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A well-known defect of the Born approximation is that it often yields cross sections correct in shape, but
orders of magnitude too large. A method is suggested for renormalizing approximate wave functions so that
their amplitude is correct, not asymptotically but at some other more appropriately chosen point. This
leads to an expression for the T matrix which is independent of the over-all amplitude of the approximate
function. The method is applied to a plane wave Born approximation and a simple distorted-wave Born-
approximation calculation of scattering from a square well. The renormalized results are in excellent agree-

ment with exact calculations.

OST problems in quantum scattering theory
involve evaluation of the T matrix

T=(¢s|V]¥). M

Here ¢; is the final-state wave function and V is the
interaction responsible for the transition, both of