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A relativistic formalism for analyzing 3-body angular momentum states in production processes is pre-
sented in detail together with examples of several processes m.N ~ mmN at di6erent energies below 1 SeV.
In the final state we assume either one or several 3-particle angular momentum states, belonging to only one
complete set of states. This enables us to distinguish clearly between diBerent partial-wave transitions, and
to make our analysis in a systematic way. As a dynamical assumption we use the isobar model, and allow
only a minimum number of transitions in order to minimize the number of free parameters. Our formulas
are written in terms of variables used in the Faddeev theory with separable approximation; thus they can be
applied for testing solutions of the Faddeev equation.

I. INTRODUCTION '

'HE present paper is an extension of the formalism
proposed earlier. ' Here, we make an attempt to

analyze 3-body angular momentum states in several
production processes. The AS system is used to present
details of calculations. Ke sununarize in Sec. II dif-
ferent methods of partial-wave analysis of 2- —+ 3-body
transitions. The emphasis is put on the necessity of
using only owe complete set of the 3-particle angular
momentum states in the final state. It is especially
important if several transitions have to be included, and
the analysis is to be made in a systematic way.

In Sec. III we present our angular and isospin de-
compositions. We use two unit operators made up
from the 3-particle angular momentum states, and one
unit operator formed by the 2-particle angular mo-
mentum states. That enables us to discuss transitions
from a given initial 2-body angular momentum state
to a given Anal 3-body angular momentum state
belonging to only one complete set of states.

Section IV, together with Appendix A, contains the
necessary formulas for calculating the mass and angular
distributions. These formulas are based on our angular
and isospin decompositions, and are expressed in terms
of the radial parts of partial-wave transitions. To
calculate these radial parts we make a dynamical ap-
proximation, assuming the isobar model. This is pre-

sented in Sec. V, where we write formulas, using the
notation of the Faddeev theory in the separable ap-
proximation, discussed by Freedman, I.ovelace, and
Namyslowski. ' Our formalism can be used for testing
solutions of the 3-particle Faddeev equations, when
they are solved.

Using the assumption of the isobar model, we present
in Sec. VI the partial-wave analysis for several pro-
cesses ~E —+ xxE, at different energies, below I BeV.
Ke normalize the calculated distribution to the same
area as the experimental histogram. Our results should
be considered only as an example of the analysis of the
3-body angular momentum states. We have tried to
explain several collections of experimental data, using
a minimum number of partial-wave transitions, which
were compatible with the data. The requirement of the
smallest number of transitions was imposed, to minimize
the number of free parameters, which are unavoidable
in a dynamical model. A more extensive analysis will

be possible when a solution of the dynamical theory,
like the Faddeev equations is obtained. Qur formalism
is written in variables used in the separable approxima-
tion of the Faddeev theory; thus it is ready for further
applications.

In Sec. VII we compare our approach with several
other formalisms.

II. DIFFERENT METHODS OF PARTIAL-WAVE
ANALYSIS IN THE ~~M SYSTEMII Supported in part by AFOSR contract AF49(638)-1389.
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To make a partial-wave analysis one has to work
with states of angular momentum. Such states, for the

1965 ~ D. Z. Freedman, C. Lovelace, and J.M. Namyslowski, Nuovo
Cimento 43, 258 (1966).
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3-particle system, can be defined in various ways. ~ In
some of them, ' 4 we first combine a pair of particles into
a system, and then, in turn, consider this system and the
third particle. Of course by doing that in all possible
ways we get three independent complete sets of angular
momentum states. Other methods" employ so-called
"rigid-body" partial-wave amplitudes, and have only
one set of angular momentum states. Yet, there are
other methods" which also use one set of angular
momentum states, but differ from the previous one by
using different additional quantum numbers, besides
the total angular momentum and its projection. Such
variety of 3-particle angular momentum states in itself
produces different ways of classifying partial-wave
amplitudes of the production processes. However, be-
sid, es having different tools for the partial-wave analysis,
we can also consider different methods of using them,
especially in the mmE system. We shall discuss three of
these methods, which have already been used: (1)
Angular momentum states form only one set of states. '
(2) Several independent sets of angular momentum
states are used, and in the final state there is allowed a
combination of states from two different sets.""(3)
Several independent sets are used, but in the final state
there is either one, or several angular momentum states,
which always belong to the same set. '

The first method is the most straightforward one and,
as was shown by Arnold and Uretsky, ' it can be used
for getting some restrictions on the total angular
momentum of the whole system. However, to get a
more detailed analysis of the final angular momentum
states, one has to employ a dynamical model. Such a
dynamical model is obtained by assuming production
of the E~, which can be formed from either one of two
pions and the nucleon. This dynamical model focuses
our attention on the second and third method. Both of
them can easily handle simultaneous production of S*
in two channels, (m-tE)s s and (m sE)s.r. Comparing that
with the first method, one can consider some additional
information about the orbital angular momenta, be-
sides the total angular momentum. This new informa-
tion is generated by a specific dynamical model, but
one can use it in several different cases and see how
consistently it can explain the m~lV system at different
energies.

' G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962); see also M.
Jacob and G. C. Wick, ibid. 7, 404 (1959).

4 A. J. Macfarlane, J. Math. Phys. 4, 490 (1963);A. J. Macfar-
lane, Rev. Mod. Phys. 34, 41 (1962).' D. Branson, P. V. Landshoft, and J. G. Taylor, Phys. Rev. 132,
902 (1963).' R. Omnes, Phys. Rev. 134, l31358 {1964).

7]. Werle, Phys. Letters 4, 128 (1963); Nucl. Phys. 44, 579
(1963); 44, 637 (1963); 49, 433 (1963); 57, 245 {1964);S. M.
Herman and M. Jacob, Phys. Rev. 139, 81023 (1965).

W. A. Wilson, University of California, San Diego, Report No.
UCSD-10P10-5, 1966 (unpublished).' R. C. Arnold and j.L. Uretsky, Phys. Rev. 153, 1443 (1967).

&0 P. G. Thurnauer, Phys. Rev. Letters 14, 985 (1965); Univer-
sity of Rochester Report No. UR-875-119, 1966 (unpublished}."B.Deler and G. Valladas, Nuovo Citnento 45A, 559 (1966).

That state one would be willing to call a given angular
momentum state, if we have

L1=L2 y ll ~2 y &1 |72 ~ (2)

However, even if we have Eq. (2), we still cannot call
Eq. (1) a given angular momentum state. The reason
is that each of the components of Eq. (1) belongs to a
different, independent set of states. Thus, it can be
decomposed into many states of the set where the other
state of Eq. (1) belongs. In that sense, within the second
method, one cannot define the partial-wave analysis
as an analysis of transitions to a definite final 3-body
angular momentum state. That difficulty seems at first
to be merely a formal one; however, it is more serious
if one has to include several angular momentum states.
It would be difficult then, by using the second method, to
perform a systematic analysis of partial waves. If we
would. first allow only one wave and. later assume a
superposition of several of them, then at each step we
would be dealing with an infinite collection of the angu-
lar momentum states.

