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It is assumed that the electromagnetic mass splittings within the baryon octet can be self-consistently
calculated from the one-photon elastic form-factor contribution and the electromagnetic mass differences
within the pseudoscalar-meson octet. The baryon mass differences are shown to be expressible as functions of
three parameters: a cutoff A, the f/zi ratio, and the pion-nucleon coupling constant. A unique set of real
values for these parameters is found which correctly predicts both the sign and magnitude of all the electro-
magnetic baryon mass splittings. The pion-nucleon coupling constant is found to be equal to 16.7, in good
agreement with experiment.

I. INTRODUCTION

'HE problem of calculating the electromagnetic
mass splittings within isotopic-spin multiplets has

been of interest since charge independence was first pro-
posed. Although one generally expects the charged com-
ponents of an isomultiplet to be more massive than the
neutral component because of the inertia of the elec-
trostatic field of a charged particle, there exist several
examples where this is not the case, e.g., the p-rt, Z+-Zo,

and K+-K' mass differences. It will be convenient to
refer to this latter situation as a sign reversal.

The early attempts to account for the electromagnetic
mass differences involved calculating the mass splittings
within each isomultiplet independently, assuming that
purely electromagnetic forces generate the observed
mass splittings. Using a one-photon-exchange approxi-
mation to the elastic form factor merely con6rms the
classical result stated above. Since the elastic form fac-
tor is always positive and is coupled only to the charged
component, one necessarily obtains the wrong signs for
mass splittings such as KV= p—zt. However, it was
pointed out be Feynman and Speisrnan' that if one
takes into account the anomalous magnetic moment of
the proton and neutron, it is possible to arrive at the
correct sign for 8X. These authors assumed that the
proton and neutron could be described by a Dirac equa-
tion with a Pauli moment term, which has the effect of
modifying the expression for the proton self-energy by
the addition of a term opposite in sign to the elastic-
forrn-factor contribution. Since this latter effect is
quadratically divergent (in contrast to the logarithmic
divergence of the elastic-form-factor contribution) it is
clear that, for a su%.ciently large cutoff, one will find
BX(0. (Feynman found that a cutoff of 1.3 nucleon
masses gave the correct sign and magnitude. ) However,
Sunakawa and Tanaka' showed that if one uses the
experimentally observed electric and magnetic form
factors (assuming that they can be smoothly extrap-
olated to high momentum transfer) instead of a cutoR
in the Feynman expression, one obtains 5%&0.'

*Research supported in part by the U. S. Atomic Energy
Co mmisssion.' R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954).

s S. Sunakawa and K. Tanaka, Phys. Rev. 115, 754 (1959).' One might still get BE&0 by assuming the existence of a hard
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It has thus become increasingly evident that not only
the purely electromagnetic eRects (which we will refer
to as the "driving forces") but also the electromagnetic
corrections to strong interactions (acalled the "feed-
back") must be included in order to understand the
sign reversals.

The crucial interplay between driving force and feed-
back terms has been discussed by Barton and Dare4
within the framework of a simple potential model. They
assume that the unperturbed system is described by a
wave function f satisfying the Schrodinger equation
with an eigenvalue-dependent potential

L
—7'+ V(E,x)jP(x) =EP(x) .

Upon applying a small perturbation bV, the energy
eigenvalue is shifted by an amount 5E given by

1 O'I BVIBEI
—0)

to lowest order. In this equation, the numerator repre-
sents the driving force while Q ~

BV/BEip) represents
the feedback contribution. A sign reversal can thus
occur if (a) Q [BV[f)&0 and Q ) BV/BE(P)(1, which
is called a sign reversal of the driving type, or (b)
(zt'~BV~Q))0 and Q)BV/BE~/))1, which is called a
sign reversal of the feedback type. Barton4 points out,
however, that if condition (b) occurs in an elementary-
particle theory, 8E will go through a singularity as the
potential V is turned oR (i.e., the strong coupling con-
stant is allowed to decrease to zero) because the term
(Q~BV/BE)zIz) must become equal to unity at some
point. This is physically repugnant because it implies
that the mass shift 8E, as a function of the strong cou-
pling constant g', has a pole at some value of g' less then
g, ' (g, being the physical value of the strong coupling
constant) and a power series in g' for BE about g'=0
cannot be expected to give acceptable results beyond
the singularity. Thus considerable doubt is cast on the
validity of any calculation involving a sign reversal of

core at high momentum transfer. Cf. M. Cini, E. Ferrari, and R-
Gatto, Phys. Rev. Letters 2, 7 (1959); H. Katsumari and M.
Shimada, Phys. Rev. 124, 1203 (196f); A. I. Soloman, Nuovo
Cimento 27, 748 (1962).' G. Barton and D. Dare, Phys. Rev. 150, 1220 (1966).
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the feedback type in a single-channel model (an argu-
ment which we shall henceforth refer to as Barton's
criticism).

