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The meaning of the partially conserved axial-vector current (PCAC) hypothesis for the AS=0 current
is investigated. It is shown that PCAC for the M=0 current is not in good agreement with various semi-
phenomenological information. A new formulation of PCAC is given; the main point is that PCAC is valid
(as an operator equation) only in the exact SU(3) limit. It is shown that this form of PCAC is a consequence
of field theory (and rather weak dynamical assumptions) for matrix elements between states with two
photons and the vacuum state. We also find that in a mass-degenerate SU(3) world, the strong-interaction
mixing parameterns can be expressed in terms of the weak-interaction mixing parameterag .Using 0&m,g& 1,
one 6nds that 0.145&a~&0.855 (if the baryon masses are diferent) so that the allowed range for a~ is
somewhat restricted by the baryon mass differences. Inserting a recent value for a~ in the formula for O.s,
one obtains as=0.733&0.018, in excellent agreement with other recent determinations of as.

1. INTRODUCTION

HE hypothesis' of partially conserved axial-vector
current (PCAC) for the M=o current has

brought in a large number of consistency relations,
relating various weak interaction quantities (e.g., gg)
to strong-interaction quantities (e.g., g ~ and various
cross sections) or giving consistency relations among
strong interaction quantities. ' Recently, Keisberger'
has calculated the mixing parameter (or the F/D ratio)
a by an extension of PCAC to the M= 1 current. How-
ever, it has been pointed out by Martin4 that the PCAC
hypothesis for the 28=1 current is almost certainly
incompatible with experiment. In particular, Martin
concludes that the PCAC hypothesis for the lU'=1
current does not lead to a reliable value for the SU(3)
mixing parameter a (which was calculated by
Weisberger). '

At present, the situation with respect to the PCAC
hypothesis for the ~=1 current is therefore rather
bad. In this paper we show that even the PCAC
hypothesis for the 88=0 current is not in good agree-
ment with the existing semiphenomenological informa-
tion. We then give dynamical arguments which indicate
that PCAC for M=O currents is valid in the exact
SU(3) limit, where all the octet-baryon masses are
equal.

The contents of this paper are as follows:

Section Z. It has recently been pointed out' that the
strong-interaction mixing parameter nq is diferent
from the weak-interaction mixing parameter 0.~. This

*Address from September 1, 1967:Department of Physics and
Astronomy, University of Rochester, Rochester, New York.' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
J. Bernstein, M. Gell-Mann, and L. Michel, ibid. 16, 560 (1960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys.
Rev. 137, B1022 (1965); 139, B1638 (1965).' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, 736 (1965); W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965).' W. I. Keisberger, Phys. Rev. 143, 1302 (1966).

e B. R. Martin, Nucl. Phys. 87, 17/ (1966).' B.R. Martin, Phys. Rev. 138, B1136 (1965); C. Jarlskog and
H. Pilkuhn, Phys. Letters 20, 428 (1966).
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2. DIFFICULTIES WITH PCAC FOR
AS=0 CURRENTS

The PCAC hypothesis for M=O currents consists of
the following equations:

8 At&(x)=Cty '(x), l=1, 2, 3,

Ct ——i2mts3rg~(0)/g. tv(0) .
(2)

(2')

Here A„'(x) is the renormalized axial-vector current,
io '(x) is the renormalized Heisenberg field operator of
the sr mesons, m=mt is the pion mass, g tv(0) is the
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implies that the usual form' of PCAC for the M=O
current is maximally violated by 32% We therefore
propose a modified version of PCAC, where the diver-
gence of the dB=O axial-vector current is proportional
to the pion Geld only in the exact SU(3) limit.

Section 3. Assuming the above-mentioned form of
PCAC, we investigate the implications of PCAC for
matrix elements between a state with two photons
lay) and the vacuum state lo).

Section 4. Using very weak dynamical assumptions,
we show that PCAC is valid in the exact SU(3) limit
for matrix elements between the states l yy) and

l 0) i.e.,

&ol a"a.(0) l~q)" (ol v-(0) I7q&

in the exact SU(3) limit. We thereby confirm our basic
hypothesis for two rather different matrix elements,
namely, the matrix element between two baryons and
the vacuum-two-gamma matrix element. In addition,
we 6nd that in a mass-degenerate world there exists
the following connection between the mixing parameters
os and n~.'

rrs ———,'+ (ME/M) (atr ——,'), (1)

where 3f is the nucleon mass and 3f- is the mass of
the hyperon.

Sectiort 5. We compare Eq. (1) with other (semi-
phenomenological) determinations of ertv and ns The.
formula (1) gives good agreement with the other
determinations.
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pion-nucleon coupling constant evaluated at zero
momentum transfer, and g~(0) is the axial-vector-
proton-proton coupling constant evaluated, at zero
momentum transfer.

Taking the matrix element of Eq. (2) between
vacuum and the one-pion state, one obtains

(s+
~

t)&A„'(0)
~
0)= i2nPMgg(0)/g, N(0), (3)

However, if we introduce the physical masses in

Eq. (8), we obtain the following relations:

nw/ns= 2M/(Mz+Ms),

(2nw —1)/(2, —1)=M/M-. ,

(nw —1)/(n, —1)=M/M, . (12)

The various fits' ' to o.~ and nq are consistent with
leading to the usual Goldberger-Treiman relation. The
easy and rigorous derivation of the Goldberger-Treiman
relation (3) from Eq. (2) is the main motivation for
the PCAC hypothesis. ' However, one has to define very
clearly in which sense Eq. (2) has to be understood. It
is tempting to take the simple point of view that Eq. (2)
is a definitio of the renormalized pion field. operator
q (x). This point of view leads, however, to di6iculties,
as one can see in the following way.

