles =859 MeV, .
e=—0.115;
and :
£=1.93%X10° (MeV)2. (5.97)
The angles 6y and 8y are given by |
tanfy = tanfy = E 1 (Mginglet?— o2,  (5.98)
and therefore
0y= GN—’\_—/\;ZO . (599)

For convenience, we have chosen ¢ positive and
0y =0y in the first quadrant.

Mass-Mixing Model (A Variation)

The mass-mixing model implies 6y = 0y, but the above
estimation fy=0,=232° is based on further ad hoc
assumptions (i) and (ii). In this section, we will give a
variation of the same mass-mixing model in which all
the above formulas (5.80)-(5.88) are assumed to remain
applicable. The only change is that, instead of the
previous additional assumption (i), one assumes?:

(i)’. The matrix Rello(¢?) is approximated by a
constant matrix, and it is, for some unspecified dy-
namical reason, not changed by the SU; symmetry-
breaking interaction. Thus, one may use Eq. (5.80),
but set

>\1=)\10,
and (5.100)
)\2= )\20.
In place of Eq. (5.89), one may write
% 0
lim M02=( ' ) . (5.101)
SU3 sym 0 (#20)2

Instead of by Eq. (5.91), the renormalized octet and
singlet masses in the SU; symmetry limit are given by

Moctet = (#10/ )\10)
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and (5.102)

Msinglet= (#20/ >\2°) .

We make the same assumption (ii) as in the previous
case. By using Egs. (5.86), (5.87), and neglecting
0O(a?), we find, in order to conform to the assumption
(i),

(5.103)

The masses of K*, p, ¢, and w are related to their SU;-
symmetry limits 7. tet, Msinglet, and the ratio

(/) =1+424,

pe=p2".

by
mK*2='moc¢et2(1—l—8) y (5104)
mp2=moctetz(1_28) ’ (5105)
m¢2+mw2= (1+26)moctet2+msinglet2 ] (5-106)
and
m¢2mw2= (1+26) (moctetmsinglet)2_ 52; (5107)

where £ is given by Eq. (5.88). Equation (5.98) remains
applicable. By using the known vector-meson masses,
one finds, in place of Egs. (5.97) and (5.99),

Mootet =850 MeV ,
Msingles= 884 MeV ,
6=0.103,

£=2.07X10° (MeV)?2,
and

Oy =Oy=239°. (5.108)

We note that Egs. (5.104)—(5.107) reduce to Egs.
(5.94)-(5.96) if we set e=—4& and neglect O(e?). The
difference between the two estimations [(5.99) and
(5.108)] of fy=0x in the mass-mixing model lies,
therefore, only in the higher-order terms of the SU;
symmetry-breaking interaction.

VI. PHOTON PROPAGATOR

The hadronic contribution to the electromagnetic
current may influence purely leptonic processes through
its effect on the photon propagator. Indeed, discussions
of contributions arising from this source to the anoma-
lous magnetic moment of leptons!® and to electron-
positron scattering!* have already appeared in the
literature. We wish, however, to exhibit here the fact
that our considerations imply an exact (in the strong
interactions) connection between the order e? hadronic
contributions to the photon propagator and the vector-
meson propagators. Such a connection can be derived
directly by considering the set .Sy of all ¢? order Feynman
graphs for the photon propagator (to all orders in the
strong interaction, but neglecting leptonic contribu-

13T, Durand III, Phys. Rev. 128, 441 (1962); C. Bouchiat and
L. Michel, J. Phys. Radium 22, 121 (1961).
14 R. Gatto, Nuovo Cimento 28, 658 (1963).
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tions) and the set Smeson 0f all Feynman graphs for the
vector-meson propagators (to all orders in the strong
interactor, but only zeroth order in e). By using the
strong interaction Lagrangian (3.7), (3.8), (5.15), and
(5.16), and the gauge-invariant electromagnetic inter-
action Lagrangian (2.7) and (2.20) [or, more simply, the
alternative identities (1.3b) and (5.28)7, it can be
readily seen that each of the graphs in the set .S, cor-
responds to a subset of graphs in the set Smeson. It is
convenient to include also the free photon propagator
in S,. One finds, then, that there exists a homomorphism
between the set S, and the set Smeson. While it is
straightforward to convert this homomorphism into
algebraic relations, and to derive the results that are
given by Egs. (6.9) and (6.15) below, the detailed
description of such a graphic procedure turns out to be
somewhat unnecessarily complicated. Thus, we shall
give, instead, a formal analytic proof in the following.

For convenience, we begin with the general expression
first used by Killén,'s and write for the vacuum ex-
pectation value of the photon commutator

K,‘ﬂ(x) = <0| [A n(x)aA ,(O)] l 0)

62

=—18,,0(x)— L Ao(x)+ / d*yd'z

0x,0x,

X(vac|[4.7(¥), 9 (2) ]| vac)Dr(x—y)Dr(—3) , (6.1)
where g,7 is the total electromagnetic current defined by
OF 1/ 9%, = — g,7, 6.2)

Ao(x) is the same A.(x) function given by Eq. (4.1)
with ¢=0, and Dg is the retarded Green’s function
satisfying

O2Dg(x) = — 6%(x).

