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Convergence of Pade Approximants for the Bethe-Salpeter Amplitude*

J. NUTTALL
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(Received 9 January 1967)

We extend some earlier work on the Bethe-Salpeter equation to show that the sequence of (X,N] Pade
approximants to tan bg converges to the correct result if the scattered particles are of equal mass. The proof
includes a demonstration that the symmetrized kernel of the Bethe-Salpeter equation after a coordinate-
space Wick rotation is I. . An interesting connection between Pade approximants and the Schwinger varia-
tional principle is given.

INTRODUCTION
' ' N this paper we give a more detailed. account of some
.. work described briefly by Nuttall' concerning bounds
on the phase shifts from the Bethe-Salpeter (BS)
equation and the convergence of the Pade approxi-
mants. In addition to supplying derivations for the
results stated. by Nuttall, we also make some new

observations.
The paper begins with a discussion of the R-matrix

version of the BS equation, and. it is shown that the
coord. inate-space Wick rotation employed. by Schwartz
and, Zemach' (SZ) is also useful in this case. Through-
out, we study the scattering of a pair of spinless
particles of equal mass interacting via the exchange of
another spinless particle, although it may be possible to
generalize a number of our results in several directions.

The equation now has a close formal similarity to the
Lippmann-Schwinger equation with a potential operator
of definite sign, and we show explicitly that the methods
of Gailitis' and Sugar and Blankenbecler may be
applied to obtain lower bounds on the phase shifts. In
calculating numerical values for the phase shifts, SZ
used. the Schwinger variational principle, but we show

that in the way it was employed, it amounted to an
application of the bound mentioned above. This explains
the observation of SZ that their trial values always
approached. a limit from below. The germ of these
results may be found in the work of Kato' and in the
remarks of the authors referred. to above.

We then give an interesting form for the PX,N$ Pade
approximant' which makes it clear that the L1V,Nj
approximant to each partial-wave part of the on-energy-
shell R matrix is the result of solving the BS equation
exactly for a particular choice of trial potential in the
Sugar-Blankenbecler method. This enables us to deduce
that the phase shifts given by the LX,Ãg Pade approxi-
mants form an increasing sequence bounded above by
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where 21'= (E,O) is the total momentum and k,k",q are
relative momenta. The BS"equation for T is

(k'I T(E) Ik) = (k'I V(E) I k)+ d4q
(2n-)'

(k'I I'(E) I q)(ql T(E) Ik&
X (2)

((J'+q)' m'+se)(—(P q)' m'+—seg—

where the inhomogeneous term (k'I V(E) I k) represents
the sum of allj~two-particle irreducible diagrams. To
obtain the equation discussed by SZ we set'

(k'I V(E) lk)=
(k—k')' —M'+se

(3)

As far as possible we use the notation of SZ except that
k'=kp' —k'.

the exact result, and consequently they must converge
to a limit. By using an argument based on the compact-
ness of the symmetrized. kernel of the Euclidean BS
equation, we demonstrate that this limit is indeed. the
correct phase shift.

Our work has interesting consequences. It brings to
light a suggestive connection between the Schwinger
variational principle and Pade approximants in scat-
tering theory. The results about bounds appear to be
true only for the scattering of equal-mass scalar
particles via the exchange of another scalar particle
(possibly of different mass). It is quite possible that
the Pade approximants still converge when these
restrictions are lifted, but this question has not been
resolved.