From the fit of the Cabibbo theory, ' it is known that
the axial-vector coupling constants can be determined.
in terms of the weak interaction SU(3) mixing param-
eter n~. For the vertex function at zero momentum
transfer we thus have

(13)as=0.73, nw=0. 66

(A more detailed discussion is given in Sec. 5). Let us
compare Eqs. (10)—(12) with Eq. (13) and the experi-
mental mass ratios. One finds that Eq. (10) deviates
from experiments by at least 10%, Eq. (11) is in
agreement with experiments, and Eq. (12) deviates
from experiments by at least 37%. Hence it is obvious
that Eq. (8) is not in good agreement with experiments.
Therefore, we conclude that PCAC cannot be an
operator identity [i.e., Eq. (2) is incorrectj in the case
where the baryon masses are diGerent. This is, in fact,
already clear from Eq. (7), since this equation requires
that C; should depend'on i and k in order to be satisfied.
However, Eq. (2) as an operator equation shows that
C; cannot depend one and k.

A possible criticism of the above conclusion should
be discussed. . One may argue that the failure of Eq. (8)
shows that one cannot use SU(3) coupling constants
(even if ns is different from nw) This cr.iticism is, how-
ever, not reasonable, since the results obtained in
Refs. 5 and 6 show that in semiphenomenological
calculations one can use SU(3) coupling constants
[note that our PCAC hypothesis (2) refers to t)S=G
currents; hence our discussion does not include the
kaon-baryon-baryon coupling constants, where an
application of SU(3) is more doubtful).

Another criticism is that the fits of the coupling con-
stants in. Refs. .5 and 6 depend on specific dynamical
models. This criticism is, of course, true. However, we
take the pragmatic point of view that we base our
considerations on present-day physics. We would also
like to point out that the only coupling constant which
can be fitted in a (reasonable) model-independent way
is the pion-nucleon coupling constant (using forward-
dispersion relations), because most forward-dispersion
relations involve unphysical cuts, where the dis-
continuity cannot be calculated from unitarity (i.e.,
cross sections). Thus, unless one has a dynamical
theory which explains every detail in strong-interaction
physics, one has to rely on model-dependent deter-
minations of the coupling constants.

Guided by the discussion above we propose that the
AS=0 PCAC and the pion-baryon coupling constants
should be treated according to the following assump-
tions: (i) The pion-baryon coupling constants in broken
SU(3) symmetry are calculated by using the exact
SU(3) coupling constants with a strong-interaction
mixing parameter which is di6erent from the weak-
interaction parameter. (ii) The hypothesis of PCAC

(B,is„(0)iB,)
i gg(0)N;—yp sls[nwd;;s+ (1 nw) f;;s j—. (4)

From this equation we obtain

(B;i
8"2„'(0)

i Bs)= gg (0) (M(+M),)
Xs7~'Yst4[nwde s+ (1—'aw) f;isi. (5)

From recent fits of strong-interaction coupling
constants, ' it is known that it makes sense to introduce
an SU(3) mixing parameter ns (with as&aw) for the
strong coupling constants. Thus we have

m, s(B;i q.&(0)
i
Bg,)
ig N(0)~ivsls[nsd';s+ (1 ns) f';s]— (6)

Using PCAC in connection with Eq. (5), we obtain
from Eq. (6)

Thus, in the exact SU(3) limit the mixing parameter
is the same in the strong and in the weak interactions.
Similar results have been obtained by Lee~ and by
Sakurai. '

'
¹ Brene, L. Veje, M. Roos, and C. Cronstrom, Phys. Rev.

149, 1288 (1966).' B.W. Lee, Phys. Rev. Letters 12, 83 (1964).
J. J. Sakurai, Phys. Rev. Letters 12, 79 (1964).

ns4, s+ (1 ns) f;,e,
—

gg(0) (M;+Ms) = —ig.N(0)C, , (7)
nwA, v,+(1 nw) f;;s-

where C, is given by Eq. (2'); hence

asia vs+ (1 ns) fga—
M,+My, = 2M . (8)

aw~;, s+ (1 aw) f,;s-
Now let us define the exact SU(3) limit as the limit
where all the baryon masses are equal to the nucleon
mass M. It is then seen that Eq. (8) gives
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)I

k)

Pre. 1. Diagram for the
decay of a neutral pion
into two photons.

It should be noted that from a dynamical point of
view it is reasonable to assume that the mass-degenerate
SU(3) limit corresponds to the high-energy limit (where
the various mass differences can be neglected). Thus
PCAC with R)(x)=0 becomes valid in the high-energy
limit. This feature is satisfactory for the derivation of
the Adler-Weisberger formula, ' where one finally lets
an energy go to inanity.

In connection with Eqs. (14) and (15), it should be
noted that in a general quark model B„A& is proportional
to the pion field plus SU(3)-breaking terms. Hence a
quark model is consistent with assumption (ii).

3. PCAC AND THE DECAY OF NEUTRAL
PSEUDOSCALAR MESONS

I

I

I

)3') p

I

I
I

for 85=0 currents reads

where
B&A„'(x)=C)q '(x)+R)(x), l=1, 2, 3, (14)

C)——i2mP3E gg (0)/g. ~(0) . (14')

The operator R)(x) vanishes in the limit of exact
SU(3), i.e.,

&~IR)(0) l~)»(3) =o (15)

where la) and IP) are two arbitrary states, and the
index "SU(3)" indicates that the exact mass de-
generate SU(3) limit has to be taken in the evaluation
of the matrix element. The mass degenerate SU(3)
limit is defined by

M)=M, k=1, 8

Here, M is the proton mass, and is not the mean mass
of the baryon octet.