The constant L is to be chosen so as to guarantee
K,,7=0 for » spacelike. To order ¢* we may split
R,,” into a zeroth order plus a lepton part and a hadron
part; thus

K o7(6)=—18,,00(2)+K 7 (%) +K (), (6.4)
with

(6.3)

K”P'Yhz e2 f drydiz(vac|[J,*(y),J,7(z)]| vac)

62

X Dr(x—y)Dr(—2)— Li—
X, 0%,

Ao(x), (6.5)

and J,” denotes the hadronic electromagnetic current.
For simplicity of notation we include only the p contri-
bution to J,” in the following discussion. The ¢ and w
contributions will be added to the final formula. Thus,

16 G. Killén, Helv. Phys. Acta 25, 417 (1952). The L used in
this paper corresponds to M in Killén’s notation.
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applying Eq. (2.9), we write for the p contribution to
K,
e*m,*
: / diyds(vac| [ou(3),p5) ]| vac)
&

N
K W=

2

X Dg(x—y)Dr(—2)—L,

Ao(x)

Xu0Xy

e*m,yt 92
= d4yd4z[6“,,—a“la . j|Aa(y—z)<rp(a)
8o Xp0Xy

62

X Dr(x—y)Dr(—z)da—L; Ag(x), (6.6)

X,0%,
on account of Eq. (4.1).
Taking Fourier transforms, we find

K,“.W(q) = i/Kpﬂ"(x)e'iqx“d"fx

em,t * a,(a)
=i : / ' —da (q0)
gP 47”172 a

x[aﬂya<g2+a>+@<a<qz+a>~6(42»], 6.7)
a

where €(go)=qo/| o] . The term in 8(q?) is the contribu-
tion of the L, term. The p contribution to the photon
propagator

Dyw(9)= ¢ 8w+ D ™(@)+Dw'(q)
is obtained from (6.7) via the correspondence!®
2mie(g0)d(¢’+a) — 1/(¢*+a—1e),
yielding the p contribution to D,,"*(q):

e*myt qugs a.(a) 1
D,,7(q)=— (a,.,— - > f do——r —
g* ¢ @® ¢*+a—ie

It is of interest to note that

e2m,t qugo\ 1 a,(a)
lim D= ”(5“,— - )— / da ”2 , (6.10)

g2 ng q2 qz @
so that the p contribution to the order e? part of the
charge renormalization is given by

3(ea’), €'myt [ 0,(a)
= / da
e? g Ja

16 Some additional details and references to some of the relevant
literature are given by L. M. Brown and F. Calogero, Phys. Rev.
120, 653 (1960), Appendix.

16a Note added in proof. In writing (6.11) we use the ratio

lim ¢*D7(¢)/lim ¢D(¢?)
g2 q2—0

as the definition of (eo/e)? where D7(g?) is the coefficient of 8,, in
D,,". An alternative definition of (e¢/e)? is given simply by the

limit
lim QZED‘V (‘f)]unreu
20

where [D7(g?) Junren is the coefficient of §,, in the unrenormalized
photon propagator [D,,”(¢?) Junren- It is interesting to note that
for the present case these two definitions give the same result only
if the unrenormalized mass #,0 is infinite. For details see T. D. Lee
and B. Zumino [Nuovo Cimento (to be published)].

(6.8)

(6.9)

, (6.11)

mat Q%
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where e is the observed charge, and it is related to the

unrenormalized charge e by eo?= €24 (d¢?),~+ - - -. From
Eq. (4.6) and o,(a)=0, it follows that
8(e?), 17etm,a 2\ r* o,(a) 1 Zoe’m,?
< ”<—< ! >[ et . (612)
e? AN\g, Mm% Jamsr @ 4 Zgtma?

We note that, on account of Eq. (3.11), the product
Zyg,? is independent of the choice of the renormalization
constant Z. For definiteness, we may adopt the re-
normalization convention Z=Z, given by Eq. (4.22).
As we shall see in the next section, this choice leads to
(47)~g,?=22.3. Thus, (6.12) becomes

5(602)p

e? 4 g,%m.?

2, 2
1 é*m,

049 . (6.13)

D, can be expressed explicitly in terms of the
o-propagator D,,(q). Recalling Egs. (4.10) and (4.12),
we write

Dyu(g)= /

and obtain for the p contribution to the photon
propagator

By l a Qva 5
Op(a)da 6,‘“’1 ((1 ) I QM(IVG(Q )7

+a—1e

qugy
Dw”((]) = (e27n94/g92)<5pv‘— . >
q

1 1
><{2 LH)~10)~ (= i0F 0]
g*—1ie

g*—1ie
(6.14)

This expression is, for all physical processes, equivalent
to that which would be derived by straightforward
application of Feynman rules to the form of the theory
given in Appendix B, Eq. (B8). The apparent photon
mass squared appearing there, (¢m,%/g,%)?, is equal to
the term (e?m,*/g,)F(0) of Eq. (6.14) to lowest order
in €%