This difficulty leads us to investigate the third
method, if we would lik.e to take into account several
interfering states in a systematic way. The details of
the third method, and its application, are presented in
the following sections.

The third method, besides avoiding the above-
mentioned difficulty, also has a few advantages. It is a
more selective method because the final state is specified
in more detail. This will become clear from our numerical
results which can be compared with results obtained by
using the second method. Another advantage of the
third. method is that it can be extended beyond the
isobar model. This would be rather difficult to do in
the second method, because we have to assume that
Eq. (2) is satisfied in order to get any meaning from
the partial-wave analysis.

The second and third methods are similar in exploring
the dynamical assumptions of S~ production; however,
they differ essentially in formulating the partiaL-wave
analysis. I.et us start from the second method and show
an example of the final state. For clarity we shall use
the canonical base, and denote a state of the 3-particle
angular momenta by

~

JL, Sl o ), where n=1, 2, 3.
Pions are denoted by 1, 2, and nucleon by 3. J, S are
the total angular momentum and total spin of the ewe
system. L is the orbital angular momentum of the
particle n in the over-all center-of-mass system. / is the
orbital angular momentum of the (P&) subsystem in the
2-body center-of-mass system. 0. is the total spin of
the (Py) subsystem. To account for the simultaneous
production of X* in channels (~tX)s.s and (7rsX)s.t, one
considers the following final state:

~

JLt5lto. t)+ ~

JI.fatso s) .
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III. SEPARATION OF ANGULAR AND
ISOSPIN DEPENDENCE

A. Angular Dependence

In this section we present a few details of the third.
method. The basic novelty of it, in comparison with
the second method, is the use of two unit operators
made up from two complete sets of the 3-particle angu-
lar momentum states. One of these unit operators
enables us to focus our attention on a particular final

state, or on a superposition of states belonging to the
same set. The other unit operator is introduced only
because of the d.ynamical mod. el. We can choose this
second. unit operator to be made up from the most
convenient set of states, in order to get the best frame-
work for the dynamical assumption. The recoupling
coeKcients which show up in the expression for the
T-matrix element are well known and can be exactly
calculated if we have d.efined the appropriate set of
states. From the above remarks one sees that the third
method can be easily used in any dynamical model,
simply by choosing the most convenient set for the
second unit operator.

Besides the two unit. operators formed from the
3-particle states, we also use a unit operator made from
the 2-particle angular momentuIn states. This is for
selecting a given angular momentum state of the initial
particles. Thus, we can discuss transitions between a
definite initial and. final angular momentum state.

Let us start from the plane-wave representation of the
T matrix, and define the amplitude T by

(k~x~,kP p)k„'A„ l
T

l
k,x„kgb), )

= 84(k.+kg+ k,—k.—k b) TgJ„"."&", (3)

where k - k~ denote momenta of particles, and
X ) ~ are helicities. For the angular momentum
representation we use states defined by Wick' in the
helicity scheme, and by Macfarlane4 in the canonical
base. These two formalisms are compared in Mc-
Kerrell's" paper. Most of our formulas will be presented
in the helicity scheme because they are simpler than the
results in the canonical base. However, for making a
dynamical approximation it is easier to work with the
canonical base.

A standard way of extracting the angular part in the
T matrix is to rewrite its plane-wave representation in

terms of the angular momentum representation. Let us

denote, schemati caOy the Wick' 3-particle angular
momentum states by ln(Py)), and insert in Eq. (3)
two unit operators

ZZI (p~))( (p~)lv( p))(v( p)l (4)

Besides Eq. (4), we insert in Eq. (3) one unit operator
for initial particles, and get the decomposition of the
T matrix which will be denoted, by T(n, y) to emphasize

two unit operators introduced inEq. (4).We obtain the

following expression:

S'w
x~x))x&(& +) p g Q 2g . e )))(8 +s—&+))))d sp(p )d s7(p )d a(0))D&0 &

~+(g )
~)))m)))p)y kapaga

fySlyPalJPIIy

2 P ) avp)v))~)),'xa
(w w ) T ~

J )y)Ny))))))P ))v (w g ) '(5)

where 8', J, M are total energy, angular momentum,
and its projection of the whole 3-particle system in the
over-all center-of-mass frame. m, j, m are the same
as above, for the (py) subsystem. g is the relative
momentum of the particle n in the over-all center-of-
mass system. p is the relative momentum in the (pp)
subsystem. Pp~ 0 are angles on the Wick triangle
and they are explained in Fig. 1 and in Appendix B.
s, in the argument of the D function, stands for three
Euler angles Q+, 4, and y, which are polar and azi-

muthal angles of q with respect to the overall c.m.
system and azimuthal angle of p in the (Py) subsystem,
respectively. s, as the upper index of the d function,
denotes the spin of the particle o..

~ Jy~yPaiIPi Py
Tl. 7a~a&P&y) &a((w)))w~)

by the formula (35), with the additional factor

8(cos0 '—(4Ww p q ) '[(W' —m. ')(m—,' mp')—
+w '(W'+~a '+mt, '+m, ' w') —2w 'w,—']}.

To carry out the integration we use the Jacobian

Bw,' 2IFp q

8 cosO

Tq„q,~»»»'» is the radial part of the T-matrix

element

(I'J~w.j ~»-~~ I.lTlI'J~~. l ~).

Finally,

Eg= (2J+1/4m)'i', ) p„—=vp
—) ~, X'—=X,—),g.

"A. McKerrell, Nuovo Cimento 34, 1.289 (1964).

is the recoupling coeKcient, described in Wick s' paper Besides Eq. (5) for T(n,y), we shall also use decomposi-

tions which will be denoted by T(a,p) and T(a,&)~

Formulas for them are exactly analogous to Eq. (5).
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FIG. 1. The Wick tri-
angle. It is a triangle in
a non-Euclidean space.
For more details see
Ref. 3. All angles can
be expressed in terms of
the total energy W and
subenergies m1, x2, and
j03 A few examples
of such expressions are
given in Appendix B.

p We have skipped some indices on the left-hand side to
simplify the notation.

I;T~r(r= ( 1)2I+Ip+I~T~(2T +1)1/2

I Ip T~
X (2T,+1)'"

I~ I T

where the hnal bracket denotes the familiar 6j symbol. "
A similar decomposition, denoted by T(n,P) and T(tr, n),
will be used with Eq. (7).

To write them, one changes notation and. takes care of
the appropriate phase convention according to Wick's'
paper. The reason for using all three decompositions
T(tr, n), T(n, P), and T(rr, y) is to account for simultane-
ous production of Xe and/or for two-pion resonances.
YVe shall discuss this in Sec. IV.

To get expressions in the canonical base, from those
which were obtained in the helicity representation, we
use the inverse of McKerrell's" formulas. For the
3-particle angular momentum state we have the follow-
ing relation:

IPJMw j m 7 pX„X )= (2w„)

(2L +1)(2l +1)
X Q +0,m~ —x~, m~—x»

i.~ r,.8 (2J+1)(2j +1)

jn~a+I ~a&ajaf 8P8y4'aXCma —ga, tna —Xa ~ 0) pyX py ~~p,—~y, & py

XIPJML Sl a ), (6)

where 5 is the total spin of the 3-particle system; I,
is the relative orbital angular momentum of the
system n particle and the (Pp) subsystem; / is the rela-
tive angular momentum in the (Py) subsystem, and o

is the total spin in the (py) subsystem.