It must be emphasized, however, that this argument
only holds in the single-channel case considered by
Barton. In the multichannel case, the situation is
considerably more complicated as we now demon-
strate. Let us assume that there are several isospin
multiplets involved which are described by a multicom-
ponent wave function f;. Then the coupled Schrodinger
equation with an energy-dependent potential is

[—V28 +V"—E"'8"JP ~'=0 (3)

A- =4'""~V'A4"'
BVg

and 8 .p P,
'" f,",——(6)

PEP
'

one can rewrite Eq. (5) in the form

where the summation convention on repeated indices
applies to unprimed indices but not to primed indices.
Multiplication by f,"'*gives

f4 '*[ V'&,4+—V 4
E'ti,;$—P, '=0. (4)

Turning on the perturbation 8V;;, we have P,~' —4 P,~'

+tip, "', V,,~ V,,+&V,4+(BV,4/BEs)t'4Et', and E~' —+

E '+r4E ', which gives, upon insertion into Eq. (4),
the result

BV;;
4ll4)V f ~/+P lllf4 gEPP

PEP
Pp'*RE 't'4, ,$—,~'= 0. (5)

By defining

When the coupling constant is set equal to its physical
value, g'=1, we want 6Ey to be negative, SE2 to be
positive (e.g. the case 8E1——p —22 and 5E2 —— — ') and
the denominators such that when g' is allowed to vanish,
8E& and 8E2 go through no singularities. This may be
easily accomplished by setting u= —2, b= —1, c=1,
and d= 1, so that Eqs. (8'a) and (8'b) become

$J;g=
1+g g'

1+3g'
bJ, =

1+g2 g4

(8"a)

(8"b)

which at g'= 1 yield 5E1———1, tie~'2 +4l at g——'= 0 yield

5E1——8E2——+1, and remain finite for all g' between
g'= 0 and g'= 1. Hence we have demonstrated that in

the multichannel case, Barton's criticism does not neces-

sarily apply to feedback-induced sign reversals (although
it still applies, of course, if any of the 5E's should happen
to have a singularity between g'=0 and g'=]. in our
example).

The effect of including electromagnetic corrections to
strong interactions has also been discussed by Muta'
within the framework of an SU~ invariant version of
the Lee model. Taking the V and N particles as two
isodoublets and the 8 particle as an isotriplet, he regards
the I2=+2 component of the V and X particles as a
proton and the I2 —

2 compo——nent as a 4MNtror4 The.
symmetry-breaking interaction is then given by

A +8 pt'4Eti 8E .=0. — (7)
a„=S~[vt(-', )V(-', )+Et(-', )&(-;)],

%e may take as a simple example the two-channel
case with just two eigenvalues. Hence a', P'=1, 2 and

Eq. (7) may be used to solve for the energy shifts,

(1 822)A1+812A2

811 822+811822 812821

(1—811)A 2+821A1
(E2—

811 822+811822 812821

A 1+g'(bA 2 dA1)—
(8'a)bEg

1 (a+d) g'+ (ad bc—)g4-
A2+g'(cA1 —aA2)

1—(a+d) g'+ (ad bc)g4—(8'b)

As an illustration, we let A1=A2=+1, so that in the
absence of feedback (g'=0) there are no sign reversals.