The complete expression for the hadronic contribu-
tion to the photon propagator, obtained from Egs. (5.26)
and (6.9), is

9uqy da
Dwvh:eZ(aM_ # >/ - .
¢ /) arg+a—ie)

X{g*mp'o,(a)+ilg M 0su(@) MG T},

where g and M2 are given by Egs. (5.19) and (5.17), re-
spectively, the subscript 11 denotes the (1,1)th matrix
element, and o4.,(@)is the renormalized spectral-function
matrix, related to the unrenormalized spectral-function
matrix o,,° of Eq. (5.30) by

0'¢w((l> =S_10'¢w0§_1 N

(6.15)

(6.16)
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and to the renormalized ¢-w propagator D, by

uv—l"
S)MV((I )= /

To order ¢? and neglecting leptonic contributions, we
find that the entire hadronic contribution to charge
renormalization is finite; the unrenormalized charge e
is given by

q“q".f¢w<a>da (6.17)

a—ie

(eo/€)2= 1+e2fa—2da

X {gﬂﬂmp‘;“p(a) —I—i[g_‘M 2°'¢w(a)M 2§~l]11}

< 1+%(gpm”)_le2mp4/ a"lo,(a)da

P 4m,,-2

0

1
+—[g_1M ? / a log.(a)daM 2§—1:| mat. (6.18)
36 omy? I

The value of the above upper limit of (eo/e)? can be
estimated by using Egs. (6.13), (5.32), (5.55), and the
numerical values found in the next section. We find

1< (eo/€)2<14+4e*m 2
X [go—?m,*+5gr*(cos*bymy>+sin*0ym.?) ]

1,03, (6.19)

The finiteness of the hadronic contribution to charge
renormalization arises from the fact that the spectral
representation of the photon propagator is a factor ¢—2
more convergent than that of the vector-meson pro-
pagator, and corresponds to the circumstance exhibited
in Egs. (2.10) and (2.22) that the matrix elements of the
hadronic part of the electromagnetic current are more
convergent, by a factor ¢2 than the corresponding
matrix elements for the vector-meson currents.

VII. APPLICATIONS

In this section, we list the various applications!” of the
above general discussions, and in particular the ex-
perimental implications that follow from the proposed
identity between the hadronic current operator J,* and
the vector-meson fields.

1. o°—> =wt=—

This decay depends only on the strong interaction.
It has already been pointed out in Sec. IV, Eq. (4.28),
that all matrix elements of the renormalized current
Ju»(x) vanish at ¢®>=—m,?; therefore, it is useful to
introduce a modified current operator J,#(x) defined by

17 The various applications given in this section have almost all
been discussed in one form or another in the literature. See Refs. 2,
4, and 21 for a partial list of these references.
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Eq. (4.26). By using Eq. (4.29), one finds (A=c=1)

rate(p? — wt4-77) = (48mm, 2~ (m,2— 4m )3/
X [gpFrrp(_mp2)]2(Zl/Zo) y (71)

where F,.# is the vertex function (or, the ww-p form
factor), defined by

((r+n=)in| Jo(0) [ vac)= s(po/wn) Frr?(g®),  (7.2)

| (rtr—)1») is the two-pion “incoming” p-wave eigen-
state of the strong-interaction Hamiltonian in the
center-of-mass system, s is the polarization vector
(chosen to be real), w, is the pion energy=3(—g%"%
and p, is its corresponding momentum.

If inelastic processes are neglected, then the state
| (rta—)in) differs from the corresponding stationary
state by a multiplicative factor e~*» where 8, is the two-
pion p-wave phase shift. In this approximation, on
account of time-reversal invariance, the phase of the
matrix element ((wtr~)|o(0)|vac) is p, or 8,+180°.
If, in addition, the nonresonant background is neglected
for g?near —m,?, the resonance factor [¢>+m,*—iym, ]
in the p-propagator D,,(¢?) is proportional to

—i(e2%—1) = 2¢%%» sind .
By using Eq. (4.26), we see that ((ztz~)|Jo(0)|vac)
and, consequently, F,.#(¢?) are real at g2=real>—m,>
Furthermore, in the same region F,,#(¢?) is expected to
be a relatively slowly varying function of ¢

In Eq. (7.1), the factor (Zi/Z,) is due to our nor-
malization convention [Eq. (4.22)]. The same conven-
tion also leads to Eq. (4.27), which implies that

@+ Je(0) | 7*)=1; (7.3)

therefore, the analytic continuation of the form factor
F..*(g% satisfies

ﬁﬂ"(q2) =1 at q2= 0. (74)
By using Eq. (7.1) and the experimental values that

rate(p® — 7t+77)=115.54£8.2 MeV
and m,=756.4+3.2 MeV,

one finds

() [g, Frnt(—m) 21/ Zo)=2.2820.16.  (1.5)
According to Egs. (4.17), (4.22), and (4.25), the factor
(Z1/Z,) depends on the variation of (¢24-m,?)!
X ReF~1(g?) from ¢*=0 to ¢>= —m,? where F is defined
by Eq. (4.12). As we shall see, while both (Z1/Z,) and
the value of F,.#(¢?) at ¢=—m,* are not known, the
product (Z1/Zo) Fr+*(—m,?) can be determined by using
(7.1) and the leptonic decay rates of p°