B. Isospin Dependence

T= s [T(~,~)+T(~,P)+ T(~,v)] (9)

In Eq. (9) we have used the completeness of each set of
Wick' states, and have written the expression for the
T matrix in a form which guarantees the syrrunetry
property' '4 required by two bosons in the anal state.
A similar formula to Eq. (9) is also discussed by
Thurnauer, ' who included more general coefficients in
front of each T'. However, one should bear in mind the
difference between, e.g. T(n,P), obtained by using two
unit operators of the 3-particle states, and the de-
composition used by Thurnauer, ' where only one unit
operator is used for the 3-particle system. It is important
that all T's in Eq. (9) have the same first index a, if
we wish to have the 6nal state decomposed in terms of
owe complete set of angular momentum states.

To get the differential cross section for the process
[Eq. (8)] we denote

IV. MASS AND ANGULAR DISTRIBUTIONS

A. Mass Distributions

I.et us assume, for a moment, that we know the
radial part of the T matrix. We shall discuss in Sec. V
some approximate form of the radial part. Using our
angular and isospin decompositions of the form of Eqs.
(5) and (7), we can write an expression for the T matrix
of the process

(A,X,I,)+(k hsIs) (k X I )+(kpXpIp)+(k X I„).(8)

We get

In the same way as we have extracted the angular P(w g O C, & )
dependence, we can And the isospin structure of the
T-matrix element. We write (, )+T(,p)+ T(,&) I, (1O)

)asap)p) &t

T= (I i,Ipi p, I~ir I
T

I
I,i„Isis),

where I . I~ are isospins of the corresponding par-
ticles, and. z„. i~ are the s-components of the isospin.
By inserting the appropriate unit operators we get

T(~,v) = P Itrr. &r„r„""Tr.r,"' ', (7)
IiTaiTy

where I, 1 are total isospins of three particles, and the
(Py) subsystem, correspondingly.

IpIpTag . .TaIaIQ. . .IrsI yII Ta = ipipta taiai 'bg 'cg 's

so that the cross section is given by

Papa
P(w, i7,O~,C, q )

16F(2s +1)(2ss+1) Ww

Xdw 'd cos8 dy„d coso~ dC, (11)
where

F=[(k k )'—m swiss]'"

'3 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957l.

'4 P. Carruthers, Ann. Phys. (N. Y.) 14, 229 (1961).
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From Eq. (11) one can get expressions both for mass
and angular distributions. The formula for the mass
spectrum is the following:

(do/dw ') = (22r) st 9k 2(2s,+1)(2ss+1)j '

X P Q XZ2E,.S,.
&nvpvp&a&b Jgcryarma

X d cos0 d .„&,'"(0 )d „s,' '(0 )

1'1G. 2. Graphical representation of Eq. (14).

tion, at a fixed subenergy 02o/Bw 202/, contains a prod-
uct of two one-dimensional integrals, one over cos$,
the other over cosa~

Jj~m~v//v&%~M„J jjmz|sv&i~8 (12)P ~)l.b Xg) b )

where Mq. qb
&" "l'"&~ is given in Appendix A. M con-

tains the recoupling coeftj.cients in the angular mo-
mentum and in isospin space, multiplied by the radial
part of the T matrix. In Eq. (12) there is only one inte-
gration left for numerical calculation. When doing this
integration one has to remember that all angles on the
YVick' triangle are functions of subenergies, as shown in
Appendix B.

B. Angular Distributions

From Eq. (11) we can also get expressions for a dif-
ferent angular distribution. The simplest of them is the
production angular distribution at a fixed subenergy
(02o/Bw 20 coso' ). The formula for it contains only
one one-dimensional integral over cos0 .

To calculate the decay angular distribution we have
to make a transformation of angles. Our polar angles
0, p refer to the z axis in the rest frame of the 2-particle
subsystem, which is taken in the direction of q .
However, it is customary with experimentalists to
work with the decay angular distribution which is a
function of the polar angles $, 2/ . These angles are
measured with respect to the s axis lying in the direction
of the momentum k„when seen from the rest frame of
the 2-particle subsystem. To pass from one frame of
reference to the other we have to make a rotation
through an angle i about the y axis, which is common
to both svstems of reference. One can find the following
relation:

(w '+q ')'"k, coso —
q k '

cosf, =
{$q Q cosog (w 2+ q 2)1/2$ 0j2 w 2//2 2) 1/2

(13)

This rotation through the angle f' induces a transforma-
tion on the function P(w, 0,0,C//, y ), defined by
Eq. (10).We can explicitly carry out such transforma-
tion on each term in our angular momentum series,
using the known transformation properties of D
functions. "The result is a rather lengthy expression, so
instead of writing it we merely add the following
remarks. The expression for the decay angular distribu-
tion of the 2-particle subsystem, at a fixed subenergy
0 o/0w 220 cos$ contains only one one-dimensional
integral over coso . The Treiman-Yang angle distribu-

V. DYNAMICAL APPROXIMATIONS

As a dynamical model we employ the isobar model'5 '~

in a form which is used in the separable Faddeev equa-
tion presented by Freedman, I ovelace, and Namyslow-
ski. ' Having our expressions written in the same form
as in the Faddeev theory, we can in the future replace
the assumption of a model by a solution of the dynami-
cal equation. At present we only test our formulas by
using the isobar model.

In the separable Faddeev theory the isobar model is
formulated by the following approximation of the radial
part of the T matrix:

(PJML Sl o
~
T//PJML'S')=P X ~~t g, (14)

where X ~~~ is a composite particle scattering ampli-
tude defined in Ref. 2, t~ is the propagator of the (rrP)

subsystem, and gr is a form factor of the (np) subsystem.
Graphically we represent the right-hand side of Eq. (14)
by Fig. 2.

We assume that each term of Eq. (14) is proportional
to the following centrifugal-barrier factors:

1,= [w„ws+2I'—(w~)$ ', (16)

where ws, and I'(w~) are the position and the half-width
of a 2-particle resonance. For F(w7) we have assumed

"S.J. Lindenbaum and R, J. Sternheimer, Phys. Rev. 105,
1874 (1957); 106, 1107 (1957); 109, 1723 (1958)."S. Bergia, F. Bonsignori, and A. Stanghellini, Nuovo Cimento
16, 1073 (1960).

M. Olsson and G. S.Yodh, Bull. Am. Phys. Soc. 8, 68 (1963);
M. Olsson and G. B. Yodh, Phys. Rev. Letters 10, 353 (1963);
M. Olsson, Ph. D. thesis, University of Maryland, 1964 (un-
published); M. Olsson and Q, I, bodb, Phys. Rev. 145, 1309
(1966); 145, 1327 (1966).

where a~ is the reduced energy of the particle p and the
subsystem (nP) in the over-all center-of-mass system.
b~ is the reduced energy of particles n and P in their
2-particle center-of-mass system. In Eq. (15) we do
not include a centrifugal-barrier factor coming from the
initial state, because at a axed initial energy it gives
only a constant factor. Our calculated distributions
will be always normalized to the same area as the ex-
perimental histogram.

