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The question of whether the entire hadronic electromagnetic current operator can be identical with a
linear combination of the renormalized field operators for the known neutral vector mesons p, gP, and cu' is
investigated in the context of a Lagrangian field theory. It is found that such an identity is completely con-
sistent with gauge invariance, provided that these mesons are coupled only to conserved currents. The
general renormalization problem of the strong interactions of these vector mesons is discussed. It is shown
that the proposed identity between the hadronic electromagnetic current and the renormalized meson fields
can be related to the possible identity between the unrenormalized currents generating the neutral vector
mesons and those generating the photon; furthermore, this proposed identity leads to an exact relation
between the entire O(e') hadronic contribution to the photon propagator and the renormalized propagators
of the neutral vector mesons, and such a relation imp1ies, among other consequences, that to 0(e') and
neglecting leptonic contributions, the ratio of the unrenormalized charge eo and the renormalized charge e is
Gnite. Various experimental applications are given. In particular, the analysis of @-co mixing and their
leptonic decay rates is made independently of the approximate validity of the SU3 symmetry.

I. INTRODUCTION

HAT vector mesons might play. a dominant role in
the description of the electromagnetic interactions

of hadrons was 6rst suggested by the interpretation of
the electromagnetic form factors of the nucleon. ' Sub-
sequently, the idea of vector dominance has been ex-
tended to apply to all electromagnetic interactions of
hadrons. ' It is evident from a study of the literature of
this subject that it is, at the least, of great heuristic
value to treat the vector mesons as elementary particles
in this context. The utility of this kind of treatment can
be substantially augmented by the inclusion of an
explicit statement of the meaning of vector dominance
(as described in dispersion theory) in the language of a
local Lagrangian 6eld theory. The statement which we

propose for this purpose is the following: "To a very
good approximation the entire hadronic electromagnetic
current operator is identical with a linear combination
of the known neutral vector-meson 6elds. "The principal
purpose of this paper is to exhibit a Lagrangian 6eld
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Energy Commission and the National Science Foundation.
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For = BA r/8$o BA o/ciÃr . (1.2)

A„, p„, g„, and eo„ are, respectively, the field operators of
the photon, the neutral p meson, the 4b meson and the
co meson, X„X&,and X„are constants, e is the charge of
the electron, and (j„)&,v&,„ is the current operator of
the charged leptons.

The question of gauge invariance is studied in detail
in Sec. II; it is shown that Eq. (1.1) is completely con-
sistent with the requirement of gauge invariance, pro-
vided that the currents generating the three neutral
vector-meson 6elds are all conserved currents.

In Secs. III and IV we examine the general re-
normalization problem of the strong interaction of a
single massive vector meson which can be either stable
or unstable. It is shown that if the unrenormalized cur-
rent generating such a meson is conserved, then in the
limit that the unrenormalized mass mo of the vector
meson is in6nite, the renormahzed meson Geld becomes
necessarily proportional to its unrenormalized current
operator. In addition, it can be shown that the nonzero
observed mass implies that the unrenormalized mass
F0~0, and mo must be ~ if the theory is divergent.
These considerations can be readily applied to the
known neutral vector mesons. The proposed identity
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theory in which the approximate identification referred
to above becomes exact, and to examine its various
theoretical implications and practical consequences; in
this theory, the Maxwell equation can be written as

BF„„/rlx„=e(X,p„+X&&„+X„to„) e(j„)~,„..—. (1.1)

vrhere
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between the hadronic electromagnetic current and the
renormalized meson fields is, then, related to the possible
identity between the unrenormalized currents generat-
ing the vector mesons and those generating the photon.

Throughout the paper, the renormalizability of the
strong interactions of these neutral vector mesons is
assumed. As is well known, the interaction between a
neutral vector meson and a conserved vector current
composed only of bilinear products of spin-~ and spin-0
fields with the minimal order of derivatives can be shown
to be renormalizable in a perturbation series.

As we shall see, Eq. (1.1) implies that the isovector
part of the hadronic electromagnetic current (J„&) is
given by

(~.')'--.t-= —(~,'/6) p. , (1.3a)

where all symbols refer to the renormalized quantities;
esp is the observed mass of the neutral p meson, g, is the
renormalized coupling constant, etc. It will be shown
that the unrenormalized mass mp of t11e neutl al p meson
must be greater than 2m where m is the observed pion
mass. If the theory is divergent, then esp is ~, and
consequently (1.3a) becomes identical with an alterna-
tive proposal' that the unrenormalized isovector part
of the hadronic electromagnetic current (J„&)' is the
same as the unrenormalized current (J„s)swhich gener-
ates the p-meson field;

(&is ) isovector= (&st ) (1.3b)

SSp2

[FAB (q )jisoveotor= FAB (q ) s

ms'+q'
(1.4a)

where 2 and 8 can be any tmo hadronic systenis. How-
ever, the alternative proposal (1.3b) leads to the identity

[F'AB (q )jisovector

q2

1+ FABs(q'), (1.4b)
m, '+ q' (moo) '

fSp

' See, e.g., J. J. Sakurai, Ann. Phys. (N. Y.) 11, i (1960); M.
Gell-Mann and F. Zachariasen (Ref. 2).

where both currents are normalized so that the spatial
integrals of their fourth components are all equal to i
times the s component isospin operator. The converse
statement is also true: (1.3b) becomes identical with

(1.3a), provided the unrenormalized mass m„'= cc.
On the other hand, these tmo proposals would be

different if the unrenormalized mass esp mere Gnite.
For example, (1.3a) implies that the isovector part of
any electromagnetic form factor FAB&(q'), which can
be arbitrarily defined, for any real or virtual transition
A —& 8+y is related to the similarly defined form
factor FABs(q') for the corresponding virtual or real
transition A ~ 8+p', at the same 4-momentum trans-
fer q„, by

Oy =8~/0. (1.7)

We call this model the "mass-mixing" model. 4 On the
other hand, one may make the opposite assumption
that the "bare" mass matrix Mo is diagonal, but the

4 The "mass-mixing" model is formally similar to the "particle-
mixing" model considered by S. Coleman and H. J. Schnitzer,
Phys. Rev. 134, B863 (1964). %e note that both this and the
current-mixing model are consistent with the transversality of the
vector mesons (i.e., the vector mesons are coupled to conserved
currents). See also S. L. Glashow, Phys. Rev. Letters 11, 48
(1963);J. J. Sakurai, Phys. Rev. 132, 434 (1963).

which becomes the same as (1.4a) only if the un-

renormalized mass nzp becomes ~. If nzp' were6nite,
then the alternative proposal (1.3b) implies that

[FAB (q)j...,..„.,=a at qy(~, o) =0. (1.5)

Consequently, these two proposals (1.3a) and (1.3b)
can be distinguished by examining experimentally the
seros of any isovector electromagnetic form factor in
the timelike q' region.

Similar conclusions can be obtained for the P meson
and the or meson. The renormalization problem of the
actual p-ei complex is slightly complicated because of
their decays and because of their mixing. The general
mathematical analysis is given in Sec. U and is in-

dependent of any assumption of the approximate
validity of SU3. This is based upon the fact that the
renormalized hypercharge and baryon number currents
can be defined independently of SU3. The renormalized

P„(x) and co„(x) fields are defined in such a way that if
the p and t0 mesons were stable, then (vac)g„(x) jei)
=(vacate„(x) ~P)=0; i.e., the matrix elements of @„(x)
do not carry the t0-meson pole, and those of cs„(x) do
not carry the p-meson pole. We find it inost convenient
to characterize p-ei mixing by means of the resolution of
the currents which act as sources of these 6elds in terms
of the hypercharge and baryon number currents. Two
angles, which we designate by ey and 8N, are in general
necessary to describe this resolution. The isoscalar
hadronic electromagnetic current becomes related to the
renormalized fields p„and &u„and the angle 8r by

( J isosealar ggY

X [(coser)ms'P„—(sin8r) m„'ei„], (1.6)

where g& is the renormalized hypercharge coupling
constant.

In general, the two angles eg and 0~ are diKerent even
to 6rst order in the SUB symmetry-breaking interaction.
Of course, in the limit of SU3 symmetry, one must have
ay=0~=0. The actual values of Oy and 0~ depend on
the nature of the SU3 symmetry-breaking interactions
for which a number of models can be made. We shall
see, for example, that if one makes the ad hoc assump-
tion that all SU3 symmetry-breaking eGects are due to
the off-diagonal matrix elements of the "bare" mass
matrix Ms between P„e and r0„', then
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SU3 syrrnnetry is broken by certain current operators
terms. Such a model' is called the "current-mixing"
model; in this model 0~&0~, but

m„' tantIIy =mp' tan8~. (1.8)

Within the model, this relation between 8~ and 8~ holds
to all orders of the SU3 symmetry-breaking interaction.

If one makes the further assumption that the SU3
symmetry-breaking interaction transforms like the
isoscalar member of a SU3 octet, and equates the ob-
served masses of the nine vector mesons with the first-
order perturbation expressions, then one finds ey—33',
8~—21 in the "current-mixing" model, but tII~ ——0~—32 in the "mass-mixing" model (or, Hr= Hii —39 in a
variation of the same "mass-mixing" model). The
details of these special models are given in Sec. V 3. It is
important to note that, independently of the dynamical
model, the actual values of gy, ey, and 9~ can be deter-
mined (at least, to a good approximation) by using the
known rate of g'~%++X and by measuring the
leptonic decay rates of qP ~ t++t and ~' ~ l++l .

In Sec. VI, a discussion of the photon propagator is
given. The entire O(e') hadronic contribution to the
photon propagation is expressed explicity in terms of
the renormalized propagators of the vector mesons.
From this expression, it follows that to O(e') and
neglecting leptonic contributions, the ratio of the un-
renormalized charge eo and the renormalized charge e
is finite. The upper limit of (eo/e) can be estimated,
and we find

1&(eo/e)'(1+~re»~ 'e'

X Lg, 'rw, '+-', gr '(cos'Hrm», '+sin'Orrn ')j=1.03.

Various applications of the proposed identity between
the hadronic electromagnetic current and the vector-
rneson fields are discussed in Sec. VII. Some of these
results have already been extensively studied in the
literature; they are included in this paper, but with
particular emphasis on the underlying assumptions and

approximations used in the derivations.
In this paper, we consider only the usual hadronic

electromagnetic current which is odd under the particle-
antiparticle conjugation operator C determined by the
strong interaction. The question whether there does, or
does not, exist an additional C= +1part of the hadronic
electromagnetic current is not discussed.

The complete Lagrangian can be written as (neglecting
the weak interaction)

&=&i..e+&»»+~7 (2.2)

In this section we assume that the free Lagrangian Zf„,
and the strong interaction Lagrangian 2,& are already
given, but demonstrate that~for arbitrary Zi...+2.» a
gauge-invariant Lagrangian 27 can be constructed
which will yield Eq. (2.1) as part of its dynamical
equations, provided that the neutral p-meson field is
coupled only to a conserved current.

As a consequence of the strong interaction, the neutral
p-meson field operator satisfies the dynamical equation

BG„„i'/Bx„rip'p„=—gpJ„&+0(e),
where

8 8
Gpv Pv Pp'8' l9xy

(2 3)

(2 4)

ap„/Bx„= 0 (2 5)

on account of Eq. (2.3).The detailed form of J„&depends
on the strong interaction Lagrangian and the renor-
rnalization process which will be discussed in the next
section. Here, the discussion of gauge invariance can be
made independently of the detailed form of J„&,provided
that it is conserved. It can be readily shown that since
J„& is a conserved vector current and it transforms like
the I,=0 member of an isotriplet under the isospin rota-
tion, its spatial integral must be proportional to the
z component I, of the isospin operator. (See Appendix
A.) For convenience, we shall adopt the normalization
convention

—i J4pd'r =I, . (2.6)

m, is the observed mass of p„and g, is a finite coupling
constant, depending on the normalization of the current
J„&.Equation (2.3) is the "renormalized" field equation
of the meson field. The term O(e) shows that it is valid
only if one neglects the electromagnetic interaction. LIf
one wishes, one may also regard Eq. (2.3) as the
definition of g,J„&.j

The current J„& is assumed to be conserved:

8J„'/Bx„=0;
therefore,

(~~yv/~&p) isovee»or = &)»ppy ~ (2.1)

'The "current-mixing" model is similar to the vector-mixing
model considered by S. Coleman and H. J. Schnitzer {Ref. 4).