2. 0= 1~
By using Egs. (1.3a), (4.19), and (4.22), it can be
easily verified that
rate(p® — I+17) =3[ (g¥/4m)(Zo/ Z)

me—z(maz_4ml2) 1/2(m02+ 2ml2) ,

(7.6)
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where I=¢ or u and a=(137)"1. The present experi-
mental value!® of the branching ratio of p® — pt--p~ is
(4.3+£1.4) X108, Thus, we find

(4m)yg,2(Zo/Z1)=(2.5+0.8). 7.7

It is interesting to note that the rate of p® — 7+~
depends on g,%(Z1/Zo), but the rate p®— u*+u~ (or,
e+-¢) depends on g,%(Zo/Z1). By taking the ratio of
Eqs. (7.5) and (7.7), one finds

[Frn?(—m,?)(Z1/ Z0)12=0.9£0.3, (7.8)

which is consistent with the approximation that both
the vertex function and (g2+4m,?) ! ReF~'(¢?) do not
change much from ¢2=0 to ¢*=—m,?; ie.,

Frp(g)=1 for —gSm,?, (7.9)

and

(Z1/Zo)=21. (7.10)

Under the same approximation, the decay p— w7~
determines the coupling constant g,2 to be

(4m)1g,222.3. (7.11)

3. ¢-» Decays and the Determination of 0y and Oy

From Eq. (2.12) it follows that any matrix element of
the renormalized current operator g,#(x) vanishes at
q*=—my?, and that of g,°(x) vanishes at ¢*=—m.>
It is useful to define the modified current operator

Ju(x)
= 7,
3= (1.12)
by
(B]3u(@)|4)=—[Dw(@T Bl |4), (7.13)

where ¥,(x) is the renormalized ¢-w field operator given
by Eq. (5.1), and D,,(g) is the renormalized ¢-» pro-
pagator given by Eq. (5.52). In analogy with Eq. (4.29),
the decay rate of the ¢ meson into a state I' can be ex-
pressed in terms of the matrix element (T'|§,#(0)|vac),
and the decay rate of the w meson into a state I' can be
expressed in terms of the matrix element (T'| §,2(0) | vac).
The fact that these two decay rates involve J.¢ and
g separately is a consequence of the orientation condi-
tion [Eq. (5.48)] that we have used.

In the following, we will assume the validity of the
pole dominance approximation in the resonance region
and choose the normalization convention given by
Eq. (5.53). Thus, from Egs. (5.55) and (5.56), it follows
that, in the region from ¢?=—m,? to —m,? the real
part of the inverse of the renormalized ¢-w propagator
is given by

Re[iD,w(q)]"I = (q2+M2)6uv_ qudv (7.14)

18 A, Wehmann ef al., Phys. Rev. Letters 17, 1113 (1966). See
also R. Weinstein, in Proceedings of the Thirteenth International
Conference on High-Energy Physics, Berkeley, 1966 (University of
California Press, Berkeley, 1967).
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where
)
M2= .

0 m,?

We recall that at ¢?=0, D, (g) is always equal to
SM 2S5,,, and therefore

uv_ (0) =M26uv ) (7.15)

on account of Eq. (5.55), even though the pole approxi-
mation is only assumed for the resonance region
—mo?= g2 —my? (which does not include ¢2=0). By
using Eqs. (5.18) and (7.13), one finds that the spatial
integral of Ju(x) is related to the hypercharge ¥ and
the baryon number N by

i f 34(x)d3r=g<§) ,

which together with Eqgs. (5.19), (5.20), and (5.21) gives

(7.16)

—i/54¢(x)d3r=[cos(ﬁy—(?N)]‘l
X[cosOygyV +sinfygyN],
(7.17)

and

—i/ Je(x)d¥r=[cos(8y—Ox) ]!
X[ —sinfygy YV +cosfygyN].

The decay rate of ¢* — K++K—, or K1°+K,° depends
on the vertex function Frx?(g?) at g2= —my?; Frx?(q?)
is defined by

(QK)"|3#O)|vac)
=\/ZS,;(PK/(.OK)FKK¢((]2) y i=1,2,3, (718)

where | (2K)») denotes the two-kaon I'=0, S=strange-
ness=0, p-wave “incoming” eigenstate of the strong in-
teraction Hamiltonian, s is the polarization vector
(chosen to be real), wg is the kaon energy=3(—q?)/?
and px= (wxg’—mg?)'2 Just asin the case of F,,,,P( m,2),
the function Fxx?(g?) is real at g2= —m,?, and Fx K"’(qz)
is expected to be a slowly varying function of ¢2 near
¢*=—my?% From Eq. (7.17), we know that the diagonal
matrix element of ¢ for a K+ at rest is

(K*+|32(0) | K+)=1[cos(6y—0x) ! cosbwgy,

which implies that the analytic continuation of the same
vertex function Fxx?(¢?), at ¢*=0, becomes

FKK¢(0)= [COS(GY— 01\/)]“1 COSONgy. (720)

