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We attempt to calculate all three CP-conserving E~ 2m decay amplitudes from the universal current-
current picture of weak interactions. In this model the suppression of the E+—+ x+m mode seems to come
about as a result of a cancellation between the pseudoscalar-meson octet and e6ective scalar-meson singlet
intermediate-state contributions to the current-current "spurion. "

I. IN'TRODUCTION

~

~

~E have previously' shown that the numerical
magnitudes of the s-wave nonleptonic hyperon

decay amplitudes may be calculated from the universal
current-current picture of weak interactions without
introducing any arbitrary parameters. To achieve this we
"saturated" the current-current spurion obtained2 by
eliminating the final pion from the decay matrix ele-
ment using the hypothesis of partial conservation of
axial-vector current (PCAC).

In this paper we attempt to apply this method to
the CP-conserving E—+ 2~ decays. Although several
authors' have already treated this problem, our ap-
proach is rather different. 4

There are two reasons why this method is less re-
liable for the kaon 2x decays than for the hyperon
decays. The 6rst is that the elimination of one pion
involves an analytic continuation' of its 4-momentum
to zero which is not so "harmless" in the kaon case.
The second reason is that the relevant form factors are
not at all well known for the kaon case. Therefore, we
expect our results to be only semiquantitative at best.
In spite of this, we observe that a natural mechanism
exists for the suppression of the E+~ m+x' mode. This
comes about from a cancellation between the contribu-

t Work supported in part by the U. S. Atomic Energy
Commission.' Y. T. Chiu and J. Schechter, Phys. Rev. Letters 16, 1022
(1966); Y. T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150,
1201 (1966). This paper is designated I. See also Y. Hara, S.
Biswas, A. Kumar, and R. Saxena, Phys. Rev. Letters 17, 268
(1966).

sH. Sugawara, Phys. Rev. Letters 15, 870 (1965); 15, 997
(1965);M. Suzuki, ibid 15, 986 (1965.).

3 S.N. Biswas and S.K.Bose, Nuovo Cimento (to be published);
K. I'errari, V. S. Mathur, and L. K. Pandit, Phys. Letters 21,
560 (1966).

4The main diGerences between our approach and that of
Ferrari, Mathur, and Pandit are that we include the scalar singlet
intermediate state and assume SU(3) invariance for the form
factors. Because of this last point the cancellation they postulate
to give suppression of the E+ mode can not take place in our
scheme. Both works seem to 6nd a very small vacuum contribution.

'M. Suzuki, Phys. Rev. 144, 1154 (1966); Y. Hara and Y.
Nambu, Phys. Rev. Letters 16, 875 (1966); B. D'Espaquat and
J. Iliopoulos, Phys. Letters 21, 232 (1966);S. G. Callen and S. B.
Treiman, Phys. Rev. Letters 16, 153 (1966);S. K. Bose and S. N.
Biswas, ibid. 16, 330 (1966).

tions from the pseudoscalar meson intermediate states
and effective scalar singlet intermediate state to the
weak spurion. The strongest point of our argument is
that the signs of these two contributions are uniquely
predicted when SU(3) invariance is assumed for the
form factors. In addition, the numerical magnitudes
for all these E-+ 2sr modes can be well fitted with
reasonable choices of parameters.

The general formalism is described in some detail in
Sec. II. Section III contains the results of saturating
the spurion with a number of low-lying intermediate
states, while in Sec. IV a numerical estimate is made
for the case when only the spin-0 meson intermediate
states are included.

Eg' —+ x+x—,

Eg'~ m'm',

E+—+ x+x',

(ia)

(ib)

(ic)
and the current-current "spurion, " to be defined.