In cases of interest, the potentials V;; depend on a
coupling constant g', so we set B~~——ug', 8~2——bg',
8»——cg', 8»——dg' with the physical value of g' being set
equal to unity. Equations (8) then become

where 82420:e2/42r. Solving for the physical particle
states, one arrives at a relation for bN which is negative,
regardless of the size of bm, provided only that II, ', the

coupling constant of the Lee model is suKciently large.
Two examples which illustrate Barton's criticism in

the one-channel case are found in the papers of Pagels, '
and Fried and Truong. ' Pagels has done a calculation
utilizing the mechanical form factors for the nucleons

and has arrived at a result 8N = —1.7 MeV with a cutoff

equal to 3 (nucleon masses). ' His result is due to the
effect of a very large nucleon mass shift acting back on

itself together with corrections to the SU2 predicted
pion-nucleon coupling constants which together give a
contribution equal to 1.3 bN. However, one can easily
see from Pagels' Eq. (34) that the solution for bM will

go through a singularity as g' is decreased from its
physical value to zero. ' Fried and Truong have utilized

'T. Muta, Nuovo Cimento 49, 307 (1966).
' H. Pagels, Phys. Rev. 144, 1261 (1966).
'H. M. Fried and T. N. Truong, Phys. Rev. Letters 16, 559

(1966).' Professor Okubo has brought to the author's attention a paper
by H. Miyazawa, Y. Oi, and M. Suzuki, Progr. Theoret. Phys.
(Kyoto), Suppl. (1965), which contains a calculation similar to
that of Pagels.
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the Lehmann representation for the nucleon two-point
function in a calculation somewhat related to Pageos's.
One can see from Fried's Eq. (15) that Barton's criticism
also applies here. '

The composite-model, one-channel case has been con-
sidered by Dashen and Frautschi. "They assume that,
before the electromagnetic interaction is turned on, the
nucleon consists of a pion bound to a nucleon in a P~/2
state (i.e., the nucleon appears as a pole in the direct
channel of the pion-nucleon scattering amplitude)

(108)

(10b)

and that the pion-nucleon scattering amplitude has
already been obtained in the usual N/D form. Upon
turning on the electromagnetic interaction, they assert
that the binding energy of the neutron is increased rela-
tive to that of the proton, resulting in a negative value
for blV. The mechanism for this is supposed to be the
repllsiee interaction of the proton Dirac moment with
the magnetic field of the orbiting s. Lcf. Eq. (10b)$.
Barton, "however, has shown that this mechanism gives
an attractive interaction and hence lowers the neutron
mass relative to the proton. "

It is the purpose of this work to consider the problem
of the baryon mass diQerences in a multichannel ap-
proach, thereby avoiding Barton s criticism. This is
accomplished by considering a model in which electro-
magnetic interactions provide the symmetry-breaking
effects in a theory which is otherwise SU3-invariant.
The importance of utilizing SU3 invariance in the
evaluation of electromagnetic mass differences has been
demonstrated in the calculation of Wojtaszek, Marshak,
and Riazuddin" and also by Barton. ' "Wojtaszek et al.
include electromagnetic effects such as x'-g and 2'-A

mixing with the driving forces (in addition to the usual
elastic-form-factor contribution) and succeed in obtain-
ing the correct signs for the electromagnetic mass split-
-tings within the baryon and pseudoscalar octets, pro-
vided that the f/d ratio and cutoff are properly chosen.
Barton has shown that a composite model in which the
baryons are taken to be bound states of baryons and
mesons and the mesons bound states of baryon-anti-

9 We emphasize here that the mechanism proposed in Ref. 7 is
quite distinct from that presented in the present paper. It will
be shown here that one can account for both the sign and magni-
tudes of the baryon mass differences without the occurrence of
singularities (such as required by Fried and Truong) in the solu-
tions of the eigenvalue equations for the mass shift.' R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, B1190
(1964); R. F. Dashen, ibid 135, 81196 (196. 4).

G. Barton, Phys. Rev. 146, 1149 (1966).
"Barton (Ref. 11) further remarks that Dashen's result is

incorrect due to an improper method employed in subtracting off
a spurious infrared divergence. See also Y.S. Kim, Phys. Rev. 142,
1150 (1966).