R-MATRIX EQUATION

The derivation of bounds on the phase shift in poten-
tial theory follows most naturally from a study of the
equation for the R matrix, and the same is the case for
the BS equation. The Heitler integral equation giving
R in terms of the BS amplitude T is
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From (1) and (2) we may deduce the BS equation an integral in Euclidean space
for E, which reads

(k'
I
R(E)

I k& = (k'I V(E) I k&
R(k', k,g) = — d'x e '""V(x)y (x) . (10)

with

G„(q,E)=
(22r)4

+z $4q(k
I V(P) I q)G (q E)(q I

R (E) I k) (4) To bring out the similarity of the Euclidean equations
to potential theory, we shall write (8) and (10) in
operator form, working in the Hilbert space of Euclidean
functions f(x). Using &2(x)=e'"', (8) becomes

l~'&= I~.&+H.vl~. & (11)

X{(L(P+q)2—ms+ie7L(P —q)2 —ms+ie7) —1

+22r'5+I (P+q)' —m'75+L(P —q)' —m'7) . (5)

(e
—1/r [r—r'

( e42 (r—r' )) (6)

Since the extra term in (6) does not depend on time,
the Wick rotation may be performed just as in SZ, and
we must now replace the Euclidean metric Green's
function H(x, x') by H, (x,x'). Using the notation of SZ
Eq. (2.36), we find that

cos (k I
r—r'

I )

82' I r—r'I
H, (x,x') =

1
+ Id@

8~ ZE

Xe«' "&Es(—QI R R'I).—(7)

In the equal-mass case o11——o12——(k'+m')'" and H, (x,x')
is a Hermitian operator.

To express physical matrix elements of R in terms of
Euclidean quantities, we again parallel the discussion
of SZ, and introduce a function P„(x) satisfying

y„(x)=e'"'+ d'x'H„(x, x') V(x')y, (x'), (8)

using the Euclidean metric. For the remainder of this
article we will restrict ourselves to the case when the
"potential" is given by (3), leading to a local V(x) in
(8), which is given explicitly by SZ Eq. (2.35):

In coordinate space, instead of the Green's function
G(x,x') used by SZ, we now need G„(x,x'), determined
by the Fourier transform of (5),

G„(x,x') =G (x,x')

and (10) becomes

R(k', k,E)= —Q».
I
V

I y,&.

BOUNDS ON THE PHASE SHIFTS

(12)

To obtain bounds on the phase shifts from the BS
equation we write, using (11) and (12),

R(k', k,Z) = —(&1, I
V(1—H„V)-'I y2). (13)

Taking partial waves, we deduce that

tanb/(E)=(kll vL1 —H, (E)v7 'lk, l&,

where lk, l& has the wave function

q
1/2

42.1(x)=I
I i /(kr)V1'(r),

2Zi

(14)

(15)

~1& (~1)4' (17)

The derivation is based on the fact that V and. H, are
Hermitian operators. (Note that the V used above
and, in SZ corresponds to the negative of the potential
in nonrelativistic theory. )

To construct a useful trial potential we may apply
the technique of Sugar and Blankenbecler4 (see also
Lowdin ), who point out that if V is a positive operator,
then

v& v(»,
where

N

and momentum k corresponds to energy E.
From this point we may use word for word the

analysis of Gailitis, ' who shows that if we 6nd a trial
potential V~, such that

QIVlit)&(&IV I&& «»11 lf& (16)

then at a given energy

V(x) = (4M'/R)E1(MR), R= (t'2+T2)1/2 (9)
V'"'= 2 Vli&~'/(jl V. (19)

Note that V(x)&0 for all real x. We must stress that
the Wick rotation in this form can only be valid for
or(m+-2'M, which corresponds to the threshold for
production of an M particle, and the remainder of the
paper is subject to this condition.

For physical values of the relative momenta
(ks ——ks'=0), the R matrix may be written in terms of

P(N+1) Q P'(N) (2o)

' P.-O. Lowdin, Phys. Rev. 139, A357 (1965).

The matrix A;; is the inverse of (i I
V

I j&, and the set
I i&,

i=1, , E is arbitrary. If we add another state to
the set, we obtain a new trial potential V(N+" with
the property
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Thus, as E increases, 8&|:~~ form an increasing sequence
bounded above by the exact phase shift 6&.