The formulas for the rates ¢°— K+t+K— (and
K,"4+K,%), ¢*— It4I-, and w®— It+I~ can be ob-
tained by following the same derivations of Eqs. (7.1)
and (7. 6) In order to use these rates to determine the
two mixing angles 6y and fy, we assume that the vertex
function Fxx%(g?) at g2= —m,? can be approximated by

(7.19)
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its value at ¢?=0, i.e.;
Frrt(—my)=2Frex(0)
=[cos(6y—0x) 1" cosOngr. (7.21)
By using Eqgs. (7.14) and (7.21), one finds
rate(¢® — K++K—) = (48wmy2) 1 (my?— dmg?)3/?
X [cos(fy—On) T 2gy? cos2y, (7.22)

where m is the mass of K+. The same expression applies
to rate(¢® — K°+K,?), provided that mx refers to the
mass of the neutral K meson.

Similarly, by using Egs. (1.6) and (5.40), one finds

rate(¢® — I*+17)=(1/12)o2(gy?/4w) lmy2

X (mg2—4m2)V2(my2+2m2) cosy, (7.23)
and
rate(w® — IH417) = (1/12)a2(gy?/47) 'm,~2

X (’m(.:z— 4m12)1/2(mw2+ Zmﬁ) sin20y . (724)

From the known rate of ¢?— K++K—=1.74-04
MeV, one obtains

grcosfy 21
l:——~——~:| —=1.4+40.3.

7.25
cos(fy—0y) (7.25)

The coupling constant gy? and the two mixing angles 6y
and 6y can then be determined by measuring the
leptonic decay rates of ¢° and w®. These leptonic decay

TaBiE 1. The coupling constant (gy2/4x) and the leptonic decay
rates are calculated by assuming the rate (¢°— K++K-) is
1.7 (MeV/#). [In the limit of SUs symmetry, (gv?/4m) = §(g,*/4)
21.7.] To the accuracy given, there is no difference between the
decay rates to u pair and to e pair. The mean-square radii R2(K°)
and R2(K 9) of the charge distributions of K and K° are calculated
by using Eq. (7.42).

Current-mixing Mass-mixing Mass-mixing

model model model (variation)
oy 33° 32° 39°
on 21° 32° 39°
(gv2/4m) 1.5 1.9 2.2
Rate (¢ —ete) 2.2 (keV/Hk) 1.7 (keV/#) 1.2 (keV/h)
Rate (w —e*e) 0.7 (keV /%) 0.5 (keV/%) 0.6 (keV/h)
R2(K°) —7.6X10"28¢cm? —7.0X10728cm2? —6.1X10728cm?
R2(Kv) +7.6 X102 cm? +7.0X10728cm? +46.1 X10728 cm?

rates can also be calculated theoretically by assuming
the particular values of 6y and 6 determined in the
Sec. V (3. Special Models.) The results_are given in
Table 1.

4. Comparison Between A — B+ and A— B--g°
(or, ¢° and ?)

The identity (1.3a) between the hadronic electro-
magnetic current and the renormalized p-meson field
implies that the isovector part of the electromagnetic
form factor Fsp7(¢%) of any real or virtual transition
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A — B+ is related to the corresponding form factor
of A — B+4p° by Eq. (1.4a),

m,?

[FABV(QZ)]isovectorz 2 (1 .43)

Fap* ().
q*+m,?

Similarly, by using Eq. (2.22), one finds that the
identity (1.6) implies that the isoscalar part of F457(¢?)
is given by

[F487(¢?) Jisoscalar= %gy‘ll:cosﬁy<

2

2>FAB¢(92)

q*+mg

M2
—sin0y< )FAB“’(QZ)—J , (726)
q2+mw2

where F45%(¢%) and F45°(q?) are related to the matrix
elements of the renormalized currents g,% and g,¢ by

(B| 8,2(2)| 4) =5 Fast(q?)us'T i explinn)

(7.27)
(Bl 9w(0)| 4)=2 F a5*(q*)us'Ty'us expligrnr) ,

and #p'T,“us denotes the same spin-momentum func-
tion used in Eq. (2.11). In the following, we shall dis-
cuss these form-factor relations in three separate regions
of ¢2:

(i) At ¢®=0, the validity of Eqgs. (1.4a) and (7.26)
follows directly from the properties that the spatial
integrals of J4*(x) and [cosfy $.#(x)—sinfy Js(x)] are,
respectively, <7, and igyY. [See Egs. (2.6) and (2.15).]

(ii) Near the resonance, we have, on account of
Egs. (2.3) and (2.12), for any hadronic states 4 and B,

F4(¢)=0 at ¢*=—m.?, (7.28)

where @ can be either p, or ¢, or w. Although (g2+4m,%)~!
XF4%g% and, therefore, also Egs. (1.4a) and (7.26)
remain well defined at ¢?4m,?=0, it is much more
converient to use the modified current operators
.Z W), Ju#(x), §uo(x), and their related form factors
Fupr(g?), Fap®(¢?), and F4p®(¢?), instead of J,(x),
Ju?(x),and g,e(x) [or Fap"(q?), F as*(¢?), and F45°(¢})],
in the ¢? region near the vector-meson resonances.