6 M. Gell-Mann, Phys. Rev. 125, 1067 {1962); S. Okubo,
Progr. Theoret. Phys. (Kyoto) 2?, 949 (1962).

II. GAUGE INVARIANCE

To simplify our discussion we will consider first only
the isovector part of the hadronic electromagnetic
current. The corresponding part of the Maxwell equa-
tion becomes, according to Eq. (1.1),

The isovector part of the hadronic electromagnetic
interaction is assumed to be given by the Lagrangian
density

(g„),.....».,=e(xpgp/~p )
X(J„'&„+', g, 'G„.'E„,)+0(r,') . (2.7)-

The term O(e') depends on the derivatives of the
charged fields in J„&.It is zero, if J„& does not contain
such derivatives; otherwise, it can be easily generated,
say, by the usual minimal principle. Equation (2.7)
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one finds
Q=I,+rzV,

)t, = —(tm, '/g, ) .
Thus, '
(~")'- -4-=I: g. —'(BGp'/»p) = ( t'—tt/g )pp' (2 9)

' Under the gauge transformation A p
—v A„+BA/Bx„ the elec-

tromagnetic interaction Lagrangian density (2.7) plus (2.20)
(which is given below) transforms like Zr —v 2„—eJvBA/Bxv,
where 8„=(&r) jeeveetor+ (Zr) jepeeeler and J„=J„v+-', Fv; for
simplicity, all 0(e ) terms are omitted. According to Kqs. (2.6}
and (2.16), —il"J4d'r=Q=I, +2Y. The difference J„' between
the current J„and the minimal electromagnetic current opera-
tor (Jp);, which satisfies the same normalization condition

4J (J4); r—ftr=Q, may not be zero, but it is obvious that this
difference J„'=J„—(J„); must satisfy PBJ„'/Bx„)=0 and
J'J4'der=0 An implicit .assumption is made here that (BJ„'/Bx„)
=0 is satisfied kinematically, without the use of dynamical equa-
tions. For example, J„' can be simply proportional to (BG„„p/Bx„)
Under the gauge transformation (of the second kind), the free
Lagrangian and the strong interaction Lagrangian density trans-
form like (Zi„e+Zet) ~ (Stree+Set)+e(Jv); (BA/Bxp). LIf one
wishes, one may also regard this as the definition of the minimal
current (J„);.) Correspondingly, the total Lagrangian 2 =St„,
+Z,t+2„ transforms according to 2 ~ 2+eJp'(BA/Bxp). The
gauge invariance of the action integral J'Zd4x, and therefore also
that of the equation of motion, is consequently guaranteed. For
the po meson, if we identify the unrenormalized current (J„v),
which enters in Eq. (3.2) below, as the minimal z-component
isospin current, then the current J„v is defined by Eq. (3.13),
J„v= (J„v)'+(constant) BG„„p/Bx„; therefore, the corresponding
difference, J„v (J„v)e, is Jp—'= (constant) BG„„v/Bx„, which does
satisfy (BJ„'/Bx„)=0 in a purely kinematical way.

It is important to note that a single direct coupling p„A„violates
gauge invariance. This can be most easily seen by observing that
such a term in the Lagrangian generates a non-gauge-invariant
contribution to the p-meson current proportional to A„. This
circumstance is associated with the fact that (Bp„/Bx,) =0 is stot
a kinematical identity, but is derived only after using the dynami-
cal equation and the condition that (BJ„t'/Bx„)=0. This point
has often been incorrectly stated in the literature. LSee, e.g.,
M. Ross and L. Stodolsky (Ref. 2) and L. Stodolsky (Ref. 2).)

The same gauge-invariant Lagrangian densities (2.7) and (2.20)
can also be cast into other diferent, but equivalent, forms. Some
of these alternative forms are discussed in Appendix B.' We emphasize that (2.7)—(29) are equations in renormajized
quantities. The term J„t'A„may be regarded as the "direct"
photon-hadron coupling while the term G„„&Ii„, is the gauge-
invariant photon-p meson mixing term discussed by Feldman and
Matthews (Ref. 2). We note that Eq. (2.9) is achieved Not via
the introduction of a term of the form p„A„ in the Lagrangian, but
by the assumption of a special relation between the "direct"
source term and the mixing term. In the case of free photons, it is
the direct source term rather than the mixing term which couples
the photon to the hadrons, but nevertheless, Eq. (2.9) holds. This
would seem to resolve the issue raised by Feldman and Matthews
in their Ref. 14. A related resolution has been given by Barton
and Smith (Ref. 2, Sec. 4.3) in the context of dispersion relations,
with reference to the connection between f, ~ and f, ~. See case 2
of Appendix B for further discussions.

gives a gauge invariant Lagrangian Z~. Upon varying
with respect to A„, it gives

(4)Fpv/Bxp)tsoveotor s(Jv )isoveotor i

where
)tsar p(

(&v )isoveotor=
~

Jv gp Gpv i+0(B) (2'g)

From Eqs. (2.3) and (2.8), it follows that

(&v )isoveetor= )tpPv t

which is Eq. (2.1).By using the normalization condition,
Eq. (2.6), and the fact that the total hadronic charge Q
is given by

Although we have established Eq. (2.9) only to the
zeroth order in e, the inclusion of all orders in e is
possible, but a full discussion will not be given in this
paper. Furthermore we observe that the definition of

g, has not yet been completely given as it requires a
speci6cation of a normalization condition on p„, to be
given in Sec. III. For the present, however, wepoint out
that the combinations g, Gp gp pp and ),gp which
appear in Eqs. (2.7) and (2.9) are all independent of this
specilcation.

For any real or virtual photon process A -+ B+p, the
isovector part of the matrix element of J„& is then
related to the matrix element of J„&for the correspond-
ing virtual or real process 2 —+B+p' provided the
4-momentum q& of p is the same as that of p . By using
Eqs. (2.3), (2.5), and (2.9), we find

q'+mps
(2.10)

where A and 8 can be any single- or multiple-particle
states of the hadrons. Sometimes, it is convenient to
express the matrix elements of J„&and J„& in terms of a
sum of form factors:

(B j J„&(x)
~
3)=Q FAB&(q') uBtr„'uA exp(iqixi),

(2.11)and

(B~ Jp (x) ~A)=p FAB (q')uB'rp'uA exp(iqixi),

where N~~F„'N~ denotes the appropriate choice of some
spin-momentum functions. If A and 8 are, say, single
nucleon states, then F„' can be either the usual pe„or
74o.„„q„and N~, N~ the corresponding spinor functions.
If A and 8 are multiparticle states, then N~~F„'N~ would
depend not only on the spin-momentum variables but
also on all other dynamical parameters that characterize
the states A and B. The definitions of the form factors
FAB&(q') and FAB'(q'), of course, depend on the explicit
forms of N~~F„'Ng and therefore also on the index i.
Equation (2.10) states that for whatever choice of such
definitions, the form factor FABp(q') is related to the
corresponding isovector part of FAB&(q') at the same q'

by Eq. (1.4a):
mp

2

[FAB (q )7isoveetor= FAB (q').
q'+m ps

(1.4a)

f' This property can be related to the Barton and Smith "bound-
ary condition" LRef. 2, Eq. (4.14)).

Thus, compared to FABP(q'), the electromagnetic form
factor [FAB&(q') 7;sov«t„always vanishes more rapidlys

Identicalconsiderations canbe applied to the isoscalar
part. Let the dynamical equation of the g and 4o mesons
be given by

r)Gpp'/f)xp rtso'ter„= 4—I„&,
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and
8Gav /8&a —m(a Iev= gv (2.12)

where iti„and a&„are, respectively, the "renormalized"
field operators of the iti meson and the Ie meson, me
and m„are the observed masses,

8 8
4.—

t9xp, Bxy

t9

G „= GO„— M~.
~&v

(2.13)

gY Y= i [—cos0y use —sin8Y ct4"]d'r,

Both currents cI„4' and ct„"are assumed to be conserved:

8g„4'/Bx„= 8g„"/8x„=0 . (2.14)

Consequently, as will also be proved in Appendix A, the
hypercharge F and the baryon number Xmust be linear
functions of the spatial integrals of ct4~ and cI4". With-
out any loss of generality, we may express this linear
relationship in terms of four real constants gy, g~,
0y, and 0~.

(8Fav/8&a) isoscalar = e(~v ) isoscslar r

where (J„&);„„,I„is given by Eq. (1.6).

(2.21)

For any real or virtual photon process A -+ J3+p, the
isoscalar part of the matrix element of J„&is then related
to the matrix elements of ci„e and cr„"for the correspond-
ing virtual or real processes A -+ 8+ctv', and A —+ 8+Iso
at the same 4-momentum transfer. By using Eq. (1.6),
we find

SU3 symmetry-breaking interaction. Estimations of the
actual values of 0& and 0& can be made by making

specific dynamical assumptions; these discussions will
be given in Sec. V.

In order to identify the isoscalar part, (J„&);„„,I„,of
the hadronic electromagnetic current with a linear sum
of the renormalized field operators lti„and I„,we assume
that the corresponding isoscalar part of the electromag-
netic interaction is given by the folio@ring Lagrangian
density:

(v07) isoscalar pe (~a AS+ ggY

&([cos0YG„e si —8nGY„„"]F„„). (2.20)

As a consequence, the isoscalar part of the electrornag-
netic field is given by

and

gird = i [—sin8ilr ri44+ cos8lll ri4"]d'r .

(2.15) (& I &s I A)isoscsisr

and

—i F4d'r= I', (2.16)

Ã4d'r =Ã; (2.17)

It is convenient to define two conserved currents F„
and E„which satisfy the normalization conditions ( ma—sin0YI I(al g„-IA) . (2.22)

kq'pm„'I

The matrix elements of cl„e and g„"are, in turn, related
to those of 7'„and X„ through Eq. (2.19). We have,
then, the following alternative expression:

these two currents are related to g„4' and g„"by

gyY„= cos0yr)„~ sin0y�„"—

gglllXs�

S1I18ltlps +COS8lll ps

and

The inverse relations are

cI„4'= [cos(8Y—8N)] I[cos8llrgyF'„+sin8ygllIIV„]

(2.1s)

[cy(& I I'„IA)+ c~(&
I &„IA)7

kq'+me'

f m~
+ I [(1—cy)(al I'„IA)—c (ale„lA)7,

Eqm+m„'
(2.23)

where

and (2.19)

ps"= [cos(8y —8llr)] [—sln0~gy I z+ cos8ygIrNs] .

Cy= [cos(8Y—8lll)] cos8Y cos0lll v

Cly= [gy cos(8Y 0pj')] gK cos0Y sin0Y ~v

(2.24)

It is important to note that the above de6nitions of gy,

g~, 0~, and 0~ depend only on the conservation of F
and X, and are ir4deperlderlt of any assumption concern-
ing the approximate validity of SU3 symmetry. The
constants g~ and g~ are the renormalized coupling
constants, and the angles 0i and 0~ relate the currents
gyF„and grvX„ to ci„& and g„". In general, these two
angles are diferent, 0~&0~, even to the erst order in the

Equation (2.23) shows that at q'=0,

(a I Z„ I A),....„„=-;(Il
I
I „IA).

III. RENORMALIZATION OF THE NEUTRAL

y MESON

In this section, we will discuss the renormalization
problem of the strorlg interaction of the neutral p
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meson, but only in the absence of the electromagnetic
interaction.

Let us assume that the part of the Lagrangian density
describing the neutral p meson and its strong interaction
is given by

~p = '(—G.-')' 2(—rrip'p')' gp—'pp'(~p')' (3 1)

where the superscript 0 denotes the unrenormalized
quantities; thus, p„ is the unrenormalized meson-field
operator

l9

G„,'=—p, '— p„',
»v

222pO is its unrenormalized mass, (J„p)0 is the unrenor-
malized current and g, is the unrenormalized coupliog
constant. The equation of motion is given by

&Gp.'/»p (rip)—' 'P= g'(J')' (3 2)

ZO ——(222,/222, 0)', (3.10)

1 BG„,
(~.')'+(1—Zo)—

Cn»~

The renormalized current J„& is the same current as
that used in Eq. (2.3). Its normalization condition
LEq. (2.6)j fixes the relation between g, and Z; the rela-
tion being

Zog o=zll2g (3»)

The equation of motion of the renormalized field p„
is given by

BG„„
2p Z 1/2g OZ (J' p)0

BG„,
+(1—Zo) =—

gpJ,', (3.9)
BXp

In Eq. (3.1), we assume for simplicity that (J.p)0

does not depend on p„', otherwise, Eq. (3.1) has to be
modified so that the equation of motion (Eq. (3.2)$
remains valid.

The current operator (J„p)0 transforms like the s com-
ponent of an isospin triplet, and it is assumed to be
conserved; i.e.,

Hence,

p„1 p„' G„„1G„„'
7

Cu Zoll gu Z0 gn

(3.12)

(3.13)

8(J„p)0/». =0. (3.3)

Therefore, according to the general theorem established
in Appendix A, the integral J'(J

4)
pOdr 2is proportional

to the observed s-component isospin operator I„and
we may, without any loss of generality, choose

(J«p) d2r=iI, . (3.4)

Since the normalization of p„' is 6xed by the Lagran-
gian density (3.1) and the canonical rules, condition
(3.4) defines the unrenormalized coupling constant g,o.