To relate these results to the variational procedure
used by SZ, we erst point out that the phase shift b~&~'

calculated with the use of V&~& may be written as'

where M is the E)(Xmatrix

M"=o. + g
—)n+. 1=1

and m is the column vector

ns -n z — ~ E1 )

(2g)

(29)

ta»l'"'= p (k,lI VIi)B,;(jI VIk, l), (21) Since (14) shows that, using V=X'U,

,=(k lI ~(a,v)'-'Ik l) (30)
where 8;; is the inverse of the matrix whose elements
are (i I (V—VH„V) I j&. The principle used by SZ states
that the exact phase shift is determined by finding the
stationary value of

Lta»l]=2(k, iI U) —(UI v 'I U&+(UIaI U), (22)

where
I U) is any real wave function. At the stationary

point,
I
U)= VI/~, l&, where Iqh~, l& is the partial-wave

part of I$,&.

SZ write
I U) as a linear combination of a number of

basis states In),
IU)=Z a-ln), (23)

and vary the coefficients a„ to make (22) stationary.
Define a new set of states In) by

In) = VIn), (24)

and substitute (23) into (22). We must look for sta-
tionary values of the quadratic form

P a„~.L(nI Va„VIm& —(nI VIm)j
m

+2 P u„(k,lI V In). (25)

The result is a value of tanb~ identical with that given
by (21) if the states In) are identified with the set Ii)
used above. We are therefore able to explain the
behavior of the numerical results commented on by SZ.

PADS APPROXIMANTS

it is not hard to see that (26) and (21) will coincide if
we choose the states

I i) to be

i)= (H~'U)' 'Ik)l) ~
i=1) ' '.

, N. (31)

Thus we have shown that to obtain the LN, Nj Pade
approximant we solve exactly the problem with
potential V&~& given by (19) using states Ii) defined
in (31). It may be shown after a certain amount of
analysis that this potential is identical with one given
by Tani in his discussion of Pade approximants in
potential theory.

Having shown that the ttN, N) Pade approximants
may be obtained from a set of Sugar-Blankenbecler
trial potentials, we may now apply the results of the
previous section. It follows that, for an attractive
potential, the Pade phase shifts 8~p&~), for 6xed 1 and 8,
form an increasing sequence as E increases, bounded
above by the exact phase shift. Thus, the Pade phase
shifts approach a limit which we now proceed to show
to be the exact phase shift.

The result is that the limit of the Pade phase shifts
is the exact phase shift and our results about Pade ap-
proximants may probably be proved with the help of
techniques for studying the series of Stieltjes described
in Baker's article. That the series (26) is related to a
series of Stieltjes follows from the fact that we may
rewrite (30) to read

(32)
with

Ix)=0'"Ik, l& (33)

Z=~»2a, ~ ~~.

XdEP ),

where E(X) is a family of projections. In (32) we now

obtain

To connect Pade approximants with the previous
discussion, we shall show that the states Ii) may be
chosen in such a way that tan8l~~& given by (21) is (34)
'dentica with the LN, Nj Pade approximant to tan8l, @or ositive otentials + is a self
which we write as ti t~'. To calculate tr &~' (see Bakere)
we write t~&~' in the form of a ratio of two /th-order
polynomials in the interaction strength A. The coefB- 00

cients in the polynomials are found by comparing the I= (35)
6rst 2Ã coeKcients in the formal power-series expansion —00

of tg(~) with those in the series for tanb~,

tan8l ——g a,X'. (26)
X'—'d(xIE(X) I x) (36)

A compact expression for the PN, N$ Pade approximant
may be obtained by slightly rearranging the general showing that we have a series of Stieltjes except that
formula quoted by Baker, and we 6nd the integral in (36) runs from —~ to ~.

t (»=m m—'m, (27) 9 S. Tani, Phys. Rev. 139, 81011 (1965}.
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In place of this approach, we now present a direct
method of proof which is based on the fact that K is
also an L2 operator. This property is proved in the
Appendix. Let us define a set of states I X;) given by