The reason for taking the baryon masses equal to
the proton mass in the exact SU (3) limit is that Eq. (14)
then allows one to derive the Goldberger-Treiman
relation in the SU(3) limit in exactly the same way as
in Eqs. (2) and (3).

The advantage in having the operator R)(x) in
Eq. (14) together with the condition (15) is that R)(x)
is not a completely arbitrary operator. If one knows
that the matrix element

&~I 3-'(x) I&)

is large in comparison with the relative mass differences
in the baryon octet, it is reasonable to neglect the
operator R)(x) in comparison with C)q '(x) (note that
C) is proportional to M). Thus the introduction of the
operator R)(x) does not make PCAC void of content.

and Eq. (20) becomes, in the zero-pion-mass limit,

m'&kik3I (p (0) I0)= T(7r'~ yy).

Using Eqs. (19) and (21), we obtain

i(k,+k3)„T)'(A„+py) = (C/m') T(7r' —+—yy)
+ (k,k3I R(0)IO).

(22)

(23)

In the exact SU(3) limit we thus obtain

i(ki+k3)„T"(A„—& y7) s(T(3)
= (C/m') T(~' ~ yy), ~(3) . (24)

In Sec. 4 we shall show that within rather weak dy-
namical assumptions Kq. (24) follows from field theory
(or Feynman diagrams).

4. DYNAMICAL CALCULATIONS

Let us consider the amplitude for neutral pion decay
into two photons. Using field theory, this amplitude

In this section we shall apply assumption (ii) (i.e.,
the modified form of PCAC) to a comparison of the
axial-vector decay into two photons with the neutral
pion decay into two photons.

Using standard reduction technique, one has

&kik3I A„(0)IO)= T„(A„~yy), (1/)

where T„(A„—&pp) is the decay amplitude for the
process axial-vector ~ photon+photon. The four-
momenta k~ and k2 are the four-momenta of the photons.
From Eq. (17) we get

&kik3I 8)'A„(0)
I 0)= i(ki+k3)„T)'(A„~ yy), (18)

and from PCAC
I Kq. (14)] we then obtain

i(ki+k3)„T (A„~yy)=C(kik3I q~(0) IO)

+&kik, lR(0) IO). (19)

Using a reduction technique, we have for the z'~ yy
amplitude

T(n'-+ &P) = &kik3
I j (0) I 0) (20)

where j (0) is the neutral pion current. With zero mass
pions we have

(ki+k3)3= 0,
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can be written as in Fig. 1, because the fundamental
Lagrangian involves a pion-baryon-baryon coupling.
In Fig. 1 the renormalized vertex function has been
introduced at the pion-baryon-baryon vertex; it is seen
that the amplitude is the product of the vertex function
and a factor which essentially is the Compton amplitude
for the baryons.

In writing the amplitude as in Fig. 1 we have
neglected a possible Xq 4 term in the Lagrangian. It is
well known that such a term is necessary in general in
order to have a renormalizable theory. However, it is
not possible here to discuss the question of the re-
normalizability of the T(7ro —+ pp) amplitude in depth;
we only remark that the 6rst few orders in a perturba-
tion expansion of T(pro —+ yy) are finite without a )~&p

4

term in the Lagrangian; therefore, such a term seems
to be unnecessary in order to have a renormalizable
theory.

There is also a more intuitive reason for omitting the
P q term. If one takes this coupling into account, it is
natural to expect that two of the pious in the inter-
mediate state go together to form a p-meson state.
Thus the diagram in Fig. 2 becomes essentially the
product of the x m p vertex function and the Compton
amplitude for the process ym'~ yp', and this Compton
amplitude is negligible relative to, e.g., the charged
Compton amplitude for the process yp —+yp in the
limit of zero-mass pions. Hence, for neutral pions in the
intermediate states the ) q„4 interaction can be ne-
glected. %ith charged pions in the intermediate states
the amplitude for x+m' —+ m+y, e.g., will occur. How-
ever, from an analysis of photoproduction data,
Donnachie and Shaw have concluded that the coupling
con tant for the y —3m- coupling is consistent with zero. '

Let us now return to the diagram in Fig. 1. %riting
the Compton amplitude as

T(~,+v- ~.+~)
=e'tts(q)M»" (q, kl)ks)N;(q P)ei&es', —(25)

where e~ and eg are the polarization vectors for the
photons and e is the electric charge, we obtain

dg
T(sro —+ 2y) =e'P g;s

(2m.)4

QTr y5 M„„'s(q,ki, ks)
q—P—M; q—M&

XF;&(q',qP, P')e&"es", (26)

where the indices i and k refer to exchange of two
baryons 8; and Bg, between the vertex part and the
Compton part of the diagram in Fig. 1. The quantity
F;s(qs, qp, p') is a form factor for the vertex normalized

' A. Donnachi and G. Shaw, Ann. Phys. (N. Y.) 37, 333 (1966);
see also in Proceedint, s of the International Symposium on Etectron
and Photon Interaction ut High Energies {Deutsche Physics
Gesellschaft, 1966), Vol. I, pp. 64 and 172—174.

mo

FgG. 2. Approximation for diagrams involving the Xp coupling.

such that

F;s (M;s,0,0)= 1. (2/)

The g;&'s are the pion-baryon-baryon coupling con-
stants evaluated at zero momentum transfer in accord-
ance with the definition (27).