To obtain renormalized equations we irst set

p
0 Zl/2p (3.5)

where Z is a wave-function renormalization constant.
The Lagrangian density Zp given by Eq. (3.1) may be
written in terms of p„ in the form

@p= @free+ +et q

where

=—-'(G p)' —-'m 'p '

(3.6)

(3 7)

g„=—«(Z—1)(G„„)'——',L(222p') 'Z—m p')P„'
—

g OZ"'(~ ')'p (3 g)

and nz, is the observed mass of the p meson. The above
expression of 2, is convenient for a perturbation series
expansion in terms of 2,&, since the free Lagrangian is
constructed so that it would have the correct energy
spectrum if the neutral p meson were stable.

It follows from Eqs. (3.12) and (3.13) that the ratios
p„/g, and G„„/g„and the renormalized current density
J,& are independent of Z as expected. The factor Z is, of
course, of utility principally in connection with diverg-
ence difhculties and is introduced in order to make it
possible to express the theory in terms of 6nite quantities.
Apart from this requirement it can be chosen for con-
venience and has no physical consequences. Some
convenient choices will be discussed later.

By using Eqs. (3.9), (3.10), and (3.13), one finds the
important relation

Sip = 000 (3.15)

if the theory is divergent. Consequently, the right-hand
side of Eq. (3.14) contains only finite quantities. In
particular, if the theory is divergent, then m, = , and

(~.')'= —(~.'/g. )P' (3.16)

In this case, the unrenormalized current (J„p) becomes
proportional to the renormalized field operator p„. The
renormalized current J,& is, of course, di6erent from the
Geld operator p„.

(222p (mp) 2 ~GppP

P+g. 'I —,I — (314)
k g, Em,OJ»„

While the precise value of nz, depends on the form
(J„')0 assumed in the particular strong-interaction
theory, it can be shown that [see Eq. (4./) in the next
section) 222po) 22i2, and that
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(Jv ) isovector = (Jp ) (3.18)

Since we do not consider the renormalization problem
of the electromagnetic interaction, there is no difference
between J„& and the unrenormalized electromagnetic
current operator (J„«')'.

There exists an alternative possibility in which one
assumes that, instead of (1.3a),

(Jv ) isoveptor= (Jv ) (1.3b)

and therefore, neglecting higher-order electromagnetic
corrections,

mp '(mp) clGpvp

(J') -- t-= —
I

—p.+gp 'I, l
. (319)

g,
'

(m, ') ax„

In the case of m, '= ~, one has

(J")- -«-=( m. '/g )p— (3.20)

It has already been mentioned in the introduction
that these two views become identical if ns, '= ~; but
if the unrenormalized mass m, ' turns out to be finite,
then the proposal (1.3a) implies the form-factor relations
given by Eq. (1.4a) while the proposal (1.3b) implies
the alternative form-factor relation given by" Eq. (1.4b).

IV. THE lo-MESON PROPAGATOR

Let us consider the usual spectral representation of
the vacuum expectation value of the commutator
[p„(x),p.(0)j in the Heisenberg representation:

The proportionality between the unrenormalized
current operator and the renormalized 6e]d operator is
a general consequence of a vector field interacting with a
conserved current, provided that the unrenormalized
mass= ac. If the unrenormalized mass were finite, then
one would have Eq. (3.14) instead of Eq. (3.16).

Next, we discuss the relation between the electro-
magnetic current J„& and the unrenormalized current
(J„p)' of the p meson. If we assume Eq. (1.3a),

(1 3a)

then, by using Eq. (3.14), we find

(J")'--.t'.=(J')' g.—'(m lmp')'(~G /»p), (317)

which implies that in the case of an in6nite unrenor-
malized mass m, '

where the sum extends over all eigenstates
l
I') of the

strong interaction Hamiltonian that satisfy

(momentum) r = 0, (energy) r =m r,
and (spin) r =1, (4 3)

and the factor 3 is due to the further sum over all
three components of f«(0). Throughout the paper, all
boldface letters denote 3-vectors.

By using the Lagrangian given by Eq. (3.6), one finds
that the components of the canonical momentum
II(x) of the field variable p(x) are given by

II,= —iZG,.4&.

From the equation of motion, II is also related to p4 by

p =m, '[i(Zo/Z)V II—g, (J, )']. (4.4)

The comparison between the spectral representation
[Eq. (4.1)] and the equal-time commutator between
II and y leads to the sum rule"

Z '= o,(a)da. (4 5)

Similarly, by using the equal-time commutator between

p& and ft, and assuming that (J4p)' commutes with y
at equal time, one finds

Z '(m, ') '=(Zs/Z)m, '= u 'o (a)da, (4.6)

where Zs is given by Eq. (3.10). For the physical p
meson, the integrations in (4.5) and (4.6) extend from
4m ' to ~, where nz is the observed pion mass. By
taking the ratio of (4.5) and (4.6), one obtains

(m, ')'= a 'o, (a)da
4m ' 4m

o,(a)da. (4.7)

Since o,~ 0, Eqs. (4.7), (4.5), and (4.6) imply,
respectively,

(t12+g) 1/2

The function op(a) is related to the matrix elements of
the spatial components of p„by

where

p(a) bp g
82

Bxpixy
A.(x)da, (4.1)

D,(x) = —i(27r) '
&o

' sinott exp(itl r)d'g,

(mp') ')4m. ',
Z ') 0, and (Zo/Z)) 0.

In order that the theory be renormalizable [i.e., that
the renormalized propagator given by Eq. (4.10) below
exists j, the behavior of o p(a) as a ~~ must be such that

"Equation (1,4b) may be compared with Eq. (4.7) of the paper
by GeB-Mann and Zaehariasen (Ref. 2),

' Equations (4.5) and (4.6), together with Eq. (3.5), are the
same as Eqs. (12) and (11), respectively, of K. Johnson, Nucl.
Phys. 25, 435 (1961).
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J'a 'o, (a)da is convergent. Thus, (Zp/Z) must be finite.
On the other hand, the integral J'o, (a)da need not be
convergent. If it in fact diverges, then both Z ' and
the unrenormalized mass m, ' must be in6nite. Con-
sequently we establish (3.15).

Combining Eqs. (4.5) and (4.6) we 6nd
pm'

——[Z~o(m, ')]—'Zi, (4.16)

where (P denotes the principal value. If, as is usually
assumed, the imaginary part of (1/F) as well as the
derivative of the real part can be regarded as constant
within the resonance width, then the width is given by
the formula

1—Zo ——Z a '(a m—,')o, (a)da. (48) where we have written Z/Zi for the derivative of the
real part. Thus

For the hypothetical case of a stable p meson (i.e., if m,
were less than 2m ), Eq. (4.8) implies the inequality
0&Zp&1, and hence (m )'&m ' on account of
Eq. (3.10).

The r

Z d t'1)
Re/ —

/

Z, dqo &Fi;=„; (4.17)

enormalized p-meson propagator The definitions of m, ' and p given by Eqs. (4.15) and
(4.16) correspond to those given by a pole approxima-

(x) i(2 )
—4 D ( ) ex (i x )d4 (4 9) tion for F in the resonance region of the form

F(q')=(Zi/Z) (q'+ m, '—imam, )
—'. (4.18)

is given in terms of o,(a) through the relation

D„,(q) = ~»+a qpqv
o p(a) da, (4.10)

q+a M

D"(q) =~"F(q')+q.q G(q') (4.»)
and noting the relation

F+q'G= (Zp/Z)mp ', (4.13)

which follows from Eqs. (4.10) and (4.6), we obtain

D» '(q) = [F( )q] '[b» q„q„Zp 'Zm, 'G—(q')). —(4.14)

The renormalized mass is then defined as that value of
—q2 at which the real part of the 8„„term of the inverse
propagator vanishes; i.e., by the equation

Re[1/F(—m ')]=0. (4.15)

For the physical p meson, [F(—m, ')] ' is pure imagin-

ary; the same must also hold for F(—m, '), and we lnd

where e is a positive infinitesimal quantity, q„denotes
the 4-momentum (q, iqp) and q'=q' —qp'. Using (4.6),
(4.1), and (4.2), one easily sees that D„„(x) is related
to the time-ordered product of the renormalized 6elds
via

D"(x)= {TLp.(x)p.(o)]}- ~

im, '(Zp/Z) 64—(x)o4„o4„. (4.11)

In our notation, both d4q and 5'(x) are real. The last
term in Eq. (4.11) cancels the noncovariant part in

{T[p„(x)p„(0)]}„„„.The appearance of this non-
covariant term is due to the fact that the commutator
[p„(x),p„(0)]does not vanish for xp ——0.

Because the p meson is an unstable particle, it is con-
venient to de6ne the renormalized mass m, in terms of
the inverse propagator. Writing

Zg Z
1=—+m, '— a-'o, (a)da,

ZO ZO 5

(4.20)

where b is the lower limit of the continuous spectrum
in this hypothetical case. Hence one concludes

0(Zi/Zp(1. (4.21)

So far, except for the requirement that the renor-
rnalized p-meson propagator D„,(q) should be free
from divergence dHBculties, the choice of the wave-
function renormalization constant Z is completely
arbitrary. It is clear that different choices of Z can differ
from each other only by a finite positive multiplicative
factor, and such diferent choices all lead to exactly
the same physical result. On account of Eq. (4.19), the
conventional choice for the renormalization constant is
Z= Z~. On the other hand, the fact that the p meson is
unstable makes this choice less compelling, and we note
that the choice Z= Z0 simplifies a number of formulas.
For the remainder of this section and in the applica-
tions of Sec. VII, we shall use the convention

and therefore

Z= Zp ——(m, /m„')', (4.22)

In the hypothetical case of a stable p Ineson, the re-
normalized mass may still be determined by Eq. (4.15),
while the derivative designated in Eq. (4.17) deter-
mines the matrix element of the renormalized 6eld p„
between the vacuum state and the state of a p meson
at rest; thus,

(vac(y(0) [ p)=(2m') ' '(Zi/Z)' 's (4.19)

where s is the polarization vector (s'= 1). The spectral
function o,(a) contains a delta function of the form
(Zi/Z)8(a —m, ') so that Eq. (4.6) implies

ReF(—m, ') = o,(a) 6' du=0,
8—

SPYp
2 p„(x)= (m, '/m, )p„'(x) . (4.23)
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With this convention, it follows from Eq. (3.11) that

g, = (rts, /rip, p) g, ',
and from Eqs. (4.12) and (4.13) that

F(0)= rN,
—',

D„„(9=0)=mp '8„„.

(4.24)

(4.25)

The width y can also be explicitly expressed in terms
of the transition matrix elements. Let us define a
modified current operator J„&(x) whose matrix eleinent
between any two eigenstates A and 8 of the strong
interaction Hamiltonian is given by"

(&IJ.'(x) IA) = —[g.D. (v)) '(&
I p (x) IA) (4 26)

where q„ is the difference between the 4-momenta of
the states A and B. This modified current operator
J„&(x) does not satisfy either the usual Herrniticity
condition or the locality condition. Nevertheless,
since the integrated operator j'p4d'r is, according
to Eqs. (3.4) and (3.14), i(g, /pter,—')I„one has, by
using Eqs. (4.25) and (4.26),

V. RENORMALIZATION OF THE tp AND P
MESONS AND THE MIXING PROBLEM

1. Renormalized Equations

Although the renormalization problem of the ot-p

complex is complicated by the possible mixing (i.e.,
virtual transition &p~~g) between these two fields, it
can nevertheless be carried out in a manner which
parallels our treatment of the p meson. Let g„(x) and
rp„(x) denote the renormalized fields, and &„P(x), rp„P(x)
the corresponding unrenormalized fields. We write

a11d

(5.2)

The part of the Lagrangian density describing the P,
cv mesons and their strong interactions can always be
written, in analogy to Eq. (3.1) for the p-meson
problem, as

24'd'r =iI, . (4.27) g lg Pg ~ P ly P1lII 2$ P P Pg+ P (53)

where

The modified current operator J„&(x) is useful since
the matrix elements of J„&(x) must, by definition.

[Eq. (3.9)), satisfy

(BlJ„&(x)lA)=0 at q'+ttt '=0 (4.28)

while those of J„& do not. By using Eqs. (4.2), (4.16),
(4.18), and (4.26), we find that the partial decay width
of the p' meson to the final channel F is given by

rate(pp~ r)=-', ~g,s(Z, /Z, )l(rl Js(0)lvac)l'(2tts, ) '

X (density of states) r, (4.29)

where J& denotes the spatial component of J„&(x).The
total width y is

y= P rate(pP ~ I'),

where the sum extends over all different channels I'.
The factor (Zi/Zp) is due to our choice [Eq. (4.22)) of
the wave-function renormalization.