For the propagator t~ we take
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the following form:

(17) I. S~l 3. PPP

2 P~i 4 D

VI. PARTIAL-WAVE ANALYSIS

A. Discussion of Method

According to the usual procedure of the partial-wave
analysis we extract from the full amplitude only those

IO—

E

b

300 400
1

500
PION K.E. (MeV)

600 700

Fn. 3. Partial inelastic cross section in the F11 and D13 states,
obtained from the mS phase-shift analysis of Lovelace et al.
(Ref. 19).

"J.D. Jackson, Nuovo Cimento 34, 1644 (1964).

This form of I'(w ) implies that F 1'(p /pp)"~+'; thus
our assumption )Eq. (17)j is similar to the one used by
Jackson 's

The isobar model, besides enabling us to write the
formula for the radial part of the T matrix, also puts
several restrictions on the sums in Eq. (12). By assuming
the X production we cut the sums over either jt or j&
to only one term, corresponding to j&=—', or j2=2. We
are considering here sums which are connected with the
unit operators denoted by P or y in Eq. (9).These sums
correspond to the second unit operator in Eq. (4). The
other sums, corresponding to the first unit operator in
Eq. (4), are still infinite, and we will discuss them in the
next section where the partial-wave analysis is set up.

The validity of the isobar model with the E*produc-
tion is restricted to the region where the initial pion
beam energy is below 1 BeV. That implies such a range
of subenergies m~, m2 that the xS cross section is
dominated by the Ã*(1238,118) resonances.

Considering the zx subsystem, we shall assume
throughout most of our calculations that there is no xm.

resonance. Thus, one of the terms in Eq. (14) will drop
out. However, there will be one case, at the initial pion-
energy of 430 MeV, where we find it necessary to allow
some o(400,50) production together with the 1V* pro-
duction. In that case all three graphs of Fig. 2 are
included in the dynamical model.

4—
E

200 400 600
PION K.E. (Me V )

800 1000

FIG. 4. Partial inelastic cross section in the S31, F31, F83, and D33
states, obtained from the results of Donnachie et al. (Ref. 20).

"C.Lovelace, Proc. Roy. Soc. (London) 289A, 547 (1966).
20A. Donnachie, A. T. Lee, and C. Lovelace, Phys. Letters

19, 146 (1965).

partial-wave transitions which are compatible with all
available experimental data. We start by assuming that
only one transition, from a given initial angular mo-
mentum state to a given final angular momentum state,
dominates the considered process. If that fails to explain
the data, then we try a superposition of several
transitions.

The initial angular momentum states are almost
uniquely determined. They are 2-particle states; thus
we have only one set of angular momentum states. We
can use results obtained from the phase-shift analysis
for the xS scattering in the inelastic region to extract
the most dominant initial states. - These results are shown
in Figs. 3 and 4. They were obtained by Lovelace
et al."' There is a,n ambiguity which can arise by
Ileglectllig tlansltlons collespondlng to J~~ 2 as lt was
pointed out by Arnold and Uretsky. We shall, however,
stick to the assumption that J~&-,', and in this case we
have uniquely determined the initial angular momentum
states.

The final angular momentum states are the 3-body
states; therefore we can buiM. several independent sets
of angular momentum states. To make a systematic
partial-wave analysis we have to stick to only one of
these sets and not mix states from diGerent sets. Any
of the independent sets can be chosen for the final state,
because each of them is a complete set. However, some
of the experimental data will be easier to classify when
working with one particular set. For example, the xm

spectrum will be easiest to discuss in the angular mo-
mentum states built up according to the (a.m)$ scheme.
Besides a formal reason, there is also an essential
advantage to use this scheme. Namely, the dynamical

assumption is put in the (aE)a. scheme because of the E*
production; thus, when calculating the ~~ mass spec-
trum in the angular momentum state of the (rra)X
scheme, we will integrate over the xS subenergies. In
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that way we will average over the radial part of the
amplitude; therefore the approximate form of it will
have rather small effect on the xw mass spectrum. We
have checked it by taking various assumptions for the
radial parts. The mm spectrum was almost unchanged if
we were considering the same transition. On the other
hand, the xw mass spectrum is very sensitive to the
choice of the angular momentum. Thus it provides a
sensitive criterion for the partial-wave analysis even
at the stage when the radial part of the amplitude is

only roughly approximated.
As well as studying the set of the final angular mo-

mentum states in the (s.m )X scheme, it is also interesting
to ask which of the lowest angular momentum states
are most important in the (ir1V) s. scheme, where we are
making the dynamical assumption. We cannot simply
project the state which we obtain in the (s.s.)1V scheme
on the set of states of the (i')ir scheme. That will give
us an infinite number of states and not the lowest one,
for which we are looking. It should be remembered that
the recoupling coefficients, between states of two sets of
the 3-particle angular momentum states, are diagonal
only in the total angular momentum and its projection,
but not in the orbital angular momenta. In the partial-
wave analysis we are interested in a finite number of the
lowest angular momentum states, corresponding to any
of the possible schemes. Working with a finite number of
3-particle angular momentum states in each of these
schemes we have to satisfy a consistency requirement
that the few states, which are used for the dynamical
assumption, are also the dominant one when we look
at them in the zS mass spectra. However, the ~E
spectra do not provide a very sensitive test, because
they do not change very much if we choose a different
angular momentum for the production of the S*,
providing we assume E* with its quantum numbers,
mass, and the width. The xS spectra are therefore not
very good tools for deciding which is the most important
partial wave, if we work with the E* model. On the
other hand, these spectra are quite sensitive to the
dynamical assumption on the radial part of the ampli-
tude. This is so, because the subenergy of the xE
subsystem is the same variable which we use for the mass
of the E* and at which we look in the AS mass spec-
trum. Therefore we only require that the mE spectra
are compatible with the E* assumption, and we use
the mw spectrum as a tool for finding the most dominant
anal angular momentum state in the set of states of the
(mrs.)X scheme.

&. or P ~ or or+n at 430 MeV

In this section we present several details of our partial-
wave analysis on the example of ir p —+ m 7r+n at 430
MeV. There are two reasons for concentrating on this
process. First of all, the initial energy of this process
is the lowest one which we will consider; thus it is the
most favorable case for making an assumption on the

radial part as proportional to the centrifugal-barrier
factors. Secondly, the mm. mass spectrum, which is the
main point of our interest in the partial-wave analysis,
is known" to have a definite peak at the right-hand side
of the mm spectrum. We discuss a possible explanation
of this peak by eliminating several hypotheses within
our partial-wave analysis.

The initial angular momentum states at 430 MeV are
the following, according to results from mS phase-shift
analysis shown on Figs. 3 and 4:

~

—'0 —'00), (-' 1-', 00), for J=-,',
~-; 1-', 00), for

(19)

By the "lowest state" we mean a state
~

JL&Sl3o 3) such
that J~&-,', L3——0 or 1, and/3=0.