%e start by assuming that all weak interactions,
nonleptonic as well as leptonic, are described by the
universal Hamiltonian density

Ps (x) =-',V2GX-', LJ„(x),J„t(x)j+, (2)

where G'~10 s/Ms, s and the Cabibbo' current J„(x)
is given by

~.(x)=~.'"'~ "(*)+cos8E(Vs').+ (~s') j
+ 8L(V').+(~"),j. (3)

Here sin8 0.26 and (Vs )„and (Pb )„are, respec
tively, the vector and pseudovector octet currents. The
portion of Eq. (2) which is relevant for nonleptonic
decays is

Ps NL ——-'V2G cos8 sin8&(~ (f(Vs'+Ps'), (Vrs+Prs) )+
+(2~3)} (4)

e N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

13j.i

II. J"—+ 2~ AMPLITUDES

We shall discuss the relation between the amplitudes
for the CP-conserving decays
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We define the amplitudes for processes (1) by the
following matrix elements of Eq. (4):
A =(8qpqp'pp)'~'&~+(q)7r

—(q')IHs»(0)IK, o(p)&, (4a)

In our notation the PCAC hypothesis for the strange-
ness-conserving and strangeness-changing currents may
be written as, for example,

A pp= (8qpqp'pp)'"&vr'(q)s'(q')
I
H tv (0) I

Er'(p) &, (4b)

A+o= (8qoqo'po)'*(~+(q)rr'(q') IHw (0) IE+(p)&. (4 )

BPi„'(x) 42M pg~
M, 'pr ts (x),

goNN
(10a)

The amplitudes are related to the experimental life-
times v-;, by

aPr„'(x) V2Mi g~
Mrc's i'(x),

g 1rNN

(10b)

1—= (1—-', S;;)
16zM~

(M )s-l/2

IA„I, (5)
x&

where i and. j can be +, 0, and —,and we have ne-
glected the s.+so mass difference for Eq. (4c). Experi-
mentally7 we have

IA+ I
= (28.2&0.3)X10 'M ",

IAppl = (26.9&0.3)X10 r M.+,

IA+oI = (1.32m.01)X10 'M. . (6c)

8 p (t) = i d'x(P p ) 4

Next we shall use the PCAC hypothesis' and the
algebra of currents to eliminate one of the bosons in
each of Eqs. (4) in order to convert the amplitudes
A;; into more easily evaluated matrix elements. Ke
need the equal-time commutators

I Bo (0),Vg'(x, O)j= 5d'Po'(x, 0)—5p'Pg'(x, 0), (7)

I Bp (0),Pq'(x, O)j= 5~'Vp'(x, O) —5o'V~'(x, 0), (8)

where the axial-vector "generator" Bp'(t) is defined by

where vr, o(x) is the renormalized pseudoscalar meson
octet field operator, g~ 1.18, and (g rr~'/4m) —.14.6.

The process of "removing" a pion from the E~ 2'
matrix element is much more ambiguous' than the
corresponding procedure in the case of the hyperon
decays. One reason is that one pion here represents a
large fraction of the total decay energy. Another
reason, perhaps more serious, is that the generalized
Bose statistics of the two-pion Anal state is disturbed.
A possible way to avoid the second difhculty is to
adopt the procedure of "removing" the initial E meson.
There are indications' that the analytic continuation of
the K 4-momentum to zero is not serious. To follow
this approach we note that the reduction formula
gives in this limit

A,,= (4qoqo')'"iM ' d'x 8(—ao) &;(q),(q')
I

XI HwNL(0) pro (x)BIO&, (11)

where m~ stands for x3' in the case of E+ decay and
+ (i/V2) (s.p' —s.s') in the case of Etp' decay.

The integral on the right-hand side of Eq. (11) may
be rewritten as

d" ~(—")(-'(q)-;(q') I
H "'(o), P...(*) Io)

Mrc'(%2M' gg
(12a)

g re~ 'l
«d'*& '(q) '(q')I H "'(o) —(»'& (~) Io&

Mrr'(V23ffr gal dt
(12b)

(s/Mrr ) (g rtrN/~~Mr g&) —s&~.(q)~ (q')
I
I-Hs' "(0),~o'(0) jl o)

d'*&~'(q)~ (q') ILH~ '(o), (» ) (&,—")jl o& (12c)