A direct consequence of the identity (1.3a) is that for
any |AI| =1 transition at g>= —m,?, the ratio between
the rates of

A — B4p° (7.29)
and
A— B+t (I=e, or u) (7.30)

is independent of the initial and final complexes 4 and
B. This independence is supposed to be an exact one,
provided that the higher-order radiative corrections are
neglected; furthermore, in taking this ratio, one should
use directly the observed rate of the |AI| =1 transition
A — B4t~ at ¢?*=—m,? without any background
subtraction.
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Since the neutral p meson is unstable against the
strong interaction, reaction (7.29) can only be observed
by studying its decay products, such as 27 or 4.

Instead of (7.29), one may use, e.g.,
A — B+7wt47. (7.31)

The two-pion p-wave amplitude has the familiar reso-
nance behavior [¢*+m,2—iym, | ! at ¢*=~—m,2 By
using only the resonant part of the two-pion amplitude,

the ratio
rate[A i B+ (7l'++7r_) p——state:l
r(g%)=
rate[4 — B+It+41-]

(7.32)

can be measured, and it should be independent of 4 and
B for any |AI| =1 transitions in the region ¢?=2—m2.

By following the same arguments that led to Egs.
(7.1) and (7.6), but without setting ¢2=—m,2, one
finds, for ¢% near —m,2,

(mp2—dm )32 :]
1602(m,2—4m2) Y2 (m 2+ 2m %)

-]

—
=5 itz a9
m,?

which is independent of 4 and B, and, in addition, is
independent of the wave-function normalization factor
(Z1/Z,). The functional dependence of the vertex func-
tion F,,#(¢?) at ¢® near —m,? can be determined by
measuring 7(g?).

We note that the ¢>-dependent factor in Eq. (7.33)
must be expected to produce a shift!?® in the p peak ob-
served in the process 4 — B+t~ from that observed
in 4 — B4nt-47—. The main shift may be expected to
arise from the factor (¢?)%; from this source alone the
shift in the p peak is from ¢?= —m,?>2— (756 MeV)? to

gt=—1m[3m e+ (m,?—87)17]
~— (745 MeV)2. (7.34)

Identical arguments can be applied to any |AI| =0
transition

A4 — B+l
by comparing its rate with that of
A — B+4¢° (or %)

at g?= —my? (or —m,?). The rates of the latter reactions
can be measured by, e.g., using the resonant part of
A — B+K++ K~ for the ¢ meson and 4 — B+3r for
the w meson. The ratios of these rates to the correspond-
ing lepton pair production rates are, again, independent
of 4 and B, provided Eq. (1.6) holds.

(ifi) For ¢? away from the vector-meson resonances,
it is more convenient to use Egs. (1.4a) and (7.26).

19 One of us (N.M.K.) wishes to acknowledge a discussion of this
point with M. Good and A. Silverman.
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Although the form factors Fap°(¢%), Fas®(¢?), and
F45°(¢?) are not known, one may assume some simple
analytic functions for these vector-meson form factors.
The phenomenological parameters contained in these
functions can, then, be determined by using the experi-
mental results on the electromagnetic form factor
F457(¢?).

As an example, we may consider the special case 4 =B
and assume, for ¢? spacelike (or, for any ¢ away from
the resonances),

F45°(¢%)/F 45°(0) =1+ (¢*/A:H) ]!

o 2 )] om

(7.35)
and

where A; and Ao are phenomenological parameters
characterizing the overall ¢? dependence of the I=1
and I=0 vertex functions. At ¢®>=0, the values of these
form factors F44°(0), F44#(0), and F44%(0) are known,;
they can be readily determined by using (2.11), (7.27),
and the identities

/ Te()ddr=il,,

/ 34¢(x)d37'= ’I:I:COS(GY'—- 0N):|“1

(7.37)
X[cosOygy ¥ +sinfygaN],

/34”(x)d3r= i cos(y—0x) T
X[—sinfygy ¥ +cosfygyV].

Thus, the resulting electromagnetic form factor
F447(g? in the spacelike ¢2 region (or, for any ¢* away
from the resonances) becomes dependent only on Ay,
Ay, 6y, Oy, and, if 4 has nonzero baryon number, the
ratio (gy/gyr); among these, the angles y and 6y can
be either directly measured, or theoretically calculated
by using special models.

Such a study for 4 = B=single nucleon has been made
by Massam and Zichichi?’; they assumed 6y =0y=235°
and found that the existing data in the spacelike g¢?
region is consistent with A=~A:=21 BeV.

At present, it is not possible to make a similar
study for the timelike ¢2 region away from the reson-
ance. In this connection, we may recall the possi-
bility of the alternative proposal [Eq. (1.3b)] which
implies Eq. (1.4b) instead of Eq. (1.4a). Thus, it
seems particularly interesting to investigate reactions
such as A — B-+4I+t41~ for large —¢? and see whether
[F457(¢%) Jisovector Can be zero at some ¢2=—(m,°%)>.
If F4p7(¢? has a zero, then this could be regarded as a
confirmation of Eq. (1.3b), and the value of the me-

20 T. Massam and A. Zichichi, Nuovo Cimento 43, 1137 (1960).
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chanical mass m,° would become measurable. Other-
wise, it is consistent with the assumption that .0 is
infinite, and the two different proposals (1.3a) and
(1.3b) are the same.