As a dynamical model we assume the X* production
in the 5, I', and D waves. Here, 5, I', D means that either
I-~ or I-2, in the second unit operator, is equal to 0, 1, 2.
We always assume that either /~ ——1, or /2

——1, in the
second unit operator. Now we can use parity and. the
total angular momentum conservation, to restrict the
number of transitions between the initial states [Eq.
(18)] and the final states fEq. (19)].Because of the
same conservation laws we can ajso restrict the possible
dynamical models. Therefore, we shall consider transi-
tions shown in Table I.

In the (7rJV )ir scheme we can have in the final state
either

~
JL2Sl2o2) or

~
JLtStiot), and we shall consider

transitions which are compatible with the same initial
states as in Table I. These transitions are shown in
Table II. The final states in Table II are the lowest
ones in the sense that J~& ~, and I.~, or L2 are equal to
0, 1, 2. Again we have either /~ ——1, or /2 ——1, to maintain
the E* assumption.

Now we can start our partial-wave analysis by trying

TABLE I. Partial-wave transitions for ~ p —+ ~ m-+n and m p ~
7r m'p. The final states are classi6ed in the (vr7f)N scheme.

Initial
No. state Final state Isospin Dynamical model

S31
2 PII
3

D13

5
6

i-; 1~ 00)
I20k00)

151200)

~
—; 1 —', 0 0)

D-wave production of N*
P-wave production of N*

S-wave production of N*
D-wave production of 1P
S-wave production of N*

D-wave production of 2/~

» J. Kirz, J. Schwartz, and D. Tnpp, Phys. Rev. 130, 2481
(1963); J. Kirz, Lawrence Radiation Laboratory Report No.
UCRL-10720, 1963 {unpublished}.

S3~, E~~ for J=~;

Day, D33 for J—
~ .

In the final state, if we work with a state
~
JL3Sl3a8)

of the (ir~)1V scheme, we shall consider the following
lowest angular momentum states:
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7l' p ~ ll'"7T n 450 MeV

I60

I20

80

x
m Ioo
LLJ

40
W

O
I loo

M ~+„(MeV)
I200

~ !60

50
D
X

I20

80

40

300
g~+ ~- (MGV)

400 lIOO
Mg"g (MeV)

(b)

l200

Pro. 5. (a) w s. mass spectra for transitions of Table I, taken separately. The experimental data (463 events) are from Kirz et af.
(Ref. 21). (b) ~+a and ~ I spectra for transitions 2, 3, and 4 of Table II, taken separately. The experimental data (463 events) are
from Kirz et al. (Ref. 21).

one of the transitions from Table I or II, taken sepa-
rately. We ask whether any of them can explain all
data on ~+~ and mN mass spectra. Our results are
shown in Figs. 5(a) and 5(b). We see that the choice of
transition has a larger effect on the x+x spectrum than
on the 7' spectra. The shape of the calculated z.+z.

spectrum varies significantly, while the shape of the xN
spectra is quite stable and roughly agrees with the
experimental data. The agreement of the xN spectra is
not surprising, because it is mainly due to the assump-
tion of the X* production. From Fig. 5(a) we see that
none of the separate transitions can explain the x+~
spectrum, which is the crucial test in our analysis. All
of the curves have a pronounced peak at the left-hand.
side of the x+m spectrum.

The next step is to try a superposition of several
transitions. Because of the orthogonality of the initial
angular momentum states, there is only a small number
of interesting superpositions which could, remove the

TABLE II. Partial-wave transitions for m=p —+ ~ x+n and ~ p —+

m mop. The final states are classified in the {~Ã)m. scheme.

Ioo—
m' p~ m' m' n 450MeV

peak from the left-hand side of the m+m. spectrum.
Interference in the formula for mass distribution can
occur only among those transitions which have the
same initial state. Thus, we can superpose the following
transitions: 3 and 4, or 5 and 6. The result of superposing
3 and 4 is shown in Fig. 6, and a similar result can be
obtained by adding 5 and 6. We see that agreement
with the experimental data is still not obtained and we
make it even worse if we add another transition because
each of them has a definite peak at the left-hand side
of the x+m spectrum. Also, we do not obtain a better
agreement by including some higher transitions cor-
responding to J&+ because they do not interfere with
the previous one.

Thus, working with a finite number of angular
momentum states and with the dynamical model of the
N* production, we can not explain all mass spectra of

Initial
No. state Final state Isospin Dynamical model o 50

S81
~11
D18

D18

D83

D88

D-wave production of S*
I'-wave production of S*
S-wave production of g*
D-wave production of 1V*

S-wave production of Ã*
D-wave production of E*

SOO 400
M~+~- (MeV)

E'IG. 6. ~+~ mass spectrum for the superposition of transitions
2 and 3 from Table I, in the ratio 1:5.The experimental data,
(463 events) are from Kirz et al. (Ref. 21).
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TmLE III. Partial-wave transitions for ~ p ~m ~+n and ~ p-+
m ~ p. The final states are classified in the (7f-~)X scheme. 7T p ~7T 77 n 605MeV

Initial
No. state Final state Isospin Dynamical model

2
2/

Pic
Pll

~ & 0 & 00) 2 P wave -production of E*
~-,
' 0-', 0 0) —', S-wave production of e

process s p ~ 7r 7r+rt at 430 MeV. It will be seen, in
the following sections, that the above conclusion is
limited to the production of m m.+e in the region of
400 MeV.

To explain the right-hand peak of the experimental
data for the z+~ spectrum at 430 MeV, we have to
assume that there is at least one more transition besides
those in Table I. That transition has to have the same
initial state, so it can interfere with a transition from
Table I. We have chosen the initial state to be the P~i,
because according to Figs. 3 and 4 this initial state is
the most important one at the energy around 400 MeV.
Restricting ourselves to the initial state P~i, we have
only one possible transition if we assume for the dynami-
cal model only E*production. Another transition with
the same initial state, and incidently with the same
Anal state, can be proposed if we allow the production
of 0-. We can then superpose two transitions, shown in

IOO — — — +
7T' p ~ 7T 7T n 430 Mev

300

I-z
ILI l20—
LLJ

80—O

K 40-
IX)

X

I IOO

l20-

80-

40—

I I 00

I200

N

l

I300
M7r n (MeV)

l 200

N
I

I 300
+ ( Mev)

400 500
M~ ~ (MeV)

50—

~ l60-z
LLI

&~ l20—

I

300
(MeV)

I

400

FIG. 8. ~+2i, m=n, and ~+n mass spectra for the superposition
of transitions 3 and 4 from Tables I and II, in the ratio 1:5.The
experimental data (383 events) are from Kirz et al. (Ref. 21).

Table III in the (7rs)lV scheme. In the (zS)s scheme
we also have two unique transitions, if we restrict the
initial state to be the P». They are shown in Table IV.

Assuming that both transitions 2 and 2' take place,
we can explain all mass spectra of the process w p —+

m m-+e at 430 MeV. Our results are shown in Fig. 7.
The second transition 2' has to be taken with the coef-
ficient —0.1i. To interpret this coeKcient see Ref. 22.