Equation (4.29) can be readily used for calculating
the various decay rates of the neutral p meson. These
applications will be discussed in Sec. VII. It is clear
that all above discussions can be applied to any vector
meson provided its current is conserved. The detailed
treatment of the g-rp mixing problem will be given in
the following section.

"For single-particle states A and B, (B~J~A) is, of course,
related to the conventional vertex operator F„(pg,pg) via the
formula

(B
~ J„(x)iA) =NetI'„(pp, Pg)mg exp(fqxxz),

where pz, pz denote, respectively, the 4-momenta of the states 8
and 3, and g=p~ —p~.

and

0—
pv

(jl

yp @
p

~&v

8 t9

G)V GO~

igg~ BXV

(s.4)

and

(Y4')d'r =hypercharge= Y

i (1V4p)d'r = baryon n—umber= Itt,

(5.5)

and will be referred to as the unrenormalized hyper-
charge current and baryon number current.

There is a certain arbitrariness in the matrices Ep,
Mo', and go so long as the normalization and orientation
(in the internal space) of the fields f„P is not specified.
That is, by linearly transforming the Gelds,

(5.6)

where A is an arbitrary nonsingular real matrix, and

which denotes the unrenormalized current operators;
gp is a (2&(2) real matrix, Ep, 3Ip' are both (2)&2) real
symmetric positive-definite matrices, and (the tilde)
denotes transposition. The currents V„' and X„' are
conserved; they satisfy
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defining by Eq. (5.3) may be rewritten in terms of f„in the form

g
—g—lg 0

KP'=AK0A,

Mp" =2~0'A,
gp =+go v

the Lagrangian density (5.3) becomes

where

~$—ro +p rv—free++f1—ro et v

1 1Z0-et free= —
p Bpvglvv

—
2 pfrM'fir v

~0 -.-t= 4—8. (S&& 1)—8:

(5 14)

(5.15)

&0 = -',g„—,'E—p'r2„,' 24, '—M 0'V, ' 0„'g—0'J,'.
One may therefore specify the normalization and
orientation by imposing certain restrictions on the forms
of Kp, Mp', and gp. The conventional speciication is
the "canonical form, " deined by requiring that Ep be
the unit matrix and Mp' be diagonal. It will, however,
prove to be more convenient in connection with SU3
considerations to use what we will refer to as the
"aligned form. "The aligned form is dehned by requiring

gp to be diagonal,

', $„(S—M—p'S M') P——Q„SgpJ„', (5.16)

(5.17)

g„.=S 'g„„P, and 22202, fn ' are the observed masses of
the designated mesons.

The equation of motion of the renormalized field P„
can, in analogy to (3.9), be written as

~8~.—M2$, = (M'S 'Mp 'gp)J, '
f'gr' O

(0 g 0)

and the diagonal elements of Ep to be unity,

(5 8)

= g.=—gJ„

~8~
+(1—M'S 'Mp 21f.pS)—

l9Xp

(5.18)

where g„and J„are related to the currents g„&, g,", p'„,

and X„ introduced in Sec. II by

where ~ is a constant which may, or may not, be zero.
Both the canonical and aligned forms are always
possible and specify the normalization and orientation
of $„0 completely. We will for the present, however,
leave the choice unspecified.

As in the case of the p meson, we assume that J„'
does not depend upon $„0.The equation of motion im-

plied by Eq. (5.3) is then

We recall that I'„and E„satisfy the normalization
Eqs. (2.16) and (2.17) and they represent, respectively,
the renormalized hypercharge current and the re-
normalized baryon-number current. The matrix g is,
according to Eq. (2.15),

Z 0(a/ax„) b„„'—Mpy. '= gpJ, '. (5.10) g=& gD~ (5.19)

By setting gp
——0 in (5.10), one easily sees that the

squares of the mechanical (i.e., unrenormalized) masses
of the g and cp are the eigenvalues of the matrix M

where T and gD are, respectively, related to the angles
ey, tt~ and the renormalized coupling constants gy,

g~ by

Under the transformation (5.7), we have

~2 + ~—1/2~ ~2+ ~—1/2
mech 0 0 0

(+ 1l2++ & ll2) 1M 2(Jt lj'—2++—&—1/2) (5 ] 2)

and

(covrv vlllrv)

(slnelv cosOjy'
(5.20)

(5.21)

which is a similarity transformation. Hence, as expected,
the unrenormalized masses are unaffected by the
transformation.

To obtain renormalized equations we set

Similarly to Eqs. (3.11) to (3.13), we have

Mp 'gp=SM 'g.
Hence

(5.22)

(5.13)

where the matrix S corresponds to the renormalization
factor Z'~2 introduced by Eq. (3.5) for the p meson. We
Inay call S the renormalization matrix. Similarly to
Eqs. (3.6) to (3.8), the Lagrangian density Zp „given

g 1M+ —
g

—1M 2P 0—
g

&—lM &2P v

g 'M'g„=gp 'Mp g,.—gp Mp g„, (5.23)

~gatv ~kievJ J 0+g 1 M ~ 2g 1M 2 (5 24)
gX~ l9Xp
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where

—2 (It —1/2g )
—lM —2(R —1/2g )

(+ & 1/2g—r) 1M— & 2(+—r 1/2g—r) (5 25)

and oq (a) is a (2)&2) Hermitian matrix given by

o~- P(a) =2 2 ~(a—~")(VaCI CP(0)
I

1'&

The matrix M „h ' is not necessarily symmetric, but
it diRers from M „z only by a similarity transforma-
tion and hence has the same eigenvalues. Equations
(5.23) and (5.25) show that g 'MQ„, g 'Mpg„„, and
M „h' are independent of the choice of the renormaliza-
tion matrix S and also of the normalization and orienta-
tion conditions imposed on the unrenormalized fields.
We shall refer to this property as normalisatiom-

oriemtutioe imariarIce. The current J„is, because of the
presence of the term g '(Bg„„/Bx„), normalization-
orientation invariant only for the hypothetical case of
degenerate M . This is to be expected, since application
of a linear transformation to both sides of Eq. (5.18) in

general does not leave 3f' diagonal.
The isoscalar electromagnetic current is given by

Eq. (1.6), which can also be written as

(&S )isoscaiar 2(g M 0'S)1 y (5.26)

and is therefore normalization-orientation invariant.
The notation ( )1 means the upper component of the
enclosed column matrix.

Equations (5.18) and (5.22) imply that, in analogy
to Eq. (3.14) for the p-meson case

J„p= g'MQ„—+M ..1, 'g 'M2(Bg„,/Bx„) (5.27).

For a divergent theory, the mechanical (i.e., unrenor-
malized) masses of the g and pl fields are infinite, and
hence M „1, ' vanishes. Comparison with (5.26) and
(5.27) then shows

(~v )isoscalar 2 (+v )1 2 +v (5.28)

2. The P-o& Propagator and NormaHzation-Orientation
Conditions for the Renormalized Fields

which plays the same role as Eq. (3.18) for the isovector
current. Hence the alternative identifications of the
isoscalar electromagnetic current with the erIrenor-
nsalised hypercharge current on the one hand, and the
renormalized g-pp fields on the other become identical
hypotheses for a divergent theory.

OOrv (a') da=Ep (5.31)

and

a 'oo P(a)da=Mp '. (5.32)

For the realistic case of unstable g meson and &u meson,
both integrations extend from 9m ' to . It follows
from these two sum rules that the squares of the un-
renormalized masses (212qP)2 and (2/2„P)2 (i.e., the eigen-
values of M „s2) satisfy

(222' p) ') 92/2 ' and (2N ') ') 92/2, 2. (5.33)

The above inequalities can be most easily established
by choosing the canonical form Eo= 1 and 3EO'=3l „h'
diagonal.

We now discuss the question of a convenient specifica-
tion of normalization and orientation conditions for the
renormalized fields. It is sometimes convenient to
specify normalization and orientation separately. We
note that the renormalization matrix S is a real non-
singular matrix and that any arbitrary real non-
singular matrix can always be uniquely decomposed in
the form

S=Ts
where the matrix E is diagonal and positive,

(5.34)

(5.35)

&&«IC"(0)l ), (530)

where the boldface letters denote the space components
and the sum extends over all I=O eigenstates

~

I') of
the strong interaction Hamiltonian which satisfy
Eq. (4.3). From time-reversal invariance, or CPT in-
variance, it follows that a& '(a) is also a real matrix.
Similarly to the derivation of Eqs. (4.5) and (4.6), one
can show that the following two sum rules hold for the
unrenormalized spectral function a.q„P(a):

let us consider the spectral representation of the
vacuum expectation value of the commutator
fP„P(x), 1/t„P(0)) in the Heisenberg representation:

cosa' —sino. i
~S

~

~

sinn~ cosa, 2

(5.36)

o. '(a) 8 —a ' 6 (x)da (529)
~y~Sv-

The function A, (x) has already been used in Eq. (4.1),

with n~, 0,2 real. We shall refer to E. as the normalization
matrix and Ts as the orientation matrix of S. As an
application of the above separation, we note that the
renormalized current J„(x), delned by Eq. (5.18), is
independent of the choice of the normalization matrix
R. This can be verified by using Eq. (5.24) and noting
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o '(a)da- '
—M p' . (5.44)11o(q')=q '

g (ag„„/a*„)=g;M. sM -s-'(ag„, /ax„),
q+a pp

that the only normalization-orientation noninvariant which, in view of Eq. (532), is also equalto
term in the right-hand side of (5.24) is

which is independent of the normalization matrix E
since M' is diagonal by definition.

In the hypothetical case of a stable P and pt meson,
a convenient orientation may be defined by the
requirement

(vacle. l~)=(vacl~. l@&=0, (s.37)

where lp) and lp~) are the "physical" g-meson and
~-meson states in the hypothetical case. Thus, the
angles 0.~ and n2 in the orientation matrix Tq are given

by

From (5.43), we find that IIp(q') at q'= 0 is given by

IIp(0) =Mp ' a 'op„'(a)da Mp',

and from (5.44) it follows that IIp(q'), like op„P(a), is a
symmetric matrix.

The observed masses of the p and pp rnesons are
determined by the two roots q'= —m&' and q'= —m„'
of the equation

«n~i= &vac I y.p
I ~)/(vac I ~.p I ~&, det

I
Mp'+q' ReIIp(q') l

=0
~ (5.45)

and (5.38)

tannp ———(vac l(o„p
l y&/&vac l

y„p
l y);

&,.'(q) = asv+ a qvq~
op„P(a)da.

q +a—M
(5.41)

Its inverse can be written as

(n„„p)- =Mp a„„+(qpa„„—q„q„)II,(q ), (s.42)

where IIp(q') is a (2&&2) matrix related to op„P(a) by

IIp(q') =
op„p(a)da- '

q +a—ip

Equation (5.37) and the equation of motion (5.18) then

imply

&vacl~. le)=(vacl~. l~)=0, (5 39)

and, therefore, the matrix elements &A l J„(0)!B) are
free of poles at q'=(p~ —pii)'= —

primp' or —m„' for
arbitrary hadronic states A and B. The converse is
also true; i.e., the requirement that (A l J„(0)!B& be
free of p-pp poles implies Eq. (5.39) and, consequently,
Kq. (5.37). The normalization matrix R can be fixed

by specifying values for &vaclPl@& and &vacl pplpi), the
conventional choice, analogous to Z= Zi in Eq. (4.19),
being

(2')' 's (vaclP!$)=(2m )' 's &vaclpp!pp)=1, (5.40)

where lP) and !co& refer to the p-meson and pp-meson

states in their respective rest systems and s is the
polarization vector (s'= 1).

Next, we turn to the realistic case of unstable P
and co., it is convenient to discuss the normalization and
orientation conventions with reference to the pro-
pagator. The unrenormalized propagator S„„p(q) is
related to o.

p '(a), defined in Eq. (5.30), by

where ReIIp(q') denotes the real part of IIp(q').
At q'= —ns„' and q'= —m&', the vanishing of the

determinant requires that the matrix Mp'+q'IIp(q')
must be, respectively, of the forms

M p' —pN
' Reilp( —pip ') =g 'N(p~)@(pi)

and

M p' mp' R—eIIp( —mp') = —X@'I(@)g(P)

(5.46)

where 1V„and Ep are real numbers, and N(&u) and e(@)
are two real column ! i.e., (2&&1)) matrices, both
normalized to unity,

N(~)~(~) = ~(4)N(4) =1. (5 47)

The difference in signs in the two equations in (5.46)
corresponds to the assertion that the diagonal elements
of the left-hand sides of these two equations are,
respectively, nonnegative and nonpositive. This is rigor-
ously true in the case of the pole approximation (which
will be discussed in detail later), since (q'+mp')) 0 at
q'= —m„' but (q'+m~')(0 at q'= —pimp'. We regard
these sign assignments as highly probable in the actual
case. The treatment which follows can obviously be
tailored to 6t whatever signs actually occur.