= (1/Mx') (g.»/~~M~g~) &~'(fq)~ (q') I LH~"'(0),fi p (o)jl o&, (12d)

where we used Eq. (10b) in obtaining (12a), neglect of
terms at spatial infinity in obtaining (12b), Eq. (9)
in obtaining (12c), and, following Okubo i' the observa-

' A. Rosenfeld et al. , Rev. Mod. Phys. 37, 633 (1965).
M. Gell-Mann and Levy, Nuovo Cimento 16, 705 (1960);

Y. Nambu, Phys. Rev. Letters 4, 380 (1960&.' See, for example, R. H. Dalitz, Varenna Lectures on Weak

tion that because no physical intermediate state has
the same energy as the vacuum the second, "surface"

Interactions, 1964 (to be published), where the validity of the
PCAC hypothesis for strangeness changing currents is disscussed.
The analog of the Adler-Weisberger relation obtained by con-
tinuing the E 4-momentum to zero seems to hold."S.Okubo, Nuovo Cimento 16, A586 (1966).
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term in Eq. (12c) drops. Thus we finally have

A ' = —i(4qpqp')'I'(g b bT/~2Mzgd)

X &~,(q)s., (q')
I [B (0),II N~(0) j IO&. (13) where

A pp ———V2i[b —(6/5) r]A p,

A+p — v2rA p

(19)

(20)

vb: =(~l [vb.,v"1+I~&,

Pbd- (sl[Pb Pd'——) Is&.

(15a)

(15b)

It is also convenient to introduce the total spurion

Sbd-= Vbd"+Pbd-

This has the following decomposition into irreducible
SU(3) tensors:

Sbd r Tbd"+ b[(bd'Db'+ bb'Dd~) s(bb'Dd'+ bd'D—p)j
+a(bd bb' ,'bb bd')&7rs. ),—-(17)

where

Tbd- (7rb md'+m——d'orb') ,' (bp. Dd'+. bd'Db-—
+bd'Db'+bb'Dd') i, (bb'bd'+bd'bb')—&s7r&

&
(17a)

Db rr, mb' ', bb (vrrr&——,
. ——

7' =7m 7rm

(17b)

(17c)

The coeKcients ~, 5, and, a. correspond, respectively,
to the {27), {8,) and {1)SU(3) representations. Only
the first two contribute to E —+ 2x d.ecays.

Performing the indicated commutation in Eq. (13)
and. employing the "spurion" notation just introduced
gives the results

A+ = v2i(b+4sr)A—p, (18)

"Note that we are using exactly the same notation here for the
meson spurion as we used for the baryon spurion in I.This should
cause no confusion.

We note that the equal-time commutator in Eq. (13)
can be evaluated by using (7) and (8).By CP invariance
there will remain only matrix elements of parity-con-
serving current products, i.e., forms like VV and I'I'.

For the purpose of making dynamical estimates, it
is convenient to approximate the Lorentz-invariant
matrix element of Eq. (13) as

(4qpqp')'"(~'(q)~ (q')
I
[Ilb.(O),II~ (0)3l0

= (4qpqp')'"&~'(q) I [» (0),II~"'(0)j
X

I
~ (—q')) (14a)

=(2p)& '(0p) IL» (o) II '(0)3
X I ~;(o,p)&, (14b)

where p, is a degenerate mass for the pseudoscalar
meson octet. Equation (14a) follows from crossing
symmetry, while in Eq. (14b) we have made the approxi-
mation of assuming no change in the matrix element
when analytically continuing the momentum of m;
from —q' to +q'. For simplicity we have considered
the matrix element to be taken between particles at
rest.

The right-hand side of Eq. (14b) can be written in
terms of the SU(3) "spurions'"'.

A p= —i ,'V2-G sin8 cosg (2p) (g ~~/V2M~gd). (21)

This completes the job of expressing the E~ 27r

amplitud. es in terms of the weak spurion. An alternate
approach, due to Hara and. Nambu, s leads to the same
result except that the amplitudes are to be multiplied
by a common factor or (M '—Mz')/ti', where du is a
degenerate pseud, oscalar meson octet Inass.