Having obtained an agreement between our curves
and all experimental data, we stop our analysis. It

I IOO

I

1200

TmLE IV. Partial-wave transition for ~ p —+ ~ ~+n and w p-+
e s'p. The final states are classified in the (e.N)e. scheme.

l60—

120

M 7r n (Mev) Initial
No. state Final state Isospin Dynamical model

P-wave production of N*
S-wave production of 0.

'2 The coeKcient we put in front of our radial part does not
represent the ratio of amplitudes. It contains many other buried
factors, because we have only extracted the centrifugal barrier
factors [Eq. (15)g and the propagator LEq. (16)g. To estimate the
ratio of amplitudes we multiply our coeflicient by an average
value of centrifugal barrier factors and correct it by the eGert
of different mass, width, and spin of resonances. In the case of o.

and N* in m p scattering at 4/0 MeV, instead of O.i we get an
effective factor 4.56,

!
I 200I IOO

7)-+n (Mev)

p FrG. 7. 7r+~, 7f. n, and x+n mass spectra for the superposition of
transitions 2 and 2' from Tables III and IV, in the ratio 1:(—0.1i).
The experimental data (463 events) are from Eirz et al (Ref. 21). .
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~ 80—

60—

40-
K
LLI~ 20

ir

80-
60-
40-

360 600
M~+& (Mev)

I

I 200
M~ ~ (MeV)

I@00

7l' p~v Tr n 7SOMeV
ratio 1:5at 605 MeV and 780 MeV, and with the ratio
1:3at 905 MeV. These ratios" were chosen because of
the centrifugal-barrier factor in the expression for the
radial part of the T matrix. That factor is approximately
1/4.3 at 650 MeV and 1/3.5 at 905 MeV. Thus, by taking
the above ratios we allow roughly equal probability
for both transitions 3 and 4.

The first process of (ii) is in the energy region, where
the most important initial states are Pii and Dia. Thus,
we should consider transitions 2, 3, and 4. If we assume
only one of these transitions, or a superposition of 3
and 4 with the ratio 1:5, then we get results shown in.
Fig. 11(a).By including all three transitions in the ratio
1:1:5,we get curves shown in Fig. 11(b).It should be
noticed that the above ratio" discriminates against the
transition 2 which has the P-wave centrifugal-barrier
factor. Because of that the result for the m.m. spectrum
obtained by superposing 3 and 4 is similar when 2, 3,
and 4 are taken in the ratio 1:1:5. In that way we can
allow the presence of the initial state Pi~ and get a
reasonable agreement with all experimental data shown
in Fig. 11(b), working only with the A'* production. At a

2O-
N

I 200
M~+„(MeV )

I

I%00 40—
p ~ VT' 7I" n 905 MeV

FIG. 9. 7t+7f, 7f e, and 7f'+'I mass spectra for the superposition
of transitions 3 and 4 from Tables I and II, in the ratio 1:5.The
experimental data (350 events) are from Kirz et al. (Ref. 21). 20—

could be carried further to obtain a better 6t, if we had
a more detailed knowledge about the rad. ial part of the
T' matrix. At present, we stop our analysis on a minimum
number of transitions which are compatible with all
experimental data. We are trying to restrict the number
of transitions to a minimum, in order to minimize the
number of free parameters which arise because of our
poor knowledge of the radial part of the T matrix,

I-
w0 40—
LLI

O

300
I

500
M~ ~+ (MeV)

700

C. ss p~ ss st+n and se p~ ss ss'p

This section deals with the partial-wave analysis in
the following processes: (i) vr p —+ s. sr+is, at 605 MeV,
780 MeV, and 905 MeV, (ii) rr p —+ ir rr'p, at 450 MeV
and 905 MeV. These processes we can explain by as-
suming only E~ production. o cannot be produced. in
processes (ii) because of the isospin, and it is not
expected to be produced in the processes (i) which are at
energies of 600 MeV and higher.

All processes (i) and (ii) can be explained by an ap-
propriate superposition of transitions from Tables I or
II. Our results are shown in Figs. 8, 9, 10, 11(b),and 12.
All processes (i) and the last process of (ii) can be ex-
plained by superposing transitions 3 and 4. We concen-
trate only on the initial state D», because above 600
MeV this is the most dominant sta, te. Another transition
could be included but only at the expense of adding a
new parameter. Transitions 3 and 4 were taken with the

K
w 20
txl

IOO 300
P ~- (Mev/t:)

60—

40—

20—

IOO
I

300
P&T+ (MeV/c )

500

FIG. 10. m-+71- mass spectrum and center-of-mass momentum
distribution for 7t- and 7i-+, calculated for the superposition of
transitions 3 and 4 from Tables I and II, in the ratio 1:3.The
experimental data (354 events) are from E. Pickup, D. K.
Robinson, E. O. Salant, F. Ayer, and B. A. Mnnir /phys. Rev.
132, 1819 (1963)j.
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- 7T 7T p 450MeV

20—

10—

7I' p ~ 7l 7T' p 450 MeV
20—

LLI

LLI

500
I

400
~ {MeY

I'j(

~ 20-
O 20—

I IOO

M~ p {MeV)

f

1200

!0—

5QQ 55Q 400
M~ ~(MeV)

450 I IOO

M~ p (MeV)

I

1200

N

FxG. 11. (a) ~ m' mass spectra for transitions 1, 2, and 3 from Table I, taken separately, and for the superposition of 2 and 3 in the
ratio 1:5.The experimental data (100 events) are from H. Martin (private communication), and Ref. 17. (b) s s', s. p, and ssp mass
spectra for the superposition of transitions 2, 3, and 4 from Tables I and II, in the ratio 1:1:5.The experimental data (100events) are
from H. Martin (private communication) and Ref. 17—solid curve, and from C. P. Poirer, C. A. Tilger, E. D. Alyea, Jr., J. H. Martin,
Jr., J. I. Rhode, and J. H. Scandrett [Phys. Rev. 148, 1311 (1966))—dashed curve.

similar energy, in the companion process x p ~ x ~+e,
we had to introduce the r production, which was plaus-
ible in the case of that process. In the present case, a.

is excluded by the isospin. Our agreement in Figs. 7 and
11(b) indicates some consistency of the assumeddynami-
cal model.

D. ~+p~ ~'m+p and ~+p —+ er+m+n

This section deals with processes (iii) rr+p~rr'rr+p
at 600 MeV and 820 MeV, (iv) ~+p —+ 7r+rr+ts at 600
MeV. These processes have total isospin equal ~3;

therefore we consider the following initial states:

production. There is no possible 0 production because
of the isospin.

Working with states of the (s-s.)1V scheme we shall
consider transitions shown in Table V. In the (s.E)rr
scheme we shall deal with the same initial states, and
consider transitions given in Table VI. As in the previous
sections, we start our partial-wave analysis by assuming
separately only one of the above transitions. Our results
for ~+~' mass distribution are shown on Fig. 13. Again

TmLz V. Partial-wave transitions for m.+p —+ ~'m.+p and x+p —+

m-+~+n. The final states are classified in the (7r~)Ã scheme.