A general orientation convention ! that reduces to
Eq. (5.37) in the hypothetical case of stable @ and pi

mesons) can be obtained by choosing the orientation
matrix Ts, defined by Eqs. (5.34) and (5.36), as

(Ni(~) up(~))
!7's=l

Qy N2

(5.48)

where ui(i), Np(i) are the two matrix elements of the
(2X1) matrix e(i), and i=& or p~.

Let 5)„„'(q) be the inverse of the renormalized pro-
pagator, related to the inverse of the unrenormalized

propagator by

~p-'(a) n„„- (q) =s!n„„()?s. (s.49)
da MpP, (5.43)

a(qp+a —ip) By using Eqs. (5.46) to (5.48), we find that, at the two



KROLL, LEE, AND ZUM INO

roots qp = —mpp and q'= —m~p of Eq. (5.45),

Ep2iV„2
(q'+my')

mQ PE~

S|3fp +q ReIIp(q )jS=
R„2Ep2

(q'+m. ')
mp2 —m„2

(5.50)

Correspondingly, the real part of the renormalized propagator becomes

Ep2E„'
(q'+mp')

mq' —nS„2
ReLS„, '(q) j=

R„2' q2
(q'+m ')

5ZQ

Strait

PV p (5.51)

at the two roots q = —m~ and —yg where denotes
the part of S„„'that is proportional to q„q„. [In
the hypothetical case of the stable P and p~ rnesons,

Eq. (5.51) implies that, independently of the constants
N& and N the orientation condition, Eq. (5.37),
is satisfied. )

So far as the renormalization problem is concerned,
the only requirement on the renormalization matrix S
is that the renormalized propagator

and
p1 0

S ReIIp( —mp')S= SReII,(—m ')S=
~

. (5.56)
0 1

We note that Eqs. (5.55) and (5.56) can also be
derived by making a weaker approximation in which
one neglects only the difference between the real part
of IIp(q') at q'= —m and that at q'= —mq', i.e., we
assume

K)„„(q)=S 'S„„p(q)S ' (5.52)
ReIIp( —mq') = ReIIp( —m ') . (5.57)

q'+mg'
ReLX)„. '(q)$=

0

0
8„.+

q +m~
(5.54)

at the two roots q2= —ms~2 and —m„2.
For practical applications, it is reasonable to as-

sume that in the resonance region from q2——m„2 to
q2——ms~2 the propagator is dominated by the two
poles; i.e., only these two-pole contributions are in-
cluded in $„„(q). /With this approximation the nor-
rnalization choice (5.53) becomes, for the hypothetical
case of stable P-p& mesons, the same as the normalization
condition given by Eq. (5.40)). Thus, Eq. (5.54) should
hold for the entire resonance region m &—q'&m~'
and, in particular, the transformation matrix S satisfies

~2—g~ 2S— (5.55)

should be free from divergence difhculties. Thus, just
as for the renormalization constant Z in the p-meson

case, E~, or R, is determined only up to an arbitrary
finite multiplicative factor; all different choices of such
finite multiplicative factors clearly lead to the same
physical results. As we shall see below, a particularly
convenient choice of E~ and E.„is to set simply

E 'N '=E 'N '= (m '—m '). (5 53)

consequently, Eq. (5.51) becomes

[The imaginary parts of IIp(q') at q'= —m&' and
—m„' are clearly very different. $ From Eq. (5.56), it
follows that the pole approximation implies this weaker
condition (5.57). Equation (5.57) is, in fact, equivalent
to the pole approximation, for a hypothetical stable
g-co system, but does not require the full extent of the
pole approximation for the realistic case.

Finally, we wish to relate the renormalization matrix
S with the matrices gp and g occurring in Eqs. (5.3)
and (5.18), respectively. If in the resonance region,
m&'& —q'&m„2, the pole dominance is a good approxi-
mation, then by combining (5.22) and (5.55) one obtains

ggo (5.58)

If, in addition, the aligned form is chosen for the un-
renormalized 6elds, then according to Eq. (5.8) gp is
diagonal and, using (5.19) and (5.21), we have

gr /gr
S '=T

0
(5.59)

We recall that the matrix T depends on two angles
gr and 0~ which are introduced in Sec. II LEq. (2.18)j
to relate the currents g„~ and g„" to grI"„and g~N„;
Eqs. (5.59) and (5.13) show that the same matrix
also transforms the unrenormalized field P„P, after
multiplication by a diagonal matrix gogD ', into the
renormalized field P„. Note, however, that 2' is not
equal to the Ts defined by Eqs. (5.34) and (5.36); these
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two matrices are related to each other by

R T8= Tgpgz) (5.60)

and, consequently

m„' tan8y ——mp' tang~. (5.67)

where R, gp, gD are all diagonal matrices.

CNrreet-Mixieg Model

We consider first the special model in which the
matrix Mp' is assumed to be diagonal:

f( i')'
Mo'=!

k 0
(5.61)

The matrix Ep may, or may not, be diagonal. If Ep
is also diagonal, then according to Eq. (5.9), Eg is a
unit matrix, and (pro)', (ygo)' become, respectively, the
(unrenormalized mass) ' of the it meson and the cu meson.

The SU3 symmetry is assume rot to be valid; as a
result, the matrix 110(q') is not diagonal. A likely
mechanism is that in the absence of the SUB symmetry,
the vacuum expectation value (vac! I'„'(x)N„'(0)!vac),
for example, is no longer zero. Such mixed-current
matrix elements can give rise to the off-diagonal matrix
element of 110(i7'), but rot of M02. For convenience, we
call any model, in which Mgg is diagonal but 110(iI')
is not diagonal, the "current-mixing" model. For our
analysis, the precise mechanism of the SUB symmetry-
breaking interaction is, however, immaterial.

Assuming the validity of (5.55), it is easy to verify
that Eqs. (5.55) and (5.61) imply that S has the general
forn1

(pi ) Tsar cos8 (Isi') 'rN sin8~—

(p20) 'mq sin8 (iig') 'm cos8i

where the angle 0 is real and its value depends on the
matrix ReIIO( —mq') = ReIIO( —m„'). Upon comparing
(5.62) with (5.59), we find

3. Special Models

Hitherto, our discussions have been cocmpletely
general. In this section, we will discuss two specific
models. As we shall see, the angles Oy and 0~ become
related, though in diferent ways, in each of these two
models. For the definitions of these models it is con-
venient to adopt the aligned form for the unrenor-
malized fields. Accordingly gp has the diagonal form
(5.8) and Eo the form (5.9). (In the limit of SUg sym-
metry, the aligned form also implies Ep=1 and Mp'
diagonal. Therefore, in this limit the aligned form be-
comes the same as the canonical form. )

(y 0)2
lim ReIIp=

SU3 sym 0

0

(ago) gi
(5.68)

The renormalized masses of the octet and singlet vector
rnesons in the SU3 symmetry limit are, respectively,
given by

imo:tet (Pl /ltl )

msingiet = (itt2 /4 ) ~

(5.69)

The inclusion of the SU3 symmetry-breaking interaction
in the current-mixing model does not change Mp', but
it alters ReIIii from (5.68) to

(5.70)

If the SU3 symmetry-breaking interaction is assumed to
transform like the I=0 member of an octet, then to the
first order of such a symmetry-breaking interaction
one must have

(5.71)

Adopting the notations of Coleman and Schnitzer, ' we
define g and P by

and
Xi =Xio(1+2g)'~'

(x 9. ') 'ti=p
(5.72)

To first order in the SU3 symmetry-breaking inter-
action, the observed ma, sses of E*,p, g, and cv are related
to the zeroth-order renormalized masses m, .~.t, m„,~,~

and the two parameters g and p by

err*= (1+e)-"'m.,t,t, (5.73)

It is important to note that these results hold to all
orders in the SUB symmetry-breaking interaction, pro-
vided that the "current-mixing" model is valid.

An estimation of the values of |Iy and 0~ can be made
if one assumes that the SU3 symmetry-breaking inter-
action transforms like the I=O member of an octet
under the SU3 transformations. To simplify our dis-
cussions, we will further approximate Re110(t7') by a
constant matrix, as is the case in the pole approximation.

In the limit of SUg symmetry, the matrix Iio(q')
must be a diagonal matrix. Let us denote its real part by

ms ——(1—2e)
—"'moots„ (5 74)

co 20 sin20

)
=

~ ) (coc'S+ sin'e),

(5.63)
and

mq '+m '=m»nsi« '+(1+2')neo«« ', (5.75)

(5.76)(iity~cc) (irtoetet~singiet) = 1+2& p
(5.64)

Thus, one finds

tan8r ——(m~/m ) tan8,

tan8iii ——(m./m~) tan8,

(5.65)

(5.66)
m. ,g,g

——839 MeV, m„gy,g= 817 MeV,
e= —0.115.



1390 KROLL, LEE, AND ZUM I NO 157

and
P= —0.18. (5.77)

it can be diagonalized by a real orthogonal matrix, say
V:

From Eqs. (5.75) and (5.76), it is clear that P=+0.18
is also a solution. However, since under the transforma-
tion P„P~ +P„P, cp„P ~ —op„o, P transforms ~ —P, we
may, without any loss of generality, choose P to be
negative (so that tan8 becomes positive). The angle 0

in Eq. (5.62) is related to these parameters by

where

/(»)'
mp2= V~ ~V,

4 0 (p,)')

~

~

cosa sinu)

—sinu cosa)

(5.86)

(5.87)

«n8= (pm~'msinglet) 'moetet(me msinglet ) y (5 78)

which together with Eqs. (5.65) and (5.66) yields

0~26&

ey—33', ((»/ill)'

(»/&2)2&
(5.88)

and p~, p2' are the two eigenvalues of Mo'. In the limit
of SU3 symmetry, a=0; therefore, to the erst order in
the SU3 symmetry-breaking interaction, we can neglect
a', and (5.82) becomes

8N—2i . (5.'79)
where

(~lll2) (Pl P2 ) Sllla cosa=(Xlll2) (» P2 )a
For convenience, we have chosen t3, and also Oy and ON,

to be in the 6rst quadrant, instead of the third quadrant.
(Under $„~—Q„, cp„—+ —op„, but ill„o —++&„P and
cp„o ~ +&p„o, one finds 8 —e 0+180, ey ~ 8r+180 and
Oiv ~ elv+ 180'.)

The values of (»/Xl), (»/X2), and $ can be determined
from the known vector-meson masses, if we make the
following further dynamical assumptions:

(i) The eigenvalues of 3Ep2 are 22ot changed by the
introduction of the SU3 symmetry-breaking interaction;
i.e., in the limit of SU3 symmetry, one has from
Eq. (5.86), V=1 and

Mass-Mixieg Model

Next, we consider a different model in which the p-op

mixing is assumed to be due entirely to the off-diagonal
matrix elements of Mo'. In general, if the matrix Mo' is
nondiagonal, then Ilp(i72) would also contain nonzero
off-diagonal matrix elements. However, in the mass-
mixing model, we make the ad hoc assumption that

(")'
lim ilrp'=

SUs sym 0 ( )2f
(5.89)

This assumption appears natural if one imagines the
unrenormalized theory to be in the canonical form, in-
stead of the aligned form which is used here. In the
canonical form this theory is characterized by a non-
diagonal go' given by go'= Vga.