For the amplitude for B„A&—+ 2& decay dehned in
Eq. (5), we get similarly

ip„T"(A„+2y)—= se' Q g~"
dg

(2sr)4

1 1
XTr Pys M„„"(q,ki, ks)

q—p—M; q—M&

XF;s"(q', qP, P')ei"es", (28)

F;s"(MP, 0,0)= 1. (29)

Here g~'~ are the axial-vector current coupling con-
stants evaluated at zero momentum transfer and with
the baryons on the mass shell.

The form factor introduced in Eq. (28) is the form
factor corresponding to the y„y5 term in the axial-
vector —baryon vertex function. In addition to this
form factor, various "induced" form factors can occur.
In fact, the most general expression for the o6-shell
axial-vector-baryon vertex, namely,

(~'(q') IA.'(0) I& (q)&= —sg "(0)~,(q) Z (q' M~)"—
Xfv„F&~ „s""'(q',q",qq')+ q.,F s~ „s""(q',q",qq')

+q.'F», '.""'(q',q",qq') )vs(q™s)"'Ns(q)

involves 12 form factors. However, all of these form
factors have their dynamical origin in exchange of
various particles between 8; and Bj„and we can
therefore include these form factors in the amplitude
M„„'s(q,k&,ks). The reason why we have exPlicitly
introduced the form f*ctor

F's" (q' qP P') =F».'sos(q' q' —2qP+P' q' —qP)

in Eq. (28) is that we want g~'"(0) to be the renormal-
ized axial-vector coupling constants. Alternatively, we
could have used unrenormalized coupling constants,
and no form factor would occur in Eq. (28).

Using the identity

P= ( q+P M;)+ (q Mz)+—(M;+—Ms) —(30)
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Ti ie' ——p gg"
ik (22r)'

Eq. (28) can be written

ip„T&'(A„—+ 2y) = T,+T2+T2&
where

(31)

Compton amplitude. This amplitude is evidently a
4X4 matrix in the space of the y matrices, and since
every 4X4 matrix can be written as a linear combina-
tion of the matrices 1, y„, y„y„,y„y„y„(where 44, 4, and
0 are all different), and y2 we get (using invariance
under parity transformations) that the off-shell Comp-
ton amplitude M'0(q, ki, k2) contains the factors

ie2+ g
4k

(22r)4

XTr ys M„,'"(q,ki, k2)
q—p —M;

1
XTr y0M„„"(q,ki, k2)

q —3fi,

XF'& (q, qP, P')ei"e2",

q~qy) q~k& y) qpk2y)

k]~kiev

)

7uq» &wkly) 6k2y) gqpqv) etc. ;
QIS+y) gkgpqv) etC. )

(31'!
+~gay) p~QQ y) +~$2+y) QQ] $2qpqv)

quyk2q„ky„, qk] k2q„k2» qkyk2ky„k2„,.

where each of these factors should be multiplied by
invariant functions. The invariant functions depend on
the invariants q', qk&, and qk2 or, alternatively, on the
invariants

XF42"(q', qp, p')e&&e2", (31")

T,=ie' g (M,+M2)gg'"
(22r)4

1 1
XTr y5 M„„'"(q, ki, k2)

q —p—M; q—M2

XF'4" (q', qP, P')ei"e2" (»"')

Note that, apart from various constant factors, T3 has
exactly the same structure as the m' ~ 2p decay ampli-

tude in Eq. (26) if the substitution

F'~'(q', qp, p') ~ F'~(q', qp, p'),

is made in Eq. (31"').According to Eq. (24), which was

based on PCAC, the arnplitudeip„T&(A„~ 2y) should

be proprotional to the amplitude T(2r0 -+ 2y) in the limit

of zero-mass pions. Since the terms T~ and T2 are mani-

festly different from the T(2r0~2&) amplitude, it is

obvious that the terms T1 and T2 should vanish (at
least in the zero-pion-mass limit) in order that PCAC be
valid. Thus, in order that the PCAC hypothesis be
consistent with Geld theory, the ip&T„(A„~ 2y) ampli-

tude should be equal to T2 given in Eq. (31"').Inspection
of Eqs. (26) and (31'") shows that the requirement of
PCAC implies that the pseudoscalar meson coupling is

equivalent to the pseudovector meson coupling (in-

volving the derivative of the pion field), since Eq. (26)
is just the expression for the pseudovector coupling and

Eq. (31"')is the expression for the pseudoscalar coupling.
Since such an equivalence between the two meson

couplings was shown many years ago, the terms T&

and T2 vanish in the limit of zero mass pions. [The
reader who is prepared to believe the above argument

by words in favor of T&
——T&=0 can omit the following

calculations and re*d the text following Eq. (38).j
ln order to treat the terms T~ and T2 we need the

most general form of a trace involving the off-shell

Tr y2M„„'"(q,kr, k2) ei"e2"=
q—3II, q' —M&'

XTr[p0{ei[QC1"+kiC2 "+l&.'2C2 "]e2+qkik2

X [(qei) (qe2)D1' + (qei) (qk2)D2'"+ (qei) (k2e2)D2'~

+ (kiei) (k2e2)D4")}(q+M2) j. (33)