Still another way of obtaining essentially the same
result is to "remove" the two pions separately and
sylnmetrize" the spurions, the only diBerence being an
over-all factor of -,'compared to our removal of the
E meson. We shall see in Sec. IV that the present lack
of knowledge about meson-meson form factors pre-
vents us from choosing any of the above three ap-
proaches and that such over-all factors can be com-
pensated for by a slight adjustment of our form factor
parameters.

We note from Eq. (20) that the AI=$, E~~ propre

decay only receives a contribution from the {27)
representation, as it must. The following (up to)
AI= ~~ relation" can be read. oB immediately as

A~ App=—+2iA+p (22)

The comparison with experiment'4 is read, o8, with
suitable adjustment of phases, from Eqs. (6) to be

(28.2&0.3)—(26.9&0.3)= 2.64&0.03. (23)

Finally, we remark that although we are assuming
SU(3) symmetry in our treatment of the spurion, we
did, not assume SU(3) invariance to arrive at the
spurion. Indeed, it is well known" that all E—+2m

decays vanish in this limit when we assume crossing
symmetry also.

III. SATURATING THE SPURION'

We now set up the formalism for saturating the
current-current spurion with a number of low-lying
intermediate states. We assume that SU(3) invariance
holds for the various form factors involved. We do not
necessarily assume chiral SU(3)XSU(3) representa-
tions for the mesons, however. The choice of inter-
mediate states to be initially considered may be sum-
marized by the approximate completeness relation

1=I0&(ol yg(l~s&& sl+ lot&&oil+ I pp&&ppl), (24)

1' See M. Suzuki, Ref. 5.
rs E. C. G. Sudarshan, Nuovo Cimento 41, A283 (1966);

T. Das and K. Mahanthappa, ibid. 41, 618 (1966).
"We note that Eq. (22) is not quite satisfied within the quoted

experimental errors, neglecting final-state interactions. However,
it is not so far wrong as to make us question its exact validity yet."M. Gell-Mann, Phys. Rev. t.etters 12, 155 (1964); S. Oltubo,
Phys. Letters 8, 362 (1964).
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r =I v+Ipv+ ',I ~ I ~+ ',Iop-—- (30R)

5= —(9/5)I v+ ,'Iov+ sI + (9/-5)I + 'I p (30b)-
o = sI v+(7/12)I v+ I z+ sI ~+stIp -(30c)

where

dko(ko' —1 ')'"(k +~)Lf(q')]', (31)
(2s.)'

where m8 stands for the usual pseudoscalar-meson octet,
pg for the vector meson nonet, and o-j for a unitary
singlet scalar meson or strong s-wave x-z interaction.
The inclusion of this latter e6ect is prompted by the
observation of several authors" that it seems to
dominate the saturation of states' in the Adler-Weis-
berger sum rule'~ for pion-pion scattering. The vector-
vector spurion receives contributions only from xs and

pg, while the pseudovector-pseudovector spurion re-
ceives contribution from all except m8. The relevant
form factors are defined by

(4pppp')'"(~(p') ~o- (o) I ~(p))= f(q') (p+p')-~o', (25)

f(o)=+1 (25')

(4pppo')'"(Po(p') I
l'o (0) I7r(p)&

ig (q—') e-~7op~p7'eoDo

(2po)'"(o II'b. (o) I
~ '(p))

=i(v2Mpg~/g iviv)P 5o '5a'', (2&)

(4popo')'"& (p') I& - (o) I
"'(p))= (q')f(p+p').

+L(f '—M ')/(q'+~')]q }~

(4p,p, ') ~ (p, (p') II';(0)
I (p))=i( (q') .+n (q')

Xp.'(p')+rip(q') p-(p') }~o (29)

where D& and Il& are, respectively, the symmetric
and antisymmetric SU(3) matrices and we have used
Nambu's form' of the PCAC hypothesis in arriving
at Eq. (28). In each equation q=p —p', while in
Eqs. (26) and (29) e is the vector-meson polarization.