In addition, we approximate the matrix ReIIp(q2) by a
constant matrix, and denote its limiting form by

/(Xl)' 0
ReIIp( —m&2) = ReIIp( —m ') =~, (5.80)

( 0 (Z,)2

but Mpp can be any arbitrary (2X2) real symmetric
matrix. By using Eqs. (5.55) and (5.56), one finds that
the matrix S is given by ((Xl')' 0

lim ReIIp(q2) =
~SUs sytn ( 0 P P)2)

(5.90)0 )5= /U,
0 X-'J (5.81)

(Xl ' 0 /Xl ' 0

Eo x; lo x ) (5.82) (5.91)

msinglet (P2/ll2 ) ~

By comparing (S.81) with (5.49), one derives in this
mass-mixing model (ii) The SU2 symmetry-breaking interaction trans-

forms like the isoscalar member of an octet. Thus, to
first order in the SUg symmetry-breaking interaction,

(5.84) X20= X2. (S.92)

0F ON p

(gy'/5-) =~1

The renormalized octet and singlet masses in the SU3

where U is the real orthogonal matrix which diagona]. izes symmetry limit are, therefore, given resPectively by

m.„„=(»/Xlo),

and

(gm'/gX) =l2 (5.85)
The parameter X~ is assumed to be difTerent from its
SUB symmetry-limiting value X~ . %e write

The matrix 310' is real symmetric matrix; therefore, Xl ——Xlg(1+2g)'~2 (5.93)
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mme ——(1+g)-"2m.„.„
m„=(1—2g) 't'm„„, ,

but, instead of Eqs. (5.75) and (5.76),

(5.94)

(5.95)

The SU2 symmetry-breaking interaction mixes
through the angle t2, or the parameter $ in (5.88), but
the diff erence between the observed vector-meson
masses and their zeroth-order masses m„t,~ and m„„g~,t
depend on both ( and g. We have, as in Eqs. (5.73)
and (5.74),

and
msinglet (p2 /lt2 )

(s.1o2)

@2=@2 (5.1O3)

The masses of E*,p, @, and a& are related to their SU2-
symmetry limits m,.&,&, m„„,&,t,, and the ratio

We make the same assumption (ii) as in the previous
case. By using Eqs. (5.86), (5.87), and neglecting
O(a2), we find, in order to conform to the assumption
(11),

and
m&2+m~2= (1+2g) mpctet +msinglet

m~'m„'= (1+2g) (mpctetmsinglet)

(5.96) by
(PI/lttI ) = 1+25,

mxe2= m. ,t,t'(1+8), (5.104)

From the known masses m~+, m, m@, and m„, @re

determine
m, '= m„„,'(1—28), (s.1os)

yn. .t,.~=839 MeV,

~sing[. et 859 MeV, .

mg2+m„2= (1+28)mpc«t2+m„. giet2, (5.106)

m&2m '= (1+28)(m t eterne» intg)e' $', —(5.107)

and
)=1.93X10' (MeV)'

The angles Oy and 0~ are given by,
tan8r= tan8lv $ (m inglet m ) (5.98)

ssoetet 850 MeV,

~singleg= 884 MeV,

where ( is given by Eq. (5.88). Equation (5.98) remains

(5.97) applicable. By using the known vector-meson masses,
one finds, in place of Eqs. (5.97) and (5.99),

and therefore
Oy = 8~—32'. (5.99)

For convenience, we have chosen $ positive and
0&= 8~ in the 6rst quadrant.

o"=0.103,
$= 2.07X 10' (MeV)',

ey=0~=39 . (5.108)

(5.100)

In place of Eq. (5.89), one may write

((~I')'
SUS sym lt 0

0 q
!

(~2')'&
(5.101)

Instead of by Eq. (5.91), the renormalized octet and

singlet masses in the SU3 symmetry limit are given by

m..t.t = (pI'/XI')

Mass Mixirtg M-odel (A Variatioyt)

The mass-mixing model implies Oy = 8~, but the above
estimation 8~=0~—32 is based on further ad hoc

assumptions (i) and (ii). In this section, we will give a
variation of the same mass-mixing model in which all
the above formulas (5.80)—(5.88) are assumed to remain
applicable. The only change is that, instead of the
previous additional assumption (i), one assumes':

(i)'. The matrix Reilg(g2) is approximated by a
constant matrix, and it is, for some unspecified dy-
namical reason, not changed by the SU3 symmetry-
breaking interaction. Thus, one may use Eq. (5.80),
but set

We note that Eqs. (5.104)—(5.107) reduce to Eqs.
(5.94)—(5.96) if we set g= —8 and neglect O(g2). The
difference between the two estimations L(5.99) and
(5.108)] of 8r ——8lv in the mass-mixing model lies,
therefore, only in the higher-order terms of the SU3
symmetry-breaking interaction.

VI. PHOTON PROPAGATOR

The hadronic contribution to the electromagnetic
current may influence purely leptonic processes through
its eGect on the photon propagator. Indeed, discussions
of contributions arising from this source to the anoma-
lous magnetic moment of leptons" and to electron-
positron scattering" have already appeared in the
literature. We wish, however, to exhibit here the fact
that our considerations imply an exact (in the strong
interactions) connection between the order e' hadronic
contributions to the photon propagator and the vector-
meson propagators. Such a connection can be derived
directly by considering the set S~ of all e' order Feynman
graphs for the photon propagator (to all orders in the
strong interaction, but neglecting leptonic contribu-

"L.Durand III, Phys. Rev. 128, 441 {1962);C. Bouchiat and
L. Michel, J. Phys. Radium 22, 121 (1961).

'4 R. Gatto, Nuovo Cimento 28, 658 (1963).
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tions) and the set S ..., of all Feynman graphs for the
vector-meson propagators (to all orders in the strong
interactor, but only zeroth order in e). By using the
strong interaction Lagrangian (3.7), (3.8), (5.15), and
(5.16), and the gauge-invariant electromagnetic inter-
action Lagrangian (2.7) and (2.20) Lor, more simply, the
alternative identities (1.3b) and (5.28)$, it can be
readily seen that each of the graphs in the set S~ cor-
responds to a subset of graphs in the set S „,„.It is
convenient to include also the free photon propagator
in S~. One finds, then, that there exists a homomorphism
between the set S~ and the set S „,. While it is
straightforward to convert this homomorphism into
algebraic relations, and to derive the results that are
given by Eqs. (6.9) and (6.15) below, the detailed
description of such a graphic procedure turns out to be
somewhat unnecessarily complicated. Thus, we sha)l
give, instead, a formal analytic proof in the following.

For convenience, we begin with the general expression
6rst used by Kallen, " and write for the vacuum ex-
pectation value of the photon commutator

E'„. (x) =(0[LA„(x),A„(0)][0)

em,2 4

X„„»= d'yd's(vac
( L&„(y),&,(s)]( vac)

82
XDr (x y)D—Ir( s) —I.,——Ap(x)

exp, Bxp

e'm 4
P

d'yd's 8 —a-' — a (y —s)o (a)
~&p~&v-

a2
gf

2

XDa(x y)Da—( s)da —Io — ~p(x) ~ (6 6)
l9XPBXIr

on account of Eq. (4.1).
Taking Fourier transforms, we find

Z„,»(q) = i K„,»( )xe-'o~.~d4x

e'm, 4 0; a= 27ri — da e(qp)
m„2

gpgv
X ~.,~(qs+ )+

"
"(~(qs+a) —~(qs)), (6.7)

applying Eq. (2.9), we write for the p contribution to
E„,&"

r)~or/r)Xo = (6.2)

= —ib„.hp(x) —I. Dp(x)+ d4yd4s

Xp,~&v

X (vac
~ f rl„'(y), e(„'r(s)]

~
vac)Da(x —y)D~( —s), (6.1)

where eI„& is the total electromagnetic current defined by

where e(qp) = qp/~ qp ~. The term in 5(qs) is the contribu-
tion of the I., term. The p contribution to the photon
propagator

D '(q) =q '~ +D"'"(q)+D""(q) (6 8)

is obtained from (6.7) via the correspondence"

22rie(qp) b(qs+ a) ~ 1/(q'+ a ie), —

Dp(x) is the same h, (x) function given by Eq. (4.1)
with a=0, and Dg is the retarded Green's function
satisfying

2Dg(x) = —5'(x).

yielding the p contribution to D„„&"(q):

e mp qoqr 0'o(a) 1
D„,»(q) = h„„— — da

g2 q2 a2 q2+ a
(6.9)

The constant L is to be chosen so as to guarantee
E„„&=0 for x spacelike. To order e' we may split
E„„&into a zeroth order plus a lepton part and a hadron
part; thus

IC„„&(x)= —ib„„hp(x)+X„„&'(x)+E„„&"(x), (6.4)

with

E'r"=e' d4yd4s(v'ac~(J„'r(y), J.'r(s))~vac)

8
XDz(x—y)Dz( —s) I s &p(x), —(6 5—)

t9$PBXIe

and J„& denotes the hadronic electromagnetic current.
For simplicity of notation we include only the p contri-
bution to J„'r in the following discussion. The p and ro

contributions will be added to the final formula. Thus,

'5 G. Kallen, Helv. Phys. Acta 25, 417 (1952). The L used in
this paper corresponds to 3I in Kallen's notation.

It is of interest to note that

e mo qoqv 1 0'p(a)
lim D„„»= h„„— -—da, (6.1O)
ff2 +oo

g
2 q2 q2 g2

so that the p contribution to the order e' part of the
charge renormalization is given by'"

b(cps), e'm, 4 " o,(a)
da, (6.11)

e2 gp 4m '
"Some additional details and references to some of the relevant

literature are given by L. M. Brown and F. Calogero, Phys. Rev.
120, 653 (1960), Appendix."' fqote added en proof. In writing (6.11) we use the ratio

lim q'Dr (q') /lim q'Dr (q')
$2~00 g2~

as the definition of (ee/e)2 where D&(q') is the coefficient of S„„in
D„„&.An alternative definition of (ee/e) is given simply by the
limit

lim q'(D& (qs)j„„
@2'

where /Dr(q')]„„„ is the coefficient of S„„in the unrenormalized
photon propagator LD„r(q')g „.It is interesting to note that
for the present case these two definitions give the same result only
if the unrenormal. ized mass m, is infinite. For details see T. D. Lee
and B. Zumino )Nuovo Cimento (to be published)g.
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. (4.6)

4g m~ 4m'

(6.17)

e lecting leptonic contii utions, we
t'b ti to hr'

e hadronic con rifi d that the entire
alized charge eorenormajization is ni e;

is given by

3.11), the productWe note that, onn account of Eq.
f the renormalizati' is indep ndent of the choice o

. For definiteness, we may
Z=Zo b E .

shall see in t e nex
(6.12) becomes(4w) 'g '—2.3. Thus, ,

(eD/e)'=1+e' a 'da

ropagator Spv yb
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renormahzed 4 Pchar e, and it is related to the an o

~pv+e qpqv
tTy~ a a.

E an 0-
'

follows that
lized charge eo y 0 —'

and (rp(a)~0) it o o

q+8—M9m '

8(eo )p 1 e mp

o
4gp m2 2g2

(6.13)

essed explicitly in ternisnis of theD „ can be expr p
p- D ( ). Recalling Eqs.p-propagator „„q .
we write

a 'o.,(a)da(1+—', (g,m. ) e m,
. 4m'

1
+ g

—iM2
36

d M' ' m '. (6.18)a 'Op„, a daM2g nz 2.
—11

2m 4D g g
2 i

g
' +-'L 'M'~~-(~)M'g '3»}

D„,(q) = o (a)da, = b„„F(q')+q„q„G(q'),P

q +8—ze

'on to the photonf r the p contribution oand obtain or
propagator

q~q
D„."'(tt) = (e'm. ,'/g, ') (5„

LF(q') —I''(o) —(q' —i~ '
q

—ze

(6.14)

es e uivalentfor all physical processes, q
'

th fo of the th o
ld be derive y s

a
' '

Fe nman rules to t e orm
E (88) Th t ho

g ')' is equal to
given

arin there, e m, g,
the term e'mp'/g, ')F(0) of Eq. . er

PP '"g

in e'.
ression for the hadronic conontribu-P " P

a ator, obtainetion to the photon propag .
, b

and (6.9), is

( q)lqv

I
da

D yh —
e2~

q

(6.15)' )+-'t 'M'~, „(a)M g&&fg. 'm'~. « —. g

(6.16)

b E s. (5.19) and (5.17), re-where g an
1 1)th tri t 11 denotes the

d lf
spec iv

q ~ is the renorma ize sp
1' ed spectral-function

e em
matrix, relate to ea th unrenorma ize s
matrix o.p„' o Eq. (5.30) by

aq„(a)=S 'Op„'S ',

above upper limit of (eo/e)' can beThe value of the above u

t11 t t o W 6numerica 1 values found in t e nex

-'e2m1((eD/e)'(1+-, e m„
m + gr (cos Hy'my sin

=1.03.
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Eq. (4.26). By using Eq. (4.29), one finds (A= c= 1)

ra«(p' ~ pr++ir ) = (48mm ') '(m '—4m ')'~'

&& I:g.F-'(—,'))'(z /zo), (7 1)

where F & is the vertex function (or, the n.ir-p form
factor), defined by

((m-+ir
—

) '"
I Jp(0)

I
vac&= s(p./tp. )F..~(q'), (7.2)

l(ir+7r )' ) is the two-pion "incoming" p-wave eigen-
state of the strong-interaction Hamiltonian in the
center-of-mass system, 8 is the polarization vector
(chosen to be real), cp is the pion energy=-', (—q')'",
and p is its corresponding momentum.

If inelastic processes are neglected, then the state
I(s.+sr )'") differs from the corresponding stationary
state by a multiplicative factor e '~~ where 8„is the two-

pion p-wave phase shift. In this approximation, on
account of time-reversal invariance, the phase of the
matrix element ((n.+s. )'"Ip(0) lvac) is 3» or 8i,+180'.
If, in addition, the nonresonant background is neglected
for q' near —m, ', the resonance factor [q'+m, '—

imam, ] '

in the p-propagator D„„(q') is proportional to

i(e"—'~ 1)=—2e"~ sin8„.