I
x )=E'—'

I x)= O'"
I 1) . (37)

Suppose 5~ is the space spanned. by the states Ix;),
i=1, .-, S, and that P~ is the orthogonal projector
onto this space (the linear hull of all the

I
X,) is denoted

by S„).Using (27) it is easy to see that the [E,Ã$
Pade approximant may be written

tp&~& =x(xl(u~), (38)

where l~~)QSN and satisfies

I ~~&—
I
x)+~P~&

I ~~&. (39)

If we are not at a resonance, there will be a solution

I ~) of the equation

Ice)= IX)+)El~), (40)

and it may be shown (see below) that lor)QS„. The
exact phase shift is given by

tant, =z(xl ~)= x(~
I
x). (4I)

By taking the scalar product of (39) and (40) with lcu)

and
I ~~&, respectively, and subtracting, we deduce that

(~ I x)—(~~I x) =~(~ IP~& I~~&—~(~ II' I~~) (42)

Now let us suppose that there is an in6nite sequence of
E for which I~&) are uniformly bounded. Since K is a
compact operator, " there must be an infinite sub-
sequence for which EIco&) converges strongly to some
state ls)QS„. Moreover, it follows that

P~EI(o~)~ Is).

Consequently, the right-hand side of (43) approaches
zero, and for this subsequence,

(x I ~~)—(xl~) ~ 0 (44)
and so

DISCUSSION

Our work has brought to light an interesting connec-
tion between Pade approximants to the solution of
integral equations and variational principles. In two-
particle scattering, both nonrelativistic and, as shown
here, relativistic, an on-energy-shell E.-matrix element
may be written in the following form:

where
Q'i~le&=7(x'l(I —~&) 'IX& (50)

(51)

and E is the syrnrnetrized kernel (34), or the corre-
sponding nonrelativistic expression. We know that E is
an I' operator, even when the potential 'U is not a
positive operator.

The Schwinger variational principle states that
(P'IHIP) is the stationary value of the following
expression when

I x) and,
I
X') are varied throughout the

Hilbert space.

[&l=&[(x'l0)+O'I x& —8'l0&+~8'I& I&&~.

[E) is stationary when If), lg') satisfy

IP)= IX)+WIFING), (53a)

Q'I =(x'I+zg'Iz. (53' )

Taking scalar products as before and subtracting, we
shall 6nd

(4g)

and (47) allows us to deduce that

(49)

However, in (40) we could replace IX) by any state
in S„and obtain a corresponding l&o). Repeating the
above argument leads to the conclusion that lx) is
orthogonal to S„, a contradiction, since lx)QS„, and
cannot be the zero state since all the Ix») have unit
norm.

tg (~) ~ tanb). (45)
We define the space 5& spanned by

However, we have already shown that all the t&(~'
converge to a limit, which must therefore be tanb~.

To complete the proof, we must consider the possi-
bility that the la») are not uniformly bounded as
E—+~. In this case, the sequence of states IX~)
= ((~~I~~)) '"I~~) will have the following property:

lx ) Ix)gs„,
P~z Ix~) ~ lx&.

(47)

» I.. V. Kantorovich and G. P. Akilov, Functional Anolysis &L
Eormed Spaces (The Macmillan Company, New York, 1964).

Since
I x&) has norm I, there must be a subsequence of

la~) for which EIx&) converges to alimit lx), say, and
as before we shall have

I x), E
I x), ~ ~ K~—'

I x)

and S~' spanned by

(x'
I

(x'E ~ ~ (x'
I

E~—'

The linear hull of all K~IX) is S„and similarly S„'.
Since S„is an invariant subspace, it is easy to see that
lx)QS„and similarly Q'IQS„'. With P& defined as
before, the unique solution If+)QS„of the equation