With these form factors and the approximation of
Eq. (24) we easily compute the spurion coefficients"
7., 5, and 0',

with M, =degenerate vector-meson mass.

l 1

(2')' 2p
dkp (kos —M.')'i'I mt(q') ]'

X f (M,'+p'+ 2fiko)+ (fi'+ 21ikp —M.')

X ((M.'—fi')/ (M.'—2yko) )'} (33)

q'= 2pkp —p' —SI ',
1 1I ~=

2
dkp(ko' —M ')'"(—3I si(q')]'

(2s.) 2p

+ (k 2 M 2) (fi2Lri (q2) ]2+ (fi4/M 2) Lis (qs) ]2

+ (2p'/M p') LNi(q') ns(q') ]

(33')

—(2p ko/M, ') t iso(q') tip(q') ])}, (34)

q'= 2p&o —p' —~ '

Io~= fj (Mzg~—/g. vx)'

(34')

(35)

The quantity I v, for example, denotes the integral
which comes from the pion intermediate state con-
tribution to the vector-vector spurion.

Now if the current-current picture is a good one, it
must predict a great suppression for the decay
E+—+ x+m'. In other word, s, the coeS.cient r must be
small, (octet dominance). Of the contributions to r
we note that I is negligible" and. that I is probably
small compared to I P since, as previously noted, a
a-type contribution appears to dominate the p con-
tribution to the Adler-Weisberger sum rule for ver

scattering. Thus only I„v, I,v, and. I remain. From
Eqs. (31) and (32) the first two are seen to be positive,
independently of the details of integration over form
factors. In addition, I,~ can be seen from Eq. (33) to be
negative (the last term is actually negligible in our
case), independently of the details of the form factor.
Thus a natural mechanism for cancellation appears to
exist. This is perhaps the main conclusion of our paper.
In Sec. IV we show that all the E—+ 2m- decays can be
fit in such a scheme with reasonable estimates of the
form factors and coupling parameters.

q'=2) (k —1), (31')
IV. NUMERICAL RESULTS

p
V

(2or)'
dkp(kp' —M, ')'"(kp' —M,') I g(q')]', (32)

q'=2pkp —p' —ll ' (32')

"S. L. Adler, Phys. Rev. 140, 3736 (1965);K. Kawarabayashi,
W. D. McGlinn, and W. W. Wada, Phys. Rev. Letters 15, 897
(1965). See also C. Lovelace, R. M. Heinz, and A. Donnachie,
Phys. Letters 22, 332 (1966).

"W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); S. L.
Adler, ibid. 14, 1051 (1965).

"The contributions from a hypothetical octet scalar meson
intermediate state to v, 5, and 0- would be ~I„, —~I,8, and
(5/12)I„~, respectively. I„P is given by an expression like
Kq. (33) and is similarly expected to be negative.

A~= V2i (I,~ I v)A p, — —

Aop= —V2i(3I v)Ap,

(36a)

(36b)

!'From Kq. (35) we compute Ior = —0.87 3E,' for p, =350 MeV.
This is to be compared with Eqs. (40).

Substitution of Eqs. (30a) and (30b) into Eqs. (18),
(19), and (20) gives the theoretical predictions for the
E —+2m amplitudes in terms of integrals over form
factors. It seems plausible, as mentioned above, to
neglect Ip and. Ip . For simplicity, we shall also neglect
I,v. Then, we have
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~(q')/~(0) = f(q') = (1+q'/0) ' (37)

with P=0.71 when q is expressed in BeV/c. We shall
regard rn(0) as a parameter. With the form (37) I v

and I ~ may be integrated analytically. This process
yields » ~pq ~ p ~

l(CF),
3 (2~)'&2pl kP—2lr'2

(3g)

1tm(0)g' P)s PP~ l(cF)„(39)
3 (2m)s 2IJJ —Iu' —M sI

where the "correction-factors" (CF)i and (CF)s are
given in the Appendix and are numerically close to
unity. In the evaluation of I,~ the last term of Eq. (33)
was neglected because it is very small. (We only con-
sider values of y)-,'M, .) We note the rather sensitive
dependence of these expressions on P and. the degenerate
pseudoscalar meson mass p. Thus it does not seem worth-
while to attempt anything more elaborate than a rough
fit. In particular, we see that we could accommodate a
p contribution or a diGerent method of analytic con-
tinuation by suitable variation of parameters.