5. Electromagnetic Form Factor of K° and K°

Let |K?p) and | K", p) denote, respectively, the state
of a neutral K° and K° with 4-momentum p,. From
Lorentz invariance and current conservation, one has

(K | 72O) | Ko, py=— (ROp'| 7,7 | K2, p)
=3(w) 2P+ p)uFxx (g%, (7.38)

where iw and 1w’ are, respectively, ps and p4'. By using
Egs. (1.4a), (7.26), (7.37), and (7.38), one finds

Mp?
=1 P
Frr'(¢)=—3%fxx (92)<q2+mp2>

1 1 I'm¢2 cosfy cosfy fxx*(q?)
2 cos(fy— BN)I_ ¢*my?
M2 sinfy sind %(g?%)
w/xx ] . (1.39)
P2
where
Frx(¢®)=Frx%(q¢?)/Fxx*0), (7.40)

and a=p, ¢, and w. At =0, fxx¥(¢?)=1.
The mean-square radius of the change distribution of
K0 is, by definition,

RZ(I{O) = — 6(d/dq2)FKK7(q2) (741)

at ¢2=0; the corresponding mean-square radius of K° is
R(K%)=—R2(K"). If the differences between the three
derivatives (d/dq?) fxx*(¢%) at ¢*=0 can be neglected,
then one finds

R2(K0) =3 { — m,,“"-l— I:COS(ey'— ON) :l—l
X [ms2 cosfy cosOy—+m, 2 sinfy sinfy 1}, (7.42)

[If one assumes (7.35) and (7.36), then this expression
is wvalid, provided one neglects (A;2—A¢%).] The
numerical value of R2(K°) can be estimated by using
either the current-mixing model, or the mass-mixing
model. The results, which are given in Table I, are
about a factor of 30 smaller than the estimate given by
Zeldovich.?! While the existing experimental evidence
in support of vector dominance seems substantial
enough to make a value as large as that given by
Zeldovich rather unlikely, nevertheless a measurement??
of the charge radius of K° and K° could constitute a

21 Y. B. Zeldovich, Zh. Eksperim. i Teor. Fiz. 36, 782 (1959)
[English transl.: Soviet Phys.—JETP 9, 984 (1959)]. Some earlier
discussions have been given by G. Feinberg, Phys. Rev. 109, 1381
(1958). A recent calculation by W. Frazer (private communica-
tion) gives results of the same order as those in Table I.

22 One of us (N.M.K.) is grateful to O. Piccioni for a stimulating
discussion of this point.
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further relatively sensitive test of the theory, and it
would also serve as a measure of the possible difference
between the derivatives of the different strong inter-

action form factors fxx® at ¢?=0.
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APPENDIX A: AN ELEMENTARY THEOREM

The current J,°(x) is first introduced in Eq. (2.3).
From its definition, we know that (i) J,#(x) transforms
like the I,=0 member of an I=1 triplet, (ii) J. (x)
commutes with the baryon number operator N, and
(ili) J,.°(x) anticommutes with the particle antiparticle
conjugation operator C. The following theorem can be
easily established:

Theorem. If J,(x) is conserved under the strong
interaction, then

—i/]4”(x)d3r=)\lz, (A1)
where A is a constant.
Proof. Let A,=—1/ J#d%, and define
[154]=1emd, (A2)

where the subscripts 7, £, and / can be either #, or y, or 3,
and ¢z is the usual third-rank constant antisymmetric
tensor. Since 4, and I; commute with the strong inter-
action Hamiltonian Hg, the other two components 4,
and 4, must also commute with Hg. We recall that the
only single-particle eigenstate of H,; that is degenerate
with |A%) is | A%). The state 4;]A°) must, therefore, be
a linear function of [A%) and |A°%). From Eq. (A2) and
IjIA())‘—‘Ij[KO):O, we find

A;]A%=4;]1%)=0. (A3)

Similarly, we can show that in the sector of the single
nucleon and single antinucleon states

o, (A4)
—D
the operator 4; must be of the form
ac; boj
<co,— do',~>,
where o; is the usual (2)X2) Pauli matrix, and a, b, ¢, d

are constants. Now, [4,,N]=0 implies 6=c¢=0, and
{4.,C}=0 implies a=d. Thus, in the single nucleon-
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antinucleon sector,

g, O
A,=a( )
0 o,

Since all known hadrons are connected through Hy to
some multiple-particle states of the nucleon, anti-
nucleon, A% A° system, the theorem is, then, proved by
using Egs. (A3) and (AS), and by setting A=2¢ in
Eq. (A1).

In exactly the same way, we can also prove that the
spatial integral of (J4)° which satisfies Egs. (3.2) and
(3.3), must also be proportional to the operator I,.