' J. Wojtaszek, R. E. Marshak, and Riazuddin, Phys. Rev.
1861 B1053 (1964)."G. Barton, Phys. Rev. 153, 1673 (1967).

baryon pairs can also generate the correct signs for the
electromagnetic mass splittings. "

Our calculation is based on a model developed in a
previous paper" (henceforth referred to as I) which was
applied to the problem of calculating the medium-strong
mass splittings. Here, we assume that the electromag-
netic mass splittings within the baryon octet can simi-
larly be understood as arising, as a low-energy effect,
from the electromagnetic mass splittings within the
pseudoscalar octet together with the usual elastic-form—
factor contribution. We take the view that the meson
mass differences are a more complicated effect (requiring
either the consideration of three meson intermediate
states or vector-meson —pseudoscalar-meson intermedi-
ate states) so that both the electromagnetic meson mass
splittings and the elastic form factor constitute the driv-
ing forces for purposes of this calculation. The feed-
back, therefore, consists of the effect of the mass split-
tings of a given baryon multiplet acting back on itself
as well as its effect on the mass splittings within all the
other baryon multiplets. Although we have chosen to
include the meson mass differences with the driving
terms, we remark that some authors" find it more con-
venient to include them in the feedback.

As in I, we take the SU3 values for the coupling con-
stants, neglecting any electromagnetic corrections. '
Since the electromagnetic interaction affects the U-spin
multiplets in the same way that medium-strong inter-
actions affect the isospin multiplets, we can proceed as
in I to express the three independent baryon mass split-
tings as functions of the pion-nucleon coupling constant
g'/4s, the f/d ratio, and a cutoff A.. Using the observed
values of the electromagnetic mass splittings as input,
we are able to calculate g', f/d, and A arriving at the
value g'/4~= 16.7. The interplay of feedback and driv-
ing force is discussed by considering the effect of revers-
ing the input sign of the X+—E mass difference.

For the sake of comparison, an attempt was also
made to calculate the meson mass splitting by assuming
that the baryon-antibaryon intermediate states repre-
sent the dominant contribution to the inverse two-point
functions of the meson fields. The results were indiffer-
ent at best, a fact which is not surprising since there are
a number of two-particle intermediate states which are
less massive than BB (e.g. , the vector-meson —pseudo-
scalar-meson states).

"It is well to remark here that Barton's "composite-particle
model" is basically a nonrelativistic version of the elementary-
particle approach presented in this paper. In particular, we note
that the concept of baryons as baryon-meson composites is ex-
pressed in 6eld theory by means of the lowest-order self-energy
diagrams representing the virtual transition of the baryons into
a baryon-meson pair. We draw particular attention to this point
in order to display the fact that neither the present calculation nor
that of Barton can be taken to imply any support for the bootstrap
hypothesis."S.L. Cohen and C. R. Hagen, Phys. Rev. 149, 1138 (1966).

"This is shown to be fairly small in Ref. 6, amounting to
~20% of the total feedback contribution.
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II. THE MODEL

The 5U3-invariant interaction can be written as

&r = (1—f)go Tr/By5BP+ByqPBg

+fge TrkBy5BP Bp—sPB3, (11)

where 8 and I' are 3&3 matrices representing the
baryon and pseudoscalar octets, respectively. Perform-
ing the indicated matrix multiplication and taking the
trace, one can rewrite Eq. (11) in the more explicit
isospin-invariant form

Zz g~.N——pg~N ~+gg (XyaX ~+H.a.)+igr Xp5XX ~

+g=- Vs~ »»+g~x(Nv5KA+H a )
+gzrrNy5~K X+h~( 7gEA+H. a.)
+herr( y5~K X+H a )+gN. P. Ty»N»1+gal»Xy&»1

+gs»XV~ Xti+ga»-"V~" n, (12)

which upon comparison with 8,
1

A.'+—Z'
vZ

1 1
-h.p ——Zp

vZ

n'

Mp

2
+0

(14b)

n'

go
7 (15b)

enables us to write down the well-known definitions of
the U-spin multiplets:

(( 0)
EE=-J

'

where K= is~—* (H.a.—=Herrnitian adjoint). The in-
teraction term gr of Eq. (12) is, of course, SU»-invari-
ant if one uses the appropriate SU3 values for the cou-
pling constants (as given for example in I).To transform
Z~ into the U-spin-invariant form, we use the Weyl
transformation' h.'= (A),

(15c)

(15d)

(1 2 3)

E2 3 1)
'

which leaves Zl invariant but takes us from I spin to
U spin. Applying W to Eq. (11), we get for a typical

P ggPP —l @rgb—lgrgg —lgrPgr —l gIg~P~
Writing out 8' gives

'Bl' 82' 83'
8'=EBS'-l=S' 8,2 822 8,2 P-i

~~1 ~2

vrhere the h. and zp operators are given by

X=——,'X——,'&3ZP

Z'=-', V3A ——',Z&.