We shall use a value of degenerate pseudoscalar
meson mass, p, =350 MeV. For the scalar meson mass,
we take the conventional' value M, =390 MeV. How-
ever, we note from Eq. (39) that the dependence of
I,~ on M, is small. Then taking" nz(0)=1.46 and.
P=0.71 BeV', we find the results

I ~=5.25M ',
I,"=—12.0M ',

I
=29.6x1o-r M. ,

(4Oa)

(4ob)

(41a)

~ L. M. Brown and P. Singer, Phys. Rev. 1M, B812 (1964).
The conventional width is taken to be 90 MeV. Even if the 0.

represents a strong attractive interaction rather than an actual
resonance, the parameters given still serve to almost saturate the
Adler-Weisberger pion-pion sum rule of Ref. 16.

"To get an estimate of what m(0) should be, we may relate it
by the PCAC hypothesis to the em~ coupling constant. Then,
calculating this coupling constant from the parameters of
Ref. 20 gives m(0) =1.14. We note that working backwards, our
larger value of m(0) would give even better agreement for the
value of gA predicted from the Adler-Weisberger rule of Ref. 16.
The explicit formulas used for the above procedure are as follows:
The 07l-~ coupling constant g, is defined in terms of the width
I', by

{g„,)'(3f )'335(M', )' N,

Furthermore, m(0) is related to g, , by

V23IIg A, g, 3f
g rrItI N ~tr

A+p= V—2 (I +sI )A p. (36c)

I ~ involves the pseudoscalar-meson vector form
factor f(qs), while I,~ involves the pseudoscalar-meson-
scalar-meson axial-vector transition form factor m(q').
We assume that these have the standard forms similar
to nucleon form factors.

I A pp I
=27.0X10 ' M,

I&+pl =1.3x10-'M..
(41b)

(41c)
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APPENDIX

The correction factors to Eqs. (38) and (39) are

1 1 (n'+2n' —4u+1)
(CF,) = (3u)

3n' 6n' 6n(1 —n')'

(1—n) 1+(1—u')'"
ln

2 (1—u')'" (A1)

n= 1/(P/2p' —1)(1, (A1')

"S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

The agreement of Eqs. (41) with the experimental
values, Eqs. (6), is of course impressive. We cannot
obtain exact agreement because the present experi-
mental amplitudes do not exactly satisfy the AI=~~
rule given by Eq. (22).

Thus we see that a good fit to the experimental
amplitudes can be made with reasonable choice of
physical parameters in our model. Our conclusion is
that the universal current-current picture of weak
interactions may be consistent with (CP conserving)
K —+ 2m. decays.

Finally, we stress that in this section a specific
approximation to the more general equations of Sec. III
has been used. . In particular, if more definite informa-
tion were available about the form factors of Eqs. (26)
and (29), it would be very desirable to substitute these
results into Eqs. (30), (32), and (34) to obtain the
contribution of the vector meson intermediate states.
If it were to turn out that these intermediate states
dominate, a cancellation between I, and Ip of Kq.
(30a) must occur in order for this current-current
picture to explain the suppression of the E+ mode. In
any case, we have demonstrated one possible mechanism
(that of mrs and o i dominance in the saturation of states)
which naturally appears to give the appropriate sup-
pression. A possible justification for this mechanism has
been noted, to be the fact that the mx Adler sum rule
appears to require the existence of a low-energy s-wave
resonance. As pointed out by Weinberg, " this is not
necessarily inconsistent with a small s-wave scattering
length. Another point of ambiguity in this connection
concerns the possibility that the xm Adler sum rule
may not be correct. In this case, we might expect the
vector-meson dominance mechanism mentioned above
to hoM.
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M~ 2P, 1 (1+2K') f P ' f' 1 4—K'