By using Eq. (4.26), we see that ((s.+z )'"I J&(0) Ivac)
and, consequently, F &(q') are real at q'=real ——m, '.
Furthermore, in the same region F &(q') is expected to
be a relatively slowly varying function of q'.

In Eq. (7.1), the factor (Zi/Zp) is due to our nor-
malization convention [Eq. (4.22)]. The same conven-
tion also leads to Eq. (4.27), which implies that

&- l~ (o)I- )='; (7.3)

therefore, the analytic continuation of the form factor
F..&(q') satisfies

F ~(q') = 1 at q'= 0 (7.4)

By using Eq. (7.1) and the experimental values that

rate(pp ~ n++7r )= 115.5&8.2 MeV

and mp= 756.4~3.2 MeV,
one 6nds

(4~)-'[g,F.:(—m, ')]s(Z,/Z, ) = 2.28~0.16. (7.5)

According to Eqs. (4.1'l), (4.22), and (4.25), the factor
(Zi/Zp) depends on the variation of (q'+m, ')
XReF '(q') from q'= 0 to q'= —m ' where F is defined

by Eq. (4.12). As we shall see, while both (Zi/Zp) and
the value of F &(q') at q'= —m, ' are not known, the
product. (Zi/Zp)F &(—m, ') can be determined by using

(7.1) and the leptonic decay rates of p'.

2. pP~ l++l

By using Eqs. (1.3a), (4.19), and (4.22), it can be
easily veri'. ed that

rate(pP ~ l++ l )=—'u'[(g '/4m) (Zp/Zi)] '

Xm, '(m. '—4m (')"'(m„'+2m P), (7.6)

(Zi/Zp)=1. (7.10)

Under the same approximation, the decay p~ pr++m

determines the coupling constant g,
' to be

(4s-)—'g, '=-2.3. (7.11)

3. P-pp Decays and the Determination of Ar and Ssr

From Eq. (2.12) it follows that any matrix element of

the renormalized current operator g„&(x) vanishes at
q'= —ms', and that of rI„"(x) vanishes at q'= —m„'.
It is useful to dehne the modified current operator

(B.'(*).(*)—I
(7.12)

by

(BIB.(~) l~&= —[&"(q)] '(BI1l'(*)l~&, (7.13)

where 1l „(x) is the renormalized g-cp field operator given

by Eq. (5.1), and $„„(q) is the renormalized @-pp pro-

pagator given by Eq. (5.52). In analogy with Eq. (4.29),
the decay rate of the P meson into a state I' can be ex-

pressed in terms of the matrix element (I'
I g„&(0) I vac),

and the decay rate of the co meson into a state F can be
expressed in terms of the matrix element (r I

g„"(0)I vac).
The fact that these two decay rates involve g„@ and

g„"separately is a consequence of the orientation condi-

tion [Eq. (5.48)] that we have used.
In the following, we will assume the validity of the

pole dominance approximation in the resonance region
and choose the normalization convention given by
Eq. (5.53). Thus, from Eqs. (5.55) and (5.56), it follows

that, in the region from q'= —m&' to —m„', the real

part of the inverse of the renormalized p-tp propagator
is given by

Re[&,.(q)?'= (q'+~') 3..—q.q. , (7.14)

"A. Wehmann ei a/. , Phys. Rev. Letters 17, 1113 (1966). See
also R. Weinstein, in Proceedings of the Thirteenth International
Conference on High-Energy Physics, Berkeley, D'66 (University of
California Press, Berkeley, 1967).

where l=e or 1i and rr=(137) '. The present experi-
mental value" of the branching ratio of pp ~ 1i++1i is

(4.3+1.4)&(10 P. Thus, we find

(4m) 'g '(Zp/Zi) = (2.5W0.8). (7.7)

It is interesting to note that the rate of p ~ pr++pr

depends on g, '(Zi/Zp), but the rate pP —&y++1i (or,
e++e ) depends on g, '(Zp/Zi). By taking the ratio of

Eqs. (7.5) and (7.7), one finds

[F,&(—m, ')(Zr/Zp)]'=0. 9a0.3, (7.8)

which is consistent with the approximation that both
the vertex function and (q'+m, ') 'ReF '(q') do not

change much from q'=0 to q'= —m, ', i.e.,

F, p(q') —1 for —q'&m, ', (7.9)
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where
(m, ' 0)
Eo

its value at q'= 0, i.e. ;

FED( m—4)=Fxxe(o)
= [cos(8i —8A )] cos8ivgr. (7.21)

We recall that at q'=0, S„„'(q) is always equal to5'O'Sb„„, and therefore
By using Eqs. (7.14) and (7.21), one finds

X)„„'(0)=M'8„„,
rate(y' —+ E+/ E )= (48zrm ') '(m ' 4—mx') ' '

(7.15) X [cos(8r 8x—)] 'gy' cos'8zr, (7.22)

/r~
g.(x)d r=gI

ENi
(7.16)

which together with Eqs. (5.19), (5.20), and (5.21) gives

on account of Eq. (5.55), even though the pole approxi-
mation is only assumed for the resonance region
—m„'~qs~ —mz' (which does not include q'=0). By
using Eqs. (5.18) and (7.13), one finds that the spatial
integral of $4(x) is related to the hypercharge F' and
the baryon number E by

where m~ is the mass of E+.The same expression applies
to rate(Q' ~ Ers+Es'), provided that mx refers to the
mass of the neutral K meson.

Similarly, by using Eqs. (1.6) and (5.40), one finds

rate(g' —+ l++l ) = (1/12)rr'(gr'/4zr) 'me-'

X(m '—4mP)' '(m '+2mP) cos'8r
&

(7.23)

rate(te' —+ 1+pl )= (1/12)a'(gY'/4zr) 'm

X (m„'—4mt')' '(m„+2mP) sin'8y. . (7.24)

—i $44(x) d'r = [cos(8r—8A)]
—'

X [cos8ivgr r+ siii8 rgiviV],

From the known rate of g' —+E++E =1.7&0.4
MeV, one obtains

and (7.17)
gy cosog 1—= 1.4~0.3.

cos(8y' —8iv) 4zl
(7.25)

i g4"(x)d—'r = [cos(8r—tv)]-'

X[ sln8ivgrr+cos8y'give] ~

The decay rate of P' ~E++E, or Eis+Ezs depends
on the vertex function Fxx~(q') at q'= —m4, s, Fxx&(qs)
is defined by

((2E) '
I
0'(0)

I
vac)

=v2s;(px/e)x) Fxxe(q') i= 1,2,3, (7.18)

where
I (2E) ' ) denotes the two-kaon I=0, S= strange-

ness= 0, p-wave "incoming" eigenstate of the strong in-
teraction Hamiltonian, s is the polarization vector
(chosen to be real), tex is the kaon energy= sr( —q')'~'
and px ——(&dx' mx')'~—' Just as i.n the case of F &(—m, '),
the function Fxxe(q ) is real at q'= —m4', and Fxx (q')
is expected to be a slowly varying function of q' near
q'= —mes. From Eq. (7.17), we know that the diagonal
matrix element of g4& for a E+ at rest is

(E+I $4&(0) I
E+)=z[cos(8r—8iv)] ' cos8Ngr, (7.19)

which implies that the analytic continuation of the same
vertex function Fxx&(q'), at q'=0, becomes

Fxx&(0)= [cos(8y.—8iv)] cos8xgy. (7.20)

The formulas for the rates P' —+ E++E (and
Ei'+Es'), p' —+ l++l, and to'~ l++l can be ob-
tained by following the same derivations of Eqs. (7.1)
and (7.6). In order to use these rates to determine the
two mixing angles Oy and 0N, we assume that the vertex
function Fxx@(q') at q'= —m4' can be approximated by

The coupling constant gy' and the two mixing angles Hz

and 8~ can then be determined by measuring the
leptonic decay rates of P' and 4eo. These leptonic decay

TABLE I.The coupling constant (gr'/4s) and the leptonic decay
rates are calculated by assuming the rate (P'~E++E ) is
2.7 (Mev/fi). /In the limit of SU4 symmetry, (gr'/4~) =-,'(g, '/kr)—2.7.1 To the accuracy given, there is no difference between the
decay rates to 44 pair and to e pair. The mean-square radii R'(E')
and R'(g') of the charge distributions of E' and X' are calculated
by using Eq. (7.42).

OI

ON

(gra/4~)
Rate (P ~ e+e )
Rate (co -+e+e )
Ra(Ko)
Ra(W)

Current-mixing
model

330
210
1.5
2.2 (keV/5)
O.7 (l ev/5)

—7.6 X10-as cma

+7 6 X10-as cma

Mass-mixing
model

320
320
1.9
1.7 (keV/5)
O.s (keV/a)

—7.0 X10-» cma

+7.0 X10 as cma

Mass-mixing
model (variation)

39o
39o
2.2
1.2 (keV/A)
0.6 (keV/5)

—6.1 X10 as cma
+6.1X10»cma

rates can also be calculated theoretically by assuming
the particular values of Oy and 0~ determined in the
Sec. V (3. Special Models )The results . are give'n in
Table I.

4. Comparison Between A ~ B+y and A —+ B+8
(or, P' and es )

The identity (1.3a) between the hadronic electro-
magnetic current and the renormalized p-meson field
implies that the isovector part of the electromagnetic
form factor F~B&(q') of any real or virtual transition
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1Ãp
2

[FAB (q ))isovector FAB (q )
q'+m, ' (1.4a)

A ~ B+y is related to the corresponding form factor
of A ~B+p' by Eq. (1.4a),

Since the neutral p meson is unstable against the
strong interaction, reaction (7.29) can only be observed
by studying its decay products, such as 2~ or 4z.
Instead of (7.29), one may use, e.g.,

(7.31)

m4,
'

[FAB (q )]isoscstsr= 2gr COSl rI FAB (q )
kq'+m4, ' rate[A s B+(~++7r )r.t.t.)-

(7.32)r(q2) =
rate[A ~B+l++l ]m2—siner FAB"(q'), (7.26)

q +m(a
can be measured, and it should be independent of A and
B for any

I
AI

I
=1 transitions in the region q'= —m„'.

By following the same arguments that led to Eqs.
(7.1) and (7.6), but without setting q'= —m, ', one
Ands, for q2 near —nsp2,

where FAB&(q') and FAB"(q') are related to the matrix
elements of the renormalized currents rl„& and ol„" by

(BI g,'(x)
I A) = & FAB4(q )uB&r„'» exp(iq&xz),

(ms' —4m. ') 'I'
r(q') =a'

16n'(m '—4m/')'~'(m '+2mt')(7.27)
(B I g."(x)

I A) =2 FAB"(q') uB&1'„'uA exp(iq, x,),

Similarly, by using Eq. (2.22), one finds that the The two-pion p-wave amplitude has the familiar reso-
identity (1.6) implies that the isoscalar part of FAB&(q') nance behavior [q'+m, '—

imam, ] ' at q'——m, '. By
is given by using only the resonant part of the two-pion amplitude,

the ratio

and
A —+ B+p' (7.29)

A —+ B+l++l (l=e, or p) (7.30)

is independent of the initial and final complexes A and
B. This independence is supposed to be an exact one,
provided that the higher-order radiative corrections are
neglected; furthermore, in taking this ratio, one should
use directly the observed rate of the

I AII = 1 transition
A -+ B+l++l at q'= —m, ' without any background
subtraction.

and u~~F„'n~ denotes the same spin-momentum func-
tion used in Eq. (2.11). In the following, we shall dis-
cuss these form-factor relations in three separate regions
of g:

(i) At q'=0, the validity of Eqs. (1.4a) and (7.26)
follows directly from the properties that the spatial
integrals of J4&(x) and [coser c14&(x)—siner ot4"(x)) are,
respectively, iI, and igr 7[See E'. qs. (2.6) and (2.15).]

(ii) Near the resonance, we have, on account of
Eqs. (2.3) and (2.12), for any hadronic states A and B,

FABs(q2) =0 at q'= —m ' (7.28)

where a can be either p, or @, or 4c. Although (q'+m, ') '
XFAB'(q') and, therefore, also Eqs. (1.4a) and (7.26)
remain well defined at q'+m '=0, it is much more
conveIlient to use the modified current operators
J„'(x), ~)„&(x), g„(x), and their related form factors
FAB (q ) FAB&(q'), and FAB"(q'), instead of J„s(x),
g„~(x),and p„"(x)[o»AB'(q'), FAB4'(q'), and FAB"(q')),
in the q2 region near the vector-meson resonances.

A direct consequence of the identity (1.3a) is that for
any

I
&I

I

= 1 transition at q'= —m„', the ratio between
the rates of

g2 2

X [F..(q)], (7.33)
tSp

which is independent of A and 8, and, in addition, is
independent of the wave-function normalization factor
(Z4(Zp). The functional dependence of the vertex func-
tion F, (qs') at q' near —m, ' can be determined by
measuring r(q').