(16a)

(16b)

(17a)

Going through the identical procedure for the meson
matrix I' gives the meson U-spin multiplets

wgpw

'82 82 82
B2' Ba' Bt' . (13)

l pl gl

Substituting in the definitions of the 8,"s gives

&K-i
'

t'K
K'=/

(17b)

(17c)

1
Ap- —ZP

Q6 v2

np

Mp

2
-AO

Q6

and
n'= (n),

with the p and fP operators defined by

(14a)
and

(17d)

(1ga)

1 1
AQ+ XO

Q6 W2

"A. J. Macfarlane, E. C. G. Sudarshan, and C. Dullemond,
Nuovo Cimento 30, 843 (1963).

»r'= %3»1—-'m' (18b)

It is clear that merely replacing the operators 8, 8, and
P by the operators B', B', and P' in Eq. (12) gives the
U-spin invariant interaction Lagrangian. The defini-
tions of g' and f/d remain unchanged, so that one has
g~„——g~. , etc.2 2
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If one neglects medium-strong e6ects, the lowest-
order electromagnetic-mass-splitting term transforms
as Au" which commutes with Us and Q (in direct
analogy to the medium strong 2 3' which commutes with
Is and I'). Using the tensor properties of Au", one can
show" that the electromagnetic mass splittings are given
by

where r+= r,++r, +, r,+ representing the SUs-invari-
ant part of the inverse two-point function and r„„~
being the contribution from the electromagnetic correc-
tion to strong interactions. Using the second-order ex-
pression for r+ given in I, we apply ()/()&u "to Eq. (21)
which, when evaluated at the SU3 central masses p' and
M', gives

and

S'. . =Z =Ms+6',
0 ~~0

"'.p=Z+=Mp+c',

h.'. A =M(&+ ss (f&'+-c'+d'),

(19a)

(19b)

(19c)

(19d)

BM
~1 g &ijagi&'a

Ops pl ggI 16'
BM,—» 2 (r'&'pg'&p

-~P a — p, ',1II'
(22)

together with

Z'=Mp+-,'(f+&c'+d'), (19e)

A=M p+ ,'.(b'+ c'+-d') . (19f)

The constants 6', c', and d' may be evaluated by using
the physically observed values for the three indepen-
dent mass split tings — ', 5+—Z', and is—p. (5 —Z'
is related to the other three by the Coleman-Glashow
relation. ")From the values obtained for b', c', and d',
one can readily evaluate Ã' —h. ', 5'—A', and ™/—A'.
Proceeding in an identical fashion, the two independent
meson mass differences E"—q" and x"—q" may be
calculated. "The results are S'—A.'=4.66 MeV, Z' —A'
= —1.84 MeV. ~™r—A'= —3.13 MeV, ~"—q"=7020
MeV', and E"—g"=3020 MeV'.

We use the same labeling conventions as in I (that
is, i, j, k=1, 2, 3, 4 stand for the S', Z', ™/,and A',
respectively, while n, P = 1, 2, 3 stand for the m ', E', and
&1', respectively). It is assumed that the baryon masses
3II may be written as a function of the meson masses
ii~", M&'=M (1»P . its")& so that upon expanding M;
in a Taylor series about the SV3 central mass p", we

get, to lowest order in bp ",

Here, 8~ is a convergent integral resulting from the
differentiation of the intermediate meson mass and 8~

is a logarithmically divergent integral resulting from the
differentiation of the intermediate baryon mass. The
expressions for g~ and 82 are given in I, where 8~ was
found to be equal to —0.000551 MeV ' for p, '=549
MeV and M'=1115 MeV. The a;; 's are the U-spin
fa,ctors (which are identical to the isospin factors of I),
and the indices may be understood by referring to Fig.
1 of I.