Igs)= Ix)+)P EP I4'a) (54)

will satisfy (53a), for P„KP~lfs) =&IN's).
Since we know the stationary value of IP) lies in S„,

it seems reasonable to restrict the variation of lf) to
this space, and this is the idea behind the Pade approxi-
mant method. We obtain an approximate stationary
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APPENDIX

In this Appendix we show that E= V'"H V'/' is an
L' operator, and. therefore compact. Our proof applies to
the case of scattered particles of equal mass, but no
doubt the result is true in general. We must verify the
convergence of Tr(EEt), which may be written, in the
equal mass case,

Tr(EE t) =Tr(K')

d4xd4x'V(x)H„2(x', 0) V(x+x'). (A1)

The main point at issue is the behavior of the inte-
grand for large values of x and x'. We know V(x)
explicitly [SZ (2.35)) and its asymptotic form is

with
V(x) constR '"e ~~, (A2)

(x2)1/2 (r2+r2)1/2 (A3)

Our function H, (x',0) is just the real part of SZ's
H (x',0), and we could attempt to make use of the form
given by SZ (2.40) to obtain its asymptotic behavior.
However, this is not adequate for our purposes, and. we
go back to an earlier expression [SZ (2.14)j, from which
we deduce that

H(x,0) =const dP e~'E (QR2). (A4)

Here Q= (p' —k')'" and co= (k2+m )'" The contour is
chosen so that Q lies in the fourth quadrant.

value of [Rj by restricting the variation of (f), ~P')
to 5&, Sz', respectively, and, our previous analysis is
easily modified to show that this stationary value is
just the [1V,lVj Pade approximant to ($'~ R~ P).

The author is not aware of any rigorous proof of the
convergence of this scheme unless ~X)= ~

X') and E is
self-adjoint, which is the situation studied earlier in
this paper.

It must be pointed out that the operator H„(x,x') is
not self-adjoint unless the scattered particles have
equal mass. If this is not the case, the Gailitis argument
does not apply and we cannot find, a Sugar-Blanken-
becler bound. Also the proof of the convergence of the
Pade approximants is not valid. , for E is not then
self-ad joint.
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Fxo. 1. Contour of integration
C in the Z plane.

For large R, Eo(QR) has the form

E'2(QR) const(QR) '/'e @~. (AS)

The behavior of H(x,0) will be dominated by the factor
e&' @" in the integrand. , and for r)0, we need, only
consider the region ReP)0. In this region we have

Re(P2- —QR) &R Re(P —Q) . (A6)

We shall now show that the integration contour running
from P =0 to P = a& may be chosen so that

Re(P —Q) &co—m.

To do this we change the variable to

Z= pe"= k-'(p+Q)
so that

p —Q=AZ '= (k/p)e "

(A7)

In the Z plane, the contour must run from Z= —i to
Z=k '(a&+m). Both Q and P will lie in the fourth
quadrant if ——2'2r&Q&0 and p&1, so the contour must
lie outsid. e the circle p = 1. The points satisfying
Re(P —Q) =&u —m are given by

p= [((u+m)/k] coso

and lie on the circle I' of Fig. 1. Those points lying
below I' satisfy Re(P —Q) (&v —m, and so the contour C
sketched in Fig. 1 fulfills all our requirements.

This argument shows that H(x, O) is d.ominated by
e~~ ' for large R, whatever the size of the ratio r/R.
The same result must apply to the real part of H(x,O),
H, (x,0). Using (A2) it is quite easy to see that the
integral (A1) converges for large x and x', so long as
co(m+2M, for the integrand decreases exponentially
if one or both of x and. x' are large.

The functions V(x) and H„(x,O) are singular at R=0,
and we must check that this does not destroy the con-
vergence of (A1). The most singular parts of V(x) and
H, (x,O) are R 2 and lnR, respectively, and factors ob-
tained after doing angular integrations in (A1) will

nullify this behavior, so that we deduce that
Tr(EEt) & ~. The argument can no doubt be general-
ized to show that V'"H V' ' is compact even for unequal-
mass particles.