$3i, for J= g

P33, Dga, for J=-,'. (2o)

We have not included P3~ because, according to Fig. 4,
this initial state is of smaller importance than the states
of Eq. (20).

For the dynamical model we again assume only E*

Initial
No. state Final state Isospin

S31

Dynamical model

D-wave production of Ã*
S-wave production of E~
D-wave production of E*
I'-wave production of 2V*

ti-wave production of lV*
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TABLE VI. Partial-wave transitions for m.+p ~ m'71-"p and 7l-+p —&

s.+~+a. The final states are classified in the (~$)~ scheme. + 0
vr p m m p 600MeV

Initial
No. state Final state Isospin

S31
D33

D33

&33

&33

Dynamical model

D-wave production of Ã*
S-wave production of S*
D-wave production of lV*

I'-wave production of S~
F-wave production of A'*

~ 60

W

40

z 20

we notice that none of the separate transitions can
explain the experimental data for the m-+mo spectrum.
Therefore we have to consider a superposition of several
transitions. At 600 MeV we have in the initial state only
S3~ and D33 and therefore we superspose transitions 1,
5, and 6. Our results for the first process of (iii) and
(iv) are shown in Figs. 14 and 15, correspondingly. We
have taken transitions 1, 5, and 6 in the ratio 3:1:S.

Considering the process m.+p —+ tr'~+p at 820 MeV,
we should include, besides 1, 5, and 6, transitions 7 and
8. The best fit is shown in I'ig. 16, and it was obtained

300 400 500
M~+~ (MeV)

Fto. 13. 7l-+w' mass spectra for transitions 1, 5, 6, 7, and 8 from
Table V, taken separately. The experimental data (418 events)
are from P. C. A. Newcomb /Phys. Rev. 132, 1238 (1963)g.

from transitions 5, 6, 7, and 8 taken in the ratio
1:5: (—4): (—10). We have not included the transition
1, because any amount of it produced. disagreement
with the experimental data. That feature is illustrated
in Fig. 17, where we show two curves, one for the

7T' p ~ 7T 7T p 905 MeV ~ p ~7T K p SOOMeV

40—

20—
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40I-
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LLI 75—

K
g) 25—

X
IOO
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M~ ~ (MeV)

I

300
P~ (MeV/c)

I

700
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V)I-

~ 75—
LL~ 5o-
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Q7r+~ (MeV)

I 00
p~' ( MeV /c )
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50—

25—

Ioo
I

300
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FIG. 12. m 7i' mass spectrum and center-of-mass momentum
distribution for 7i- and 71-0, calculated for the superposition of
transitions 3 and 4 from Tables I and II, in the ratio 1:3.The
experimental data (216 events) are from E. Pickup, D. K. Robin-
son, E. G. Salant, F. Ayer, and B.A. Mnnir LPhys. Rev. 132, 1819
&1963)g.

25

Ioo
p~+ (MeV/c )

I

200

FzG. 14. m+m. mass spectrum (Q + o=3f + o—2m ) and center
of-mass momentum distribution for m' and m+, calculated for
the superposition of transitions 1, 5, and 6 from Tables V and VI,
in the ratio 3:1:5.The experimental data (418 events) are from
P. C. A. Newcomb (Phys. Rev. 132, 1238 (1963)g.
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superposition of 5 and 6 with the ratio 1:5, another for
the superposition of 1, 5, and 6 in the ratio 3:1:S. The
factor 3 in the front of the transition 1 is to balance the
centrifugal-barrier factor in the 6nal state." In our
formulas we do not include any centrifugal-barrier
factor for the initial state.

O

7T p ~7T 77 p 820 MeV

E. Angular Distributions

We have also calculated the center-of-mass angular
distributions for these superpositions of the considered
transitions, for which we obtained the best 6t for the
mass spectra. We present only a few examples of angular

p = 7l 7T' n 600 MeV

IO—

z
UJ 60—

o 40
K

20—
X

IOO

Q 7T+ -t7- ( M e V )

300

IO

IOO 300
P7J- (MeV/c)

IOO 200

20—

I

lOO 300
P~+ ( MeV /c )

25—

FIG. 1.6. 2I-+21- mass spectrum and center-of-mass momentum dis-
tribution for m' and m+, calculated for the superposition of transi-
tions 5, 6, 7, and 8 from Tables V and VI, in the ratio 1:5: (—4):
(—10). The experimental data (347 events) are from R. Barlou-
taud, J. Heughebart, A. Leveque, C. Louedec, J. Meyer, and D.
Tycho )Nuovo Cimento 27, 238 (1963)J.

IOO

p~+ (MeV/c }
200

tions are very sensitive to all interference effects between
any of the considered transitions. In our analysis we

have taken only the minimum number of transitions,
in order to minimize the number of free parameters.
Thus it is not surprising that our results for angular

FIG. 15. m+2I.+ mass spectrum and center-of-mass momentum
distribution for 21-+, calculated for the superposition of transitions
1, 5, and 6 from Tables V and VI, in the ratio 3:1:5.The experi-
mental data (75 events) are from P. C. A. Newcomb t Phys. Rev.
132, 1238 (1963)].

40—
(h

X
La $0—
LLJ

+ 4
m' p ~m' m' p 820 MeY

distributions to illustrate the shape" of curves which we
have obtained. In I'ig. 18 we show results for the
following processes: ~ p —+ e. x+e at 905 MeV; x. p —&

x ~'p at 450 MeV, and 905 MeV. In Fig. 19 we have
angular distributions for m+p —+m'vr+p at 600 MeV;
vr+p ~ ~+a.+rs at 600 MeV. The agreement with experi-
mental data is reasonable in some cases, but not
satisfactory in all of them. Results for angular distribu-

'3 The symmetric shape of our curves for the angular distribu-
tion is caused by our simplified assumption about the radial part.

4
O

20

IO—

I

100
l l

200 300
Q~ ~+ (Me Y)

400

FIG. 17. 7i-+21- mass spectrum for the superposition of transitions
5 and 6 in the ratio 1:5—dashed line, and for the superposition of
1, 5, and 6 in the ratio 3:1:5—solid line. The experimental data
(347 events} are from R. Barloutaud, J.Heughebart, A. I-eveque,
C. I.ouedec, J. Meyer, and D. Tycho PNuovo Cimento 27, 238
(1963)g.
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FIG. 18.The center-of-mass angular distributions for transitions described in Figs. 10, 11(b), and 12, correspondingly.

F. Conclusions
(d) ~+p ~ ~'~+p and m+p ~ x+m+II around 600 MeV:

Ssi —+ —,
' 1 -', 0 0)r sis D-wave production of E*,

Dss~ s 1 s 00)r s~s S- and D wave produc--
tion of E*.

To conclude our partial-wave analysis of xS~ ~&Ã
we summarize the main results.

(1) The s-s- mass spectrum is a sensitive test of a
particular choice of the partial-wave transition. At
the same time this spectrum is rather insensitive to a
deinite form of the radial part of the T matrix, if we

work only with the X* production. Therefore, the mx

spectrum is a good tool for partial-wave analysis, even
with an approximate dynamical model.