Making the substitutions Q, = [()M,'/()p "j;I, ,

Pia Pi (iij»gija &
Rii gp (i(&'pgijp &

and + 82/~1&

rewrite Eq. (22) as

g~
Q;-= (P'- —~ 2 R' Q -),

16x2
(22')

where the P's, Q's, and R's will have the same functional
form as in I. One can then write Eq. (20) as

M; =M +a,.Q,.(.."-."). (23)

Upon expressing Eq. (22') in matrix form and solving
for the matrix Q, one has

-()M (iig" its")-
M =M'+Q (~-"—~") (2o)

Q= —(1+bR) 'P,
16m'

M =Ms' —Q
i P

r (M, ',pp', m)

m+M
(21)

"S. Okubo (unpublished).
20 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423

(1961).
2' The numerical values of the mass splittings are taken from the

tables of A. H. Rosenfeld et a/. , Lawrence Radiation Laboratory
Report No. UCRL-8030 rev. , 1966 (unpublished).

From the usual integral representation of the inverse
baryon two-point function S '(y p), together with the
requirement S '(p. p =—M) =0, one derives (upon
neglect of medium-strong effects) the result

where 3= 8&a/16m'. In Eq. (24), P is the contribution
from the intermediate meson and hence represents the
driving force; E is the contribution from the intermedi-
ate baryon and consequently represents the feedback.
With no loss of generality one can choose p"=p, 3", so
that one needs only the two mass di8erences p&"—p3"
and p, 2"—p3", the values for which were given above.
Upon insertion of (iraq" —ps's)/(ps's —its") =2.3 and the
definition c'=its"—its's into Eq. (23), one obtains

M,'= M'+c'(2. 3Q,&+Q;z) . (23')

In Eq. (23'), we have not yet included the elastic-
form-factor contribution (which of course has a lower
threshold than the baryon-meson intermediate state).
Setting this contribution equal to 8;, where 8;)0, we

may most easily take account of this by adding it di-
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rectly to Eq. (23'):

M —(8»ij8;3)B;=M'jc'(2.3Q,gjQ;2) ) (23")

The integral in Eq. (25) may be easily performed, pro-
vided it is cut off at m=) M;, and one gets

where we have used the fact that the photon only
couples to the charged particles (¹and '). The in-

tegral representation for 8; is

3f e' 11
B,= 3 in' ———(X'—1)

Sx' 2 X'
(27)

&+(M,',m) &-(M, ',m)
(25)

m+Mm —3f'

e' m'jM;"%4mM
(m' —M;") .p+-

16z' m3
(26)

where the spectral weights p+ are given to lowest order
(in a particular gauge) by

Since we choose to disregard medium-strong mass dif-
ferences, neglect of the dependence of B;on i involves
only an error of order e' (as M&'—Ms' is of the order of
e'), so that one can consistently take M =M' and hence
By= B3=B.

Setting y= g'b, we subtract M»' from Eq. (23") for
i=1, 2, 3 and by inserting the expressions for the
Q; 's, obtain the three independent mass difference
equations:

eJye'g'
3Eg' —M4'=

48m'D
27.6f'—+31.2f 0.9j»a—y( 427.2f—'+492f' 208.8f—'+139.2f—12.7)

u, '—m4' ——

8j-7'( 759f' —5107f'—j10042f' 8587.6f—' j3373 8f'—89.4f—112.5)
9

16
+—y'(10752f' 422f' —31383f—'+7786f'+16311f' 16723f—'j4596f' j636f 300),—(28a)

2

qC g
20 8f2+20.8f—10.4+3»y(734.4f' —691.2f3—21.6f~j367.2f—91.8)

2D

8
j~'(10470 f'—30375f'+ 28882f' —9958.8f'—2180.4f'+ 2802f—467)

9

16j~'( 54298f—'+43623f'+49324f' 108960—f'+63480f» 6288f'——11832f'+5520f—690), (28b)
27

efye g
M, ' M»' —31 2f'——27 6f. 0—9j.3»p(—631.f» 9192f'+—320 4. f' 37 2f. —1—2.7).

48m'D

8j ym(4415 -8f6 112.23f'—+5338f» j3172f3 4270.2f2+—1439 4f 112.5). —
9

16
+—y'( —28762f' —11712f"+61756f'—23261f'—33081f»j42547f' —20100f'+4164f 300), (2—8c)

27

where

2
D= 1+»ey(22f' 14fj7)j~'—(544f' 448f'+4—56f' 232f+58—)

9

+7'(—9088f'+22656f5—29184f»+20096f' —7824f'+1680f—280)
27

j—7 (43008fs 159744f +261—80f'+183552f 228288f»+136—320f'—45120f j9600f—1200) . (28d)
81

The three mass differences are now given as functions values of g' and f which yield X=A. Starting from the
of the four parameters g', f, A., and X. We treat 'A as independent ratios (Mq' M»' B)/(M2' M»—') an—d-
an adjustable parameter and attempt to 6nd the (M~' —M»' —B)/(Ma' —M»' —B), we insert a value for
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TABLE I. Values of 8 for selected values of X. TABLE II. Solutions for f and g'/47r for various values of X.