We note that the q'-dependent factor in Eq. (7.33)
must be expected to produce a shift" in the p peak ob-
served in the process A s B+l++l from that observed
in A s B+7r++rr . The main shift may be expected to
arise from the factor (q')'; from this source alone the
shift in the p peak is from q'= —m, '——(756 MeV)' to

q'= —-'m [3m +(m '—87')' ')——(745 MeV) '. (7.34)

Identical arguments can be applied to any
I
B,II =0

transition
A —+ B+l++l

by comparing its rate with that of

A —+ B+P' (Or ts')

a,t q'= —m4,
' (or —m„).The rates of the latter reactions

can be measured by, e.g., using the resonant part of
A —+ B+E++E for the g meson and A —+ B+34r for
the co meson. The ratios of these rates to the correspond-
ing lepton pair production rates are, again, independent
of A and B, provided Eq. (1.6) holds.

(iii) For q' away from the vector-meson resonances,
it is more convenient to use Eqs. (1.4a) and (7.26).

'9 one of us {N.M.K.) wishes to acknowledge a discussion of this
point wjth M. good and A. Silverman.
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Although the form factors F»p(q'), F»&(q'), and
FAB"(q') are not known, one may assume some simple
analytic functions for these vector-meson form factors.
The phenomenological parameters contained in these
functions can, then, be determined by using the experi-
mental results on the electromagnetic form factor
FAB (q )

As an example, we may consider the special case A =8
and assume, for q' spacelike (or, for any q 'awa-y from
the resonances),

F»&(q )/FABp(0) = [1+(qs//is)) i (7 35)

F»'(q') F»"(q')
(7.36)

FAB&(0) F»~(0) (AP'

where A.~ and Ao are phenomenological parameters
characterizing the overall q' dependence of the I=1
and I=0 vertex functions. At q'= 0, the values of these
form factors FAAI'(0), FAA4'(0)& and FAA"(0) are known;
they can be readily determined by using (2.11), (7.27),
and the identities

Z, (*)dsr=s7. ,

chanical mass m, ' would become measurable. Other-
wise, it is consistent with the assumption that m, is
infinite, and the two different proposals (1.3a) and
(1.3b) are the same.

1
+

2 cos(8y' —8~)

m~s cos0r cos8~fzx~(q')

q'+my'

where

m„' sin8r sin8Nfxx"(q')
(7.39)

q +r's

5. Electromagnetic Form Factor of K' and K

Let IK',p) and IK',p) denote, respectively, the state
of a neutral K and Z' with 4-momentum p„. From
Lorentz invariance and current conservation, one has

«', P'I ~.'(0) IK',P) = —(K',P'I ~."IK',P)
=-:(-)-"(&+p).F- (q), (7»)

where its and imp' are, respectively, P4 and P4'. By using
Eqs. (1.4a), (7.26), (7.37), and (7.38), one finds

mps
Fzz'(q') = sf«—'(q')

qs+ m, ')

rid(x)dsr=s[cos(8r 8~)) '— fxx (q') =Fxx (q')/Fxx (o), (7.40)

&([cos8Ngr Y+sin8rgiviV) &

(7 37) and a= p, p, and to. At q'= 0, fxx'(q') = 1.
The mean-square radius of the change distribution of

E' is, by definition,

g4"(x)d'r = i[cos(8r—0B)]—' R'(K') = 6(d/dq')F—zx&(q') (7.41)

&&[—sin8~gr Y+cos8rgx V].

Thus, the resulting electromagnetic form factor
FAA&(q') in the spacelike q' region (or, for any q' away
from the resonances) becomes dependent only on Ao,

A~, ey, 0~, and, if A has nonzero baryon number, the
ratio (g~/gr); among these, the angles 0r and 8iv can
be either directly measured, or theoretically calculated
by using special models.

Such a study for A =8= single nucleon has been made
by Massam and Zichichi"; they assumed Oy ——0~—35
and found that the existing data in the spacelike q'
region is consistent with A.o—A~—1 BeV.

At present, it is not possible to make a similar
study for the timelike q' region away from the reson-
ance. In this connection, we may recall the possi-
bility of the alternative proposal [Eq. (1.3b)) which
implies Eq. (1.4b) instead of Eq. (1.4a). Thus, it
seems particularly interesting to investigate reactions
such as A —+ 8+t++/ for large —q' and see whether
[FAB&(q'));„„t,„can be zero at some q'= —(m, ')'
If FAB&(qs) has a zero, then this could be regarded as a
conlrmation of Eq. (1.3b), and the value of the rne-

'0 T. Massam and A. Zichichi, Nuovo Cimento 43, 1137 (1966).

at q'= 0; the corresponding mean-square radius of E' is
R'(K') = R'(K'). If th—e differences between the three
derivatives (d/dq')fxx'(q') at q'=0 can be neglected,
then one finds

R'(Ko) =3{—mn
—s+ [cos(0r—0B))—'

X [mz ' cos0r cos0B.+m„' sin0r sin0~)) . (7.42)

[If one assumes (7.35) and (7.36), then this expression
is valid, provided one neglects (Ai '—Ap ').) The
numerical value of R'(K') can be estimated by using
either the current-mixing model, or the mass-mixing
model. The results, which are given in Table I, are
about a factor of 30 smaller than the estimate given by
Zeldovich. "While the existing experimental evidence
in support of vector dominance seems substantial
enough to make a value as large as that given by
Zeldovich rather unlikely, nevertheless a measurement'
of the charge radius of K' and Ko could constitute a

2' Y. B. Zeldovich, Zh. Eksperim. i Teor. Fiz. 36, 782 (1959)
LEnglish transl. : Soviet Phys. —JETP 9, 984 (1959l].Some earlier
discussions have been given by G. Feinberg, Phys. Rev. 109, 1381
(1958). A recent calculation by W. Frazer (private communica-
tion) gives results of the same order as those in Table I."One of us (N.M.K.) is grateful to O. Piccioni for a stimulating
discussion of this point.
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further relatively sensitive test of the theory, and it antinucleonsector,
would also serve as a measure of the possible difference o, 0
between the derivatives of the different strong inter- A, =al
action form factors fxrc' at q'=0. EO oi'
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APPENDIX A' AN ELEMENTARY THEOREM

The current J„&(x) is first introduced in Eq. (2.3).
From its definition, we know that (i) J„&(x) transforms
like the I,=O member of an I=1 triplet, (ii) J„&(x)
commutes with the baryon number operator E, and
(iii) J„&(x) anticornmutes with the particle antiparticle
conjugation operator C. The following theorem can be
easily established:

Theorem. If J„&(x) is conserved under the strong
interaction, then

Q
—=—i g4~d r0, (A6)

where n=4b or 40. The conservation law of g„ implies
that LQ,H,„$= 0. By using the above properties (i)-(iii),
it is easy to see that Q must be of the form

Since all known hadrons are connected through H, ~ to
some multiple-particle states of the nucleon, anti-
nucleon, A', A' system, the theorem is, then, proved by
using Eqs. (A3) and (A5), and by setting X=2a in
Eq. (A1).

In exactly the same way, we can also prove that the
spatial integral of (J4&)0, which satisfies Eqs. (3.2) and
(3.3), must also be proportional to the operator I,.

Similar considerations can also be applied to currents
4i„& and g„" which are defined by Eq. (2.12). Both
currents (i) are isoscalars, (ii) commute with N, and
(iii) anticommute with C. Let

—i J4&(x)d'r=7I„ (A1) (A7)

where A. is a constant.
Proof. Let A, = ij' J4&d'r, and d—efine

(I;,A0)=i0, 0P4t, (A2)

in the sector

A, lAo)=A, lXo)=0. (A3)

Similarly, we can show that in the sector of the single
nucleon and single antinucleon states

(A4)

the operator A, must be of the form

(ao; bo;

(co; do;

where o; is the usual (2&(2) Pauli matrix, and a, b, c, d
are constants. Now, LA„Nj=0 implies b=c=O, and
{A„C}=0implies a=d. Thus, in the single nucleon-

where the subscripts j, k, and l can be either x, or y, or s,
and ~;I,~ is the usual third-rank constant antisymmetric
tensor. Since A, and I; commute with the strong inter-
action Hamiltonian H,~, the other two components A,
and A„must also commute with H,&. We recall that the
only single-particle eigenstate of H, & that is degenerate
with lh. ') is

l
A'). The state A;lA. ') must, therefore, be

a linear function of lA') and lA'). From Eq. (A2) and
I,'IA )=I;IA')=0, we find

and Q is of the form

1 0 0 0
0 1 0 0'-00 -1 0
0 0 0 —i.

(AS)

in the nucleon-antinucleon sector (A4) where a and b

are constants. Since all known hadrons are connected
through H, ~ to some multiple-particle states of the
nucleon, antinucleon, A0, A0 system, the operator Q
must, therefore, be related to the hypercharge operator
I' and the baryon number operator E by

Q =a N+(b a)Y. —

This establishes Eq. (2.15).

(A9)

APPENDIX B:ALTERNATIVE FORMS OF
y-y COUPLING

For simplicity, we will consider in this Appendix only-

the isovector part of the electromagnetic interaction.
The Lagrangian density which includes both such an
interaction and the strong interaction of the p' meson
is given by

i(P ) 0L0(G 0)0 &(444 Op 0)0

—(g.'c.'+ A.e')(J.')'—-'(e'lg, ')G"'F"', (»)
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where the superscript zero denotes the unrenormalized
quantities. If we neglect the renormalization problem of
the electromagnetic interaction, then e'=e, A„'=A„,
and F„„'=Il„„.The above Lagrangian density 2 con-
tains both the Lagrangian densities (2.7) and (3.1) which
are used in Secs. II and III. By using the definition of
J„' [Eq. (3.13)j one can show that apart from a trivial
partial integration,

and
p "=p '+(e'/g')A '

A "=[1—(e'/g ')']' 'A '

The Lagrangian density (81) now becomes

(2) Next, we consider a different transformation:

(87)

~= ——:(&..')'+(2 7)+(3 1)

(1) We consider erst the transformation

p.'= L1—(e'/g, ')'?"'p '

and

(82)

('/go'—)[ ('/g, '—)'j '"p '+,'
( )

where
X( "/g. ')'(A.")', (BS)

(89)

—co[1 (eo/g o) oj—1/o

8 8
P // A // A //

JlV V /4 p8' Bx

m, '= [1—(e'/g, ')') "'m, ',
g'= g.o[1—(e%g.o)'j'",

(85)

(86)

It is easy to see that in terms of p„' and A„', (81) can
be expressed in an alternative form

z = —-', (z„„')'——,'(G„„')'—k(m, 'p„')'
—(

' .'+ 'A. ')(~.')', (8 )
where

and
8 8

// // //
~yv — pv pp

~XV

A„"~ A„"+BE/Bx„

p„"~ p„"+(e"/g,') BA/Bx„.
(810)

In terms of the transformed fields, a gauge transforma-
tion means that

and

8 8
/ / /

Gpv = Pv Pp
~&v

8 8

~&v

In Eq. (BS), the only photon-matter coupling is given
by (ohio, o)'(e"/g, o)p„"A„".Such a term, by itself, clearly
violates gauge invariance; but the combination

o(oooo—'p„")'+(omo')'(e"/g )op„"A
—l (ohio. ')'(e"/g. ')'(A.")' (811)

According to Eq. (84), the currents which generate
the new (unrenormalized) 6elds p„' and A„' are, respec-
tively, g'(J„&) and e'(J„&)'. In contrast to Eq. (3.17)
these two currents are now proportional to each other;
therefore, apart from the coupling constants g' and e',
they formally satisfy Eq. (1.3b), even though the
Lagrangian (81) is derived based on the identity (1.3a).
In terms of these new field variables, the difference
between the proposals (1.3a) and (1.3b) lies now in the
form of other electromagnetic interactions which are not
included in (81).We note that if (1.3a) holds, then, for
example, the lepton current j„/interacts with A„'
through the Lagrangian density

[(e ) /g~)J p

is invariant under the gauge transformation (810).
Consequently, the Lagrangian density (BS) is also
gauge-invariant. [Under the gauge transformation
(810), expression (BS)~ (BS) e"(J„&) BA/Bx„. T—his
additional term e"(J„&—) BA/Bx„ is, as usual, canceled
by a corresponding term generated by the free Lagran-
gian and the strong interaction Lagrangian of the
charged particles under the same gauge transformation. $

In the language of Feynman graphs, (BS) shows that
there is a direct p-photon coupling vertex given by
(on, o)'(e"/g, o)p„"A„".The application of such vertices
in the photon propagator would lead to a non-gauge-
invariant and negative term for (photon mass)', which
is, however, completely canceled by the additional term——,'(m ')'(e"/g ')'A ' in (BS).