Using the well-known formula

with

we get

Tr[y,rrbCd] =4[a,b, c,dj,
[a&b&c&df= 4»&p, a4b&c&'d'&

00123 +1
&

(34)

(34')

(34")

Tr&p~„"(q,k„k2) (q M&.) ']e,~e2"—-
= [4/(q' M&,')j{[ei,qC—1"+kiC2"+k2C2'",e„qj

+[q,ki k2 qf((qei) &qe2)D1'"+ (qe, ) (qk2)D2*"

+ (qel) (k2e2) D2'"+ (klel) (k2e2) D4'") }
= [4/(q' —M2')][ei,kiC2'"+ k2C2'", e2,q], (35)

$1=q &
s2= (q ki)

&
$2= (q p)

since p= ki+k2. Using the fact that the trace of p4 and
one, two, and three y matrices vanishes we have

Tr[&2M„„*'"(q,ki, k2) (q+Mi) j
=Tr[y0{y„[VC1' (s,)+k,C2'"(s,)+k2C2' (s~)]y„

+qkik2[q„q„D1'" (s;)+q„ki„D2'"(s;)

+q„k2.D2'"(s,)+ki„k2„D4"(s,)j}(q+M4)$. (32)

Here C, '~ and D ~ are the off-shell scalar Compton
amplitude (crossing symmetry, gauge invariance, and
other synnnetries give restrictions on the number of
independent scalar amplitudes) contributing to the
trace.

ln the following we consider only Tj, since T2 can be
treated quite analogously (by a simple change of
integration variable). We have
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where we have used the antisynnnetry of the product
pa, b,c,d$. The invariant amplitudes C2' and Cs'"
depend on the invaria~ts s~, s2, and s3.

Let us now stud. y T1 (and T2) in the limit of zero
mass pions. Here we have by energy-momentum
conservation in the rest system of the pion

p=O=ki+k2, i.e., ]ki( = (k2[,

In the limit of zero mass pions we can thus treat the
vectors ki and k2 as infinitesimal and we shall work
only to order k'. (k' is the order of magnitude of e.g. ,
kik2. ) Si.ice the Compton amplitudes are functions of
q', qk~, and gk2, w'e have in the limit qk~~0, qk2 —+0
that the Compton amplitude (depending only on q'

in the limit) becomes the off-shell Cornpton amplitude
for scattering of zero-frequency photons on baryons.
In this limit we can therefore apply the well-known
low-energy theorem" for the Compton amplitude. The
fact that the baryons are o6-shell is not important,
since the on-shell condition in the proof of the low-

energy theorem" is of no essential importance (the
essential points are charge conservation and gauge
invariance). We have

lim C,'"(q',qk'i, qk2) = C,'"(q',0,0') ""
qk& -+ 0, qk2 -+ 0

+D''"(q', 0,0)O(k)+0(k'/q') . (36)

The second term on the right-hand side of Eq. (36) is
proportional to the anomalous magnetic moment of the
baryon and contains terms of the form

~ $(eiXki) X (e2Xk2)$(1/~1),

multiplied by factors of the order 1.With no anomalous
magnetic moment, D,'"(q',0,0) vanishes exactly. Let us
neglect the anomalous magnetic moment, since it will

only have a very small inQuence in comparison with
(C.'") "" Hence D ''s vanishes, and substituting
Eq (36) in .Eq (35), w.e get

Tr)psM„„'"(q,ki, k2) (q —Ms)—'hei&e2" = $4/(q2 —M&2))
k C ik(q2)Born+k C r'k(q2) orn e q$+O(ks) (37)

In order to obtain Ti we should integrate (37) over q.
However, since (37) is proportional to the ~ecior q
(times functions of q'), the integral over q vanishes
identically by symmetry, so that Ti=0'(ks). (In
Appendix A we show by an explicit calculation that
the Born approximation gives T&= T&=0 for arbitrary
pion mass. ) A similar argument holds for T2. Hence, if

'0 W. Thirring, Phil. Mag. 41, 1193 (1950); F. E. Low, Phys.
Rev. 96, 1428 (1954); M. Gell-Mann and M. L. Goldberger,
ibid. 96, 1433 (1954).

we neglect the order k', Eq. (30) becomes

(22r)4

XTr ys M„„'"(q,ki, k2)
q —p—M q —Ms

X& 2 (q 0 0)ei"e2"+O(k ). (38)

It is a very satisfactory feature in the derivation of
Eq. (38) that the equality holds only to the order k',
because the "equivalence" between the pseudoscalar
and the pseudovector cannot be true for all energies.
(The equivalence is one between a renormalizable and
a nonrenormalizable theory, and as such, is evidently
rather formal. )

Note that the calculations leading from Eq. (31) to
Eq. (38) are needed in order to establish Eq. (38) to
the order O'. We cannot simply let k ~ 0, because then
every amplitude vanishes and gives the trivial identity
0=0; this follows, e.g., from the fact that the x' —+ 2y
amplitude for invariance reasons contains the factor

)el e2 kl k2j

i.e., the amplitude is of order k'. Therefore, in order to
avoid trivialities we have to keep O(k') terms and
neglect only O(k') terms. In the final result the k
dependence will of course disappear.