1.2
1.4
1.9
2

2.4
2.5

a (MeV)

+0.51
+0.987
+2.03
+2 21
+2.86
+3.01

2.6
2.7
3.6
3.8
4

4.1

8 (MeV)

+3.16
+3.30
+4.38
+4.58
+4.78
+4.87

1.9
2.2
2.4
2.5
2.6
4.1

8 (MeV)

+2.03
+2.50
+2.86
+3.01
+3.16
+4.88

0.175
0.167
0.167
0.167
0.167
0.167

g'/4s.

10.8
16.6
16.7
16.8
18.0
19.6

8givenby TableIandcalculate

fandom.

FromthisEq. smaller than that associated with the elastic form
(28a) yields g'/47r which, using the definition of p, gives factor').
A. We iterate this procedure until X=A..

IV. DISCUSSION OF FEEDBACK
III. RESULTS

Following the procedure described above, we arrive
at the set of values" g'/4vr=16. 7, f=0.167, and h. =X
=2.4 (y= —0.7) which compare favorably with the
results of I (g'/4s. = 7.3, f=0.185, and A = 2.7), although
in the present case the pion-nucleon coupling constant
is in considerably better agreement with experiment.

From Table I, one sees that the elastic-form-factor
contribution is 2.86 MeV, which we interpret as an
average value for the baryon octet. This is not unreason-
ably large, considering that it accounts for only 44% of
the —™0mass difference, although it is somewhat
larger than the estimates given in Ref. 13.

Although we have neglected the magnetic-form-factor
contributions due to the baryon anomalous moments,
one can simulate this effect by varying the cutoff P and
recalculating the values of the parameters f and g'/4s. .
The results are given in Table II and show that the
variation of the parameters f and g'/4s with X is slow
enough to justify the neglect of the magnetic-moment
contribution (which is expected to be considerably

Qne can investigate the importance of feedback by
neglecting the term bR in Eq. (24) and attempting to
find a solution including only the driving terms 8 and
I'. The result is that one arrives at the wrong signs for
the mass differences, thereby leading to the conclusion
that feedback is in some way responsible for the sign
reversals. However, on reversing the input signs of the
E+ Ks mass—difference (but including feedback) we are
not able to find a set of solutions f, g', and A. which give
the correct signs for the baryon mass differences. Thus
one cannot generate the desired sign reversals within the
baryon octet without the occurrence of a sign reversal
within the pseudoscalar-meson octet. We thus conclude
that the effect of the feedback is merely to weight the
contributions of the irnput m.+—z' and E+—E' mass
differences in such a way as to induce the observed sign
reversals within the baryon octet.

Finally, we examine the feedback contribution F,
which may be defined as the correction to the p=0
expression for the mass splitting. In the case of Eq.
(28a) this leads one to consider the form

1

D

—427.2f4+492f'—208 8fs+139.2f 12.7—
—27.6fa+31.2f—0.9

8 759f' 5107—f'+100—42f4 8587 6f'+3—373 8f'. 89 4f .112.—5—
-7'
9 —27.6fs+31.2f—0.9

. (»)
27.6fs+31.2f —0.9—16 10752fs 422f 31383f—'+7786—f'+16311f4 16723fs+4596—f'+636f 300—

3

27

As a consequence of our previous discussion we must
require that 5 go to zero smoothly as the strong inter-
actions are turned off, i.e., in the limit y =0 (if one allows
g' to vanish the meson mass-splitting driving terms
would also vanish). Although this case is complicated
by the fact that 8 is a function of two variables, f and

2' This is the only set of values with 0.1 ~& f~& 0.5 which yields
g'&0 and therefore represents the desired solution to Eq. (28).

y, we may impose the condition that one of the mass-
difference ratios, say R»= (3fi'—M4' —8)/(Ms' —M4'),
be maintained, at least at the endpoints 7= —0.7 and
y=0 (the other ratio Ris is determined by y). The re-
quirement that 8~2 be equal to —0.928 for y= 0 implies
that f=0.221, so that we need only demand the existence
of some path in the y fplane bet-ween the points
(—0.7, 0.167) and (0, 0.221) such that 5' have no singu-
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larities. " One such path is from (—0.7, 0.167) to
(—0.7, 0.221) along the line y= —0.7 and thence from
(—0.7, 0.221) to (0, 0.221) along the line f= 0.221.