(CF)s= (3a') — + 1+~
2y zz 3.' 6 o —L')' . kM. k6 ' 6(1—')')

1 2p ( p
'- 1+ (1—~')'"

2(1—K')'" M K

~= 2',M./(P Zz,
'—M—.') & 1.

(A2)

(A2')
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Lie Group of the Strong-Couyling Theory. III. Dynamical Generation
of Extra Internal Symmetry for a Class of Reyresentations

P. BABU)* A. RANGWALA, AND VIRENDRA SINGHt'

Tate Institute of Fundamenta/ Research, Bombay, India
(Received 12 October 1966)

The strong-coupling dynamics, with isospin SU(2) z as the given internal symmetry group, leads to the
generation of a larger internal symmetry group SU(2)q,SU(2)&, (I&+I2——I) for the hyperon isobar-pion
coupling constants, the hyperon isobar series having isospin-spin I=J+—,

' =0, 1, 2, ~, ~. In this con-
nection we describe a "modi6ed contraction" method for constructing the irreducible representations of the
strong-coupling group g=LSU(2)zSU(2)qj&&T&, which starts from the "uncontracted" group SU(2)
(3SU(4) and provides a transparent formulation of the dynamical generation of extra symmetry for a
class of irreducible representations of group g. One more method for constructing the representations of the
group g is also described which starts from a knowledge of the irreducible representations of inhomogeneous
Euclidean group in four dimensions.

I. INTRODUCTION

'N the erst two papers of this series the two irreducible
~ ~ representations (I.R.), which are suitable for de-
scribing the nucleon and hyperon isobars, of the strong
coupling group g=—[SU(2);„,~;„QxSU(2),o;„$XTs of
the symmetric pseudoscalar meson theory were ex-
plicitly constructed. ' ' The isobar-isobar-pion coupIing
constants and the magnetic-moment predictions ob-
tained were found to be in very good agreement with
experimental data.

The most surprising physical result which emerged
from the calculation of hyperon coupling constants in
LGII was as follows. Even though one started with
the internal symmetry group SU(2)zQxSU(2)z, one
found that the coupling constants for this I.R. came
out as if the internal symmetry group was bigger and
was at least as large as SU(2)QxSU(2)QXSU(2) which
contains as a subgroup SU(2)zQxSU(2)q. Thus in this
case we 6nd that the strong-coupling Chew-Low
dynamics leads to the generation of more symmetry.
One may emphasize that this extra symmetry is not
present in all the solutions of strong-coup'. ing dynamics
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but only for a class of them. One would like to express
the dynamical generation of this symmetry in a trans-
parent fashion. We are able to do this by using a
"modified contraction" procedure which we describe in
the next section.

As we pointed in LG II, the irreducible representa-
tions (I.R.) of g, corresponding to hyperon isobar with
isospin-spin content I=J&-,'= 0, 1, 2, , ~ cannot be
obtained by group contraction method used by Cook,
Goebel, and Sakita starting with the group SU(4), as all
such I.R.'s are characterized by having only isobars
with I—J= integers. ' The mathematically more power-
ful technique of "induced representation" method does,
of course, lead to such I.R.'s, but it does not bring out
the dynamical generation of the extra symmetry which
is there for some of the I.R.'s of g.' '

We also describe in the following an alternative
method which depends on knowing the unitary I.R.'s
of the inhomogeneous Euclidean group in four dimen-
sions, E4. The algebraic structure of E4 is isomorphic to
)SU(2)QxSU(2)] XT4, where the four translation opera-
tors transform as the (-,', -,') representation of the com-
pact subgroup SU(2)QXSU(2). The I.R.'s of this group
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