The form factors in Eqs. (26) and (38) are off the
mass shell, and nothing is known about them. However,
the integrals (26) and (38) have denominators of the
form

1/L(q —p)' —M 2) and 1/(q' —M ')
which should be multiplied by the various invariant
Compton amplitudes. Hence it is reasonable to expect
that the integrals in Eqs. (26) and (38) are rather
rapidly convergent. In fact, due to the "low-energy"
theorem for the Compton amplitude, ' the invariant
Compton amplitudes are essentially given by the Born
approximation, and it is therefore relevant to compare
the convergence of the integrals (26) and (38) with
the convergence of the Born approximation with the
form factors equal to unity. In this case, Eq. (26)
becomes"

T(~0~ 2+)Born

dg
=2ie2+ g;

(22r)4

XTr y5 ey 82
q —p—M'; q —I21—M; q —M;

e' g; 235; arcsin ' 2N;

4m'' M, v'P'
X t ei, es, ki, k2). (39)

I R. J. finkelstein, Phys. Rev. 72, 415 (1947); J. Steinberger,
ibid 76, 1180 (1949);J. Sc.hwinger, ibid 82, 664 (1951). .
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In the limit of zero mass pions (p' —& 0), this expression
tends to the finite limit

e' g
T(vr' —+2y) ""= P Le e k k j (40)

4m 'M;
The convergences of Eq. (39) is essentially due to gauge
invariance, which can be seen in the following way.
Gauge invariance means that replacing e~ and e2 by
k& and k2, respectively, the amplitude vanishes. This,
in turn, implies that the trace in Eq. (39) has to give a
product of k~, k~, e~, and e~. With two powers of momenta
outside the integral, the integrand has to converge
better than expected (a priori, one would expect the
integral to diverge because it only involves spin-~
propagator s).

Hence it appears reasonable to assume that the
integrals (26) and (38) are also rather rapidly con-
vergent, especially since the form factors are expected
to vanish for q' —+ ~. Since the normalization of P;~
and Ii;I,~ is the same, we may approximate

P; (q', 0,0)=P; "(q',0,0), (41)

Nader the integrals in view of the expected rather rapid
convergence. In other words, we expect that an eventual
difference in the structure of Ii;I, and F;I,~ shows up so
far from the normalization point q'=31,' that the
contributions to the integrals from these distant regions
in the space of integration are negligible. This assump-
tion makes sense only if the form factors do not vary
too rapidly (for a more detailed discussion, see
Appendix 3).

Collecting the results exhibited in Eqs. (26) and (38),
we find the following formula in the exact SU(3) limit:

ip T"(A —& 2y)sU&3&
= 2M (g~ (0)/g, ~(0))T (ir' —+ 2y) so (3), (42)

which is just the result expected from PCAC, as is seen
by comparison with Eq. (24). Hence we have shown
that PCAC is correct (within weak dynamical assump-
tions) for the amplitude T„(A„-+2y).

If, on the other hand, we assume that with degenerate
masses PCAC holds, i.e.,

(k,k, iz, (0) (o)=o,
also in the case of mass degeneration, we get instead
of Eq. (42)

Q (M;+My)gg' I„„'ei em"

2Mg~(0) 2 g,d'„*'ei"e2", (43)
g ~(0)

~s= s+ (~w —g)ME/M. (4s)

From Eq. (45) one can obtain limits on nor by
using 0&0.q& i. One obtains

—,'(1—M/Mg) &4rs & 2 (11M/Mg),
or

0.145&ng &0.855.

(46a)

(46b)

From (46a) it is seen that in the equal-mass limit one
has 0&0,~&i. But in the case where the masses are
not equal, the allowed range for n~ becomes more
restricted. It is interesting that the allowed range for
the weak-interaction parameter o~ is determined by
the strong SU(3) breaking interactions.

S. DISCUSSION

First we note that in the limit of complete mass
degeneracy, Eq. (45) reduces to the identity ns=ntr.
This is a satisfactory feature since one knows (see
Sec. 2) that in the limit of exact SU(3) as=ns. With
broken SU(3) there is still a possibility that ois=nw,
but then

&s=&w= ~ (47)

Since we know that n~/~ it follows that nq/o. ~.
Secondly, by using the most recent value of n~

found by Brene et al. ,
'

Eq. (45) yields
ng =0.665&0.018,

o.s=0 733~0 018,

(48)

(49)

where we have taken into account that the error in the
determination of a~ is essentially a fitting error.

The strong-interaction mixing parameter nq has
been determined by Jarlskog and Pilkuhn' using a
baryon-exchange mod. el to explain the observed back-
ward peaks in the reactions E p-A~', 4E p~Z ir+,
ir p~& E+, and vr p —+A'E'. These authors find

Now we can use the fact that in the zero-mass limit
the Compton amplitudes are essentially the Born
approximation amplitudes; the latter are proportional
to the square of the (renormalized) charge. Hence all
integrals I' involving neutral intermediate particles
vanish. Thus many terms disappear in Eq. (43). Using
SU(3) coupling constants, one finds that (43) reduces to

I„P+(Ms/M) (2uw 1)I„:—"=I„,~+ (2ois 1)I„—v=".

Hence the important feature emerges that the integrals
I„,cancel completely (which is very advantageous since
the I„,'s depend on the details in the dynamics of strong
and weak interactions through the form factor). We
obtain the simple formula

G8 —071 pp5 (so)
)&M„.'~(q, ki, kg) F;i(q', 0,0), (44)

q —3fI,

which is valid in the limit of zero-mass pions.

in excellent agreement with the result (49). Another
determination has been made by Martin' from a semi-
phenomenological study of the first hyperon resonance
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Yi* (1385), using a one-channel approximation. Con-
tributions from Z and I'~* exchange, and the exchange
of a low-energy 5-wave pion-pion pair, to dispersion
relations for the I'3~2~-A scattering amplitude were
evaluated. The coupling constant gq~ and a parameter
related to the I'3~2m-A scattering length were varied,
so that the amplitude calculated from the dispersion
relation was consistent with the input resonant ampli-
tude. This could be achieved for a value of g~~ corre-
sponding to a strong mixing parameter

(51)

This value is also in excellent agreement with Eq. (49).
Thus we have seen that methods based on rather

different models lead to a value of o.q which is given
by Eq. (49). It is therefore natural to conclude that
there is strong evidence against the assumption that
ns= nsr (when the baryon masses are different).