"Although it is true that not all paths in the y-f plane can
avoid the occurrence of singularities in the mass difference equa-
tions (28), it is only necessary to demonstrate the existence of one
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such path. This allows one to "turn o6" the strong interactions in
such a way that all the mass differences will remain 6nite, thereby
enabling one to avoid Barton's criticism.
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We have considered the problem of symmetry induction among a set of vector and pseudoscalar mesons
along the line of the Cutkosky model. The assumptions that enter into the model are discussed, and it is
shown that within this set of assumptions the model can be extended to induce higher symmetry of the type
commonly known as SU(6) by explicitly enumerating the spin and orbital components of the particles in a
nonrelativistic way. It is found that, within the bootstrap hypothesis, an extension can be achieved only if
the internal symmetry group is a unitary group, SU(m), and the extended group is SU (2m). On the other
hand, if the internal symmetry group is either an orthogonal group or symplectic group, no such extension
is possible. If the internal symmetry group is a simple Lie group —for example, SU(3)—the concept of
unitary parity (the analog of G parity) is found to be incompatible with SU(6), i.e., they are mutually
exclusive.

I. INTRODUCTION

'HE history and philosophy of the bootstrap
hypothesis in dealing with strongly interacting

particles have by now been reviewed at great length
by several authors. "The idea is a very intuitive one,
simply being that "all particles are dynamical entities
composed of each other and bound by forces produced
by the exchange of the particles themselves. '" However,
in the absence of a truly workable dynamical theory,
the bootstrap hypothesis serves mainly as a convenient
mechanism in the qualitative understanding of the
existence of certain particles, their masses, and the
strengths of their interactions with other particles. On
the other hand, it provides us with an extremely useful
tool for the understanding of the internal symmetries.
For example, on the basis of a proposed symmetry
scheme, the bootstrap hypothesis can be employed to
great advantage in obtaining an insight into the nature
of bound states by simply examining the crossing
matrices of t;he symmetry group involved. Cutkosky'
has proposed a model (or a method) based on the
bootstrap hypothesis, from which the internal symmetry
of the constituent particles can be directly induced. In

*Supported in part by the National Science Foundation and
by the U. S. Army Research OfBce (Durham).' B. M. Udgaonkar, Hi gh Energy Physi cs and Elementary
Particles (International Atomic Energy Agency, Vienna, 1965),
p. 791.' F. Zachariasen, in High Energy Physics and Elementary Par-
ticles (International Atomic Energy Agency, Vienna, 1965),p. 823.' R. E. Cutkosky, Phys. Rev. 131, 1888 (1963),

other words, the results of the bootstrap model can be
formalized in the language of the algebra of a symmetry
group. Therefore, within this model world we are given
a very clear-cut reason why certain types of symmetry
should emerge. The attractiveness of the Cutkosky
model was recognized immediately and the method was
subsequently extended by several authors.

In this paper, we wish to present a further extension
of the Cutkosky model along the same line. YVe shall
erst give a summary of the results already obtained,
and in Sec. III we will show that the model can be
extended to induce symmetry of the type commonly
known as SU(6), which we shall refer to as spin—
unitary-spin independence, by enumerating the spin
states of the particles explicitly in a nonrelativistic
fashion. It is found that an extension can be achieved
relatively easily if the internal symmetry group is a
unitary group SU(m). On the other hand, if the internal-
symmetry group is the orthogonal or symplectic group,
the extended group is again a unitary group. This
actually leads to an inconsistency with the bootstrap
hypothesis.

In Sec. IV, we discuss the problem of unitary parity
as related to spin —unitary-spin independence. In Sec. V,
we give a sun@nary and a discussion of the physical
states represented in the SU(2') group obtained here.
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Cimento 33, 70 (1964).' j.C. Polkinghorne, Ann. Phys. (N. Y.) 34, 153 (1965).
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