Similar considerations can also be applied to currents

W and ¢,¢ which are defined by Eq. (2.12). Both
currents (i) are isoscalars, (i) commute with N, and
(iii) anticommute with C. Let

=i / geedor,

where a=¢ or w. The conservation law of g,* implies
that [Qa,H s ]=0. By using the above properties (1)-(iii),
it is easy to see that Q, must be of the form

(AS)

(A6)

1 0
o, ) ()
0o —1
in the sector
AO
)
and Q. is of the form
10 0 0
01 0 0
balo 0 -1 0 (A8)
00 0 —1

in the nucleon-antinucleon sector (A4) where a, and b,
are constants. Since all known hadrons are connected
through H, to some multiple-particle states of the
nucleon, antinucleon, A% A° system, the operator Q.
must, therefore, be related to the hypercharge operator
Y and the baryon number operator N by

Qa= aaN+ (bu_aa)y-
This establishes Eq. (2.15).

(A9)

APPENDIX B: ALTERNATIVE FORMS OF
o-y COUPLING

For simplicity, we will consider in this Appendix only
the isovector part of the electromagnetic interaction.
The Lagrangian density which includes both such an
interaction and the strong interaction of the p° meson
is given by

L=— %(Fl-"‘o) 2— %(G#vo)z”‘%(mpopno)z,

- (gpopu0+ €4 Mo) (an)o - %(eo/gpo) Guw'F 0, (B 1)
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where the superscript zero denotes the unrenormalized
quantities. If we neglect the renormalization problem of
the electromagnetic interaction, then e®=e, 4,9=4,,
and F,°%=F,,. The above Lagrangian density £ con-
tains both the Lagrangian densities (2.7) and (3.1) which
are used in Secs. IT and III. By using the definition of
J.# [Eq. (3.13)] one can show that apart from a trivial
partial integration,

£=—1Fu)*+(2.7)+3.1). (B2)
(1) We consider first the transformation
p=[1— (/g%
and
4,0=—(e"/ 81— (/8" T o'+ 4,/ (B3)

It is easy to see that in terms of p,’ and 4,/, (B1) can
be expressed in an alternative form

L£=—i(FW)—1(Gw)—1(m,/p))?

- (g "o’ +€°4 n/) (Ju2)° ) (B4)
where
my = [1—(e%/g,")*1™"*m," (BS)
g'=g,[1— (/g1 (B6)
d J
Gw', = "“‘Pvl - _“Pu, ’
0x, ox,
and
J i)
F,/=—A4/——4,.
Ox, ox,

According to Eq. (B4), the currents which generate
the new (unrenormalized) fields p,’ and 4, are, respec-
tively, g'(J.*)° and €%(J,#)°. In contrast to Eq. (3.17)
these two currents are now proportional to each other;
therefore, apart from the coupling constants g’ and e?,
they formally satisfy Eq. (1.3b), even though the
Lagrangian (B1) is derived based on the identity (1.3a).
In terms of these new field variables, the difference
between the proposals (1.3a) and (1.3b) lies now in the
form of other electromagnetic interactions which are not
included in (B1). We note that if (1.3a) holds, then, for
example, the lepton current j%interacts with 4,/
through the Lagrangian density

jud u0= e ud ' —[(€)*/8 1jupu’ .
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(2) Next, we consider a different transformation:

Pu” =p 0+ (eo/ gpo)A no )

and (B7)
4,7 =[1 (e/g)]24,0.
The Lagrangian density (B1) now becomes
L=—1 (FIW”) 2 %(Gnvu) 2— % ('mpOPu”) 2— ngPu”(]up) 0
+(m,)%(e" /8o A" —5(m,0)?
X(e"/g")*4,")?, (B8)
where
&= 1= (/g )T,
9 i}
F“,.”='—A,,”— A”II , (B9)
0xy oz,
and
17 a 124 a 144
Gu'=—p/ ——p,".
Ix, 9y

In terms of the transformed fields, a gauge transforma-
tion means that

A, — 4,4+ 0A/dx,
and (B10)

i’ — pu'+(€"/8.°)9A/ .

In Eq. (B8), the only photon-matter coupling is given
by (m,9)%(e"”/g,%ps" A", Such a term, by itself, clearly
violates gauge invariance; but the combination
—5(my%p,") 2+ (m,0)(e" /8, ")pu" AW
—3(m,0)%(e"/8,°)(4,")?
is invariant under the gauge transformation (B10).
Consequently, the Lagrangian density (B8) is also
gauge-invariant. [Under the gauge transformation
(B10), expression (B8)— (B8)—e'’(J,*)°0A/dx,. This
additional term —e’/(J,#)°9A/dx, is, as usual, canceled
by a corresponding term generated by the free Lagran-
gian and the strong interaction Lagrangian of the
charged particles under the same gauge transformation. ]
In the language of Feynman graphs, (B8) shows that
there is a direct p-photon coupling vertex given by
(m,0)2%(e” /g,")ps/'A,". The application of such vertices
in the photon propagator would lead to a non-gauge-
invariant and negative term for (photon mass)?, which

is, however, completely canceled by the additional term
—3(m,%)%(e"/g,%)?4,* in (BS).

(B11)