The good agreement between the formula (45) and
semiphenomenological fits follows already by a com-
parison of Eq. (45) with the Eqs. (10)—(12) in Sec. 2.
Equations (10)—(12) were derived from the primitive
form of PCAC in Eq. (2) by taking matrix elements
between one-baryon states. Equation (45), which was
derived on the basis of our rather weak dynamical
assumptions and PCAC, is identical with Eq. (11).
Equations (10) and (12) were in disagreement with
experiments, while Eq. (11) was in agreement with
experiments, for some unknown reason. Our dynamical
calculation shows why Eq. (11) is in agreement with
experiments: because the dynamical calculation leads
to Eq. (11) and not to Eq. (10) or (12).

The strongest dynamical assumption in our calcula-
tion leading to Eq. (45) is the use of PCAC and SU(3)
coupling constants. The fact that Eq. (45) agrees with
other recent determinations of n8 makes it likely that
the PCAC hypothesis (used. for AS=0 currents) in its
modified form (ii) can be used together with the exact
SU(3) coupling constants with creen~ to take into
account broken SU(3). This statement has, of course,
only been shown to be valid as far as the pion-baryon
vertices are concerned.

The dynamical picture which emerges from the
above considerations is that the pion baryon coupli-ng

constants can be calculated in broken SU(3) by using
SU(3) coupling constants with nsWrrrr and with ns given

by Eq. (45). As is clearly exhibited in Eq. (45), the fact
that nq becomes diferent from n~ is due to the mass
splitting. This point of view is not necessarily consistent
with that of I'reund and Nambu"; however, we would
like to point out that the arguments presented in the
present paper are only valid for pions coupled to
baryons (and not, e.g. , for mesons coupled to excited
baryon states).

Recently, the EEA coupling constant has been
determined by use of forward dispersion relations for

» P. G. 0. Freund and Y. Nambu, Phvs. Rev. Letters 13, 221
(1964).

EE scattering. "An upper limit for the ESZ coupling
constant was also found. In the evaluation of the
dispersion integral over the unphysical region it was
assumed that the only contribution other than S mave
comes from a pole term at I'i* (1385).It turns out that
the E coupling constant is a factor 2 or 3 smaller
than the SU(3)-invariant value. However, this result
does not contradict our conclusion, since we have
applied PCAC (or the Goldberger-Treiman relations)
to d6'=0 currents. The results of Refs. 4 and 13 show,
however, that we cannot generalize PCAC to dB=1
currents. (At least, the predictions of such a generaliza-
tion would be violated. experimentally. )

Also, our method gives a result, even if we do not
use SU(3) coupling constants, for the pion-baryon-
baryon vertices. Without SU(3), Eq. (45) becomes

g.-./g, ~——(2ns —1)Mg/M,

from which we find

g -.'/4' =2.85,

(52)

(53)

XM„,z -'
(q,u„u,)

q —Mz

and where we have assumed

From Eq. (55) we obtain

Fzz(q', 0,0)e,I'es", (56)

(57)

rrs= s+ (rrw —-')M=/M

+ (1 nrr) ((Mz+ M—z )/M)Iz/I=—. (5-8)

Thus, it is seen that the electromagnetic correction to
Eq. (45) contains the ratio I /I", i.e., this correction
depends on the details in the dynamics. In order to
obtain a rough estimate of the numerical inRuence of

"M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966).

where g/ 4.m=14. 8. It is interesting to compare the
value (53) with the value obtained. in the exact SU(3)
limit O.g ——o.~. One obtains

(g~„='/47r) srrts& =1.42.

The difference between (53) and (54) is a factor of 2,
which is due to the occurrence of the squared mass
ratio M-. /M.

In the derivation of Eq. (45) we have neglected
electromagnetic mass differences. If these are taken
into account we obtain, instead of Eq. (45),

2(1—ns )I'(Mz —Mz-)/M
+ (2crw 1)(M =- /M)I—== (2(r s-—1)I", (55)

where, e.g. ,
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ip„T"(A„~ 2y) ""=—2e gg
(27r)4

(59)(I /I ) ""=M@/[,'(M-+M )]-

the correction term we calculate the ratio I~/I- in the Eq. (A1) becomes
Born approximation with the form factors equal to one.
We obtain

Hence the correction term in Eq. (58) becomes

Mg+ —Mg- M-.
2(1—

nlrb) =—0.31X10 '. (60)
Ms++Ms- M

Instead of the value (49) for ns we therefore obtain

n's= 0 '730+0 018.

The electromagnetic correction has obviously no
inAuence on the above discussion.