(2) All mass spectra, and the center-of-mass angular
distributions can be explained by the following transi-
tions. We use the (s.s.)X scheme to denote the final

angular momentum state.

(e) ~+p ~ vr's. +p, around 800 MeV:
Dss~lss 1-'00)r-s)s S- and D-wave produc-

tion of E*,
Pss~ls 2 s 00)r 8/s P- and F wave produc--

tion of X*.

VII. COMPARISON WITH OTHER FORMALISMS
AND FINAL REMIGES,S

Pion production processes m.E—+xwE have been
studied by many authors with the use of the isobar
model or a model closely related to it. We recall papers
of Lindenbaum and Sternheimer, "Bergia, Bonsignori,
and Stanghellini" Olsson and Yodh ' Thurnauer '
and Deler and Valladas. "In the following there are a
few remarks pointing out some differences between their
approach and ours.

Lindenbaum and Sternheimer" assumed that the
isobar was always produced in the S wave and decayed

(a) s=p —+ s. s+e below 500 MeV:

Pii +P, 0-,'00)r t/2 P wav—e production of %*-
and S-wave production
of 0'.

(b) s.—p~ s s'p below 500 MeV:
P»~ —', 0-,'00)r res P-waveproductionofX*,
Dis~ s 1-', 00)r=tis S- and D wave produc--

tion of E*.

distributions only roughly agree with the experimental (c) s. p-+ ~ s+e and s. p~ s s p, 600-900 MeV:
data. Dts-+~s 1s 00)r-i~s S- and D wave produc--

tion of S*.
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FiG. 19. The center-of-mass angular distributions for transitions
described in Figs. 14 and 15.

in the S wave t'oo. Furthermore, they assumed that the
interference between the two diagrams, corresponding
to the simultaneous production of A~, could be ne-
glected. The results they obtained for the mass spectra
were roughly in agreement with experiment.

It was pointed out by Bergia, Bonsignori, and
Stanghellini" that one should include the interference
between the two diagrams, but they found that the
effect of doing so was to obtain a pronounced dip in the
mass distribution, which was not seen experimentally.

That disturbing feature was removed by Olsson and
Yodh, ' who showed that the inclusion of the correct
E-wave decay of the ~X resonance, and the requirement
of Bose statistics rectified the spectra, and they ob-
tained quite good agreement with experiment. Their
model accounts for the ~~ mass distribution in most
charge states, but not for the m+m spectrum obtained
in the experiment of Kirz et al."

A general, relativistic, and unitary scheme, using the
canonical base of Macfarlane, ' was formulated by
Thurnauer. ' However, in his calculations of the mass
spectra of the process m p~ ~ ~+e, there is assumed
only the S-wave production of any resonance, and the
E~~ or D~3 initial states. His assumption about the anal
S-wave production remains for all incident energies in
the range 212—780 MeV.

Recently, Deler and Valladas" have formulated a
practical, relativistic scheme using the isobar model.
Their formalism is very similar to ours, but they diGer

from us by allowing a mixture of two states from dif-
ferent complete sets. These two states have numerically
the same quantum numbers, but they belong to two
independent set of states. Deler and Valladas" have
calculated the mass spectra for ~+p —+ ~+~'p at 510
MeV and 810 MeV. Their results are in some cases
different from ours. The reason for this is that they
calculated transitions which are essentially different
from the ones considered by us. Their transitions are
from a given initial angular momentum state to a
superposition of an infinite number of the final 3-body
angular momentum states, if one looks at them using

only one complete set of states. We have selected one

transition, or a superposition of a finite number of them.
This was possible only because we have two unit
operators for the 3-body angular momentum states.
Our ma, trix element contains a given recoupling coef-

ficient, and it enables us to distinguish easily between

quite different shapes of the m.m-mass spectra, corre-

sponding to different transitions. We can select transi-

tions, and superpose them in a systematic way, because
our final states belong to only one complete set of states.

Concerning our calculations, we add the following

remarks. Our partial-wave analysis emp/oys a definite

dynamical model, so its numerical results depend on

this model. One can use our formulas for another input,
because the formalism is written in such a way that it
can be easily used for any form of the radial part of the
T' matrix. For example, we can put in our formulas a
solution of the Faddeev equation, and get quantities
which couM be compared with the experimental data.
We have not included any 3-body forces, which could

easily be incorporated, although they imply much more

lengthy expressions, Several details of calculations

with the 3-body forces, in the separable Faddeev theory,
are presented in the paper of Freedman, Lovelace, and

Namyslowski. '
In our present partial-wave analysis, we did not

saturate all possibilities of explaining the experimental
data. Ke have rather pointed out some possible solu-

tions which are compati'ble with all experimental data.
Our aim was to explain several processes with the
minimum number of transitions to minimize the number
of free parameters. One could extend our analysis by
including more transitions. In particular, one could
include transitions with I= ~ as well as I= ~ when the
~ p scattering is considered. By doing so, one would

improve the agreement with the experiment, but wou]d
introduce many more parameters. Our aim was to
deal with the most dominant transitions and to present
the basic idea of a systematic partial-wave analysis.
If we achieve a better knowledge of the radial part of
the T' matrix from the Faddeev equation, then we
shall be able to improve our analysis by including all
transitions which could arise in a given process.
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APPENDIX A

In this Appendix we give an example of the quantity
M introduced in Eq. (12) of Sec. IUA.

Jjamavpvt1 —g t Q /1 T ITa
I Tc2

+ Q &IT.&TpIp"' T(,p)ITp
To/T p

++AT@' ITIT IT7]
Fc2F7

where T(«)' =T), 1,' ' "P"~" (2( &W) is the radial
part of the T matrix.

p q
1/2

2(/
1/2

T(a p) 2
ipmpv&vpij(& ~& pqp

X (2j +1)'/'(2j p+1)'/'( —1)vp»+'~+»

In this Appendix we collect some kinematical formulas
and give expressions for Wick' angles introduced in
Flg. 1.

The magnitude of the 3-momentum q of the particle
n in the over-all center-of-mass frame is given by
q = ~(1

~

=(2W) 9(W2,2c ',m, '), where l1 is defined
'/1(a, b,c)= (a')/-b'+—c' 2ab 2b—c 2c—a) '"—

The magnitude of the 3-momentum p7 of particles
p, (2 in their rest frame is given by

P,=(222)„) 9 (w„2,m ',mp').

The Wick.' angles, introduced in Fig. 1, can be calcu-
lated in terms of the total energy 8' and subenergies
m, my, mv from the following expressions:

COSOa= (4W2(/aP q ) '[(W2 m.')—(m ' mP')—

+w 2(wp2 —2c 2))

cosy = (4W2qpq ) 1(wp222/ 2+ (W2 —mp2)2() 2

+ (W' —m ')2()p' —(W'+2m '—mp' —m ') W'

+mp'm 2]

v&(p ) „sa( p ) T„ ITpJjpmp/I&pa»(2C W)

cosP p
——(4W2()~P~q ) 't (2c~2+m '—mp')

X mp —gp, vaa —&a ( 7) ma, vp~ ( a) mp, /vva ( p)»vp (/'-/p y)

P2=PV.+P2P, PP=PP +PP2