From the point of view of principles, it is interesting
to note that the proof given in Sec. 4 shows that the
neutral pion decay into two photons is given by the
Born approximation with two intermediate baryon
states, provided that the pion mass vanishes. Hence
the lifetime of the neutral, massless pion can be calcu-
lated quite trivially. Assuming that the lifetime is a
slowly varying function of the mass, it follows that a
reasonable approximation to the lifetime is given by
the two-baryon approximation. This calculation has
been done in Ref. 14.
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1 1
X Tr +58] — -82

q —M q+A& M—

+Tr
q—A&

—iV q —3f

1 1
+2M Tr y& e& —e,

q —0&—M q —M q+0&—M

Now

(2s)4

1
Tr y5e& e&

q —M q+ks —M

t er, q, es, ks]

(2s-)4 (q' —Ms)'

1

=4E„,p, ey"e2~k2' do.'
(2s.)4 (q' —M')'

1
Tr gee)-- —e~-

q —M q+0&—M

4Ler, q, es, ks]

(q2 M2)P(q+P )2 M2]

Using Feynman parametrization one has

(A3)

(A4)

(A5)

ip„T~(A„—+ 2y)»"= —2esg~"
(2-)

1 1 1
XTr Pys et es, (A1)

q—A&
—M q—M q+As —M

where we have considered only a single kind of baryon
in the intermediate states to save writing, and where
the factor 2 comes from Bose statistics. Using again
the identity

p —k] +kQ'

= (—q+kr —M)+ (q+ks —M)+2M, (A2)

"B.Lautrup and P. Olesen, Phys. Letters 22, 342 (196S).

APPENDIX A: THE BORN APPROXIMATION TO
AXIAL-VECTOR DECAY

In this Appendix it is shown that the arguments in
Eqs. (31)-(38) are very straightforward and simple in
the Born approximation with the form factors equal
to unity. Using standard technique we have

The q integral obviously vanishes by symmetry. "
Similar arguments apply to the second term in Eq. (A3).
Hence we are left with

ip„T&(&„~2y) " = —4e'ggM
(2')'

"In this argument we have tacitly assumed that integrals like
the q integral in Eq. (AS) are convergent. Strictly speaking, this
is not true; however, from 6eld theory it is well known that by
using some covariant cutoff procedure (e.g., regularization)
integrals like the q integral in Eq. (AS) vanish.

1 1
XT1 (A6)

q —)r&—M q—M quilt, —M

Apart from a constant factor, the result (A6) is the
amplitude for neutral pseudoscalar meson decay in the
Born approximation. The result (A6) corresponds to
Eq. (38).

The calculation leading from Eq. (A1) to Eq. (A6)
rejects the well known "equivalence" between a
pseudoscalar and a pseudovector coupling. In the text
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this equivalence was shown to be generally valid only
in the limit of zero-pion mass. We have seen here,
however, that the equivalence is valid for the Born
approximation without any restriction.

plons

z(*)=
(1—g')' 1—x'

(84b)

I= (I/32vr'iM')P1+E(Mg/M)g, (84a)
2

APPENDIX 8: ESTIMATE OF THE INFLUENCE
OF THE FORM FACTORS

In Sec. 4 it was argued that if the o8-shell form
factors did not vary too much with q', the difference
between F,q(q', 0,0) and F;q" (q', 0,0) could be neglected
in the integrals involving the Compton amplitude.
Clearly, it is impossible to estimate the degree of
validity of this assumption in the realistic case, since
nothing is known about off-shell form factors. In order
to obtain some insight into the mathematical structure
of this assumption we consider here a model-world
where the form factors have the following form:

F (q2) 1+(M2 q2)/(q2 M 2)

where M~ is some mass describing a structure effect.
In our model-world there exists only one baryon with
mass M (this is an unessential assumption introduced
to save writing), and we use the Born approximation
since we consider the limit of zero-mass pions.

The model-world version of the integral (43) becomes

dq M' —q'I'= 2i — 1+
(2 )4 g' —M ')

Here E(M~/M) is the correction to the Born approxi-
mation without the form factor (81).

In order to satisfy our condition that the form
factor (81) does not vary too much (which is a common
assumption in weak-interaction physics) we require
that F(q') does not vary more th*n 10% between q'= 0
and q'= M'. This requires

3fg'& 10'. (85)

DI/I =0.15, (87)

I.et us now assume that there is a difference in the
structure of the axial-vector vertex and the correspond-
ing pion vertex. This means that Mg is different for
the two vertices. %e take Mg equal to 3f~~ and 3II ~,
respectively.

Furthermore, it is reasonable to expect that the
masses M~~ and M ~ are of the order of magnitude of
the pion-nucleon resonances. The limit (85) is then a
bit high, but let us take as an example

M~~= (+10)M=3.0 GeV, (86a)

M ~= (+20)M=4.2 GeV. (86b)

Then the relative difference between the integrals of the
type (84a) is

which corresponds to an error in the formula (45)
(expressing us in terms of us) given by

( ,')(M-./M)~I/I=—3—%. (88)

Thus we have seen that the rather large difference in
structure exhibited in Eq. (86) only gives an error of
3% in the value for us

If we assume that our model-world gives a significant
measure of the relative accuracy of the approximation
F;q(q', 0,0) =F,~"(q', 0,0) in integrands like (43) we can
conclude that this approximation is very good. Using

X (83) Eq. (88), the value for us becomes

t (q—k~)' —M'ft q' —M']((q+ k2)' —M'j us =0.73&0.03, (89)

Trfy&(q —k&+M)e&(q+M)e2(q+0&+M) )
X

L(q—Py)2 —M2](q~ —MqL(q+$2)2 —M2j

where

dq M' —q' )I=
(27r)4 q' —Mg'I

The integral (83) is easily evaluated using Feynman where we have included the electromagnetic correction
parametrization. One obtains in the limit of zero-mass from Eq. (61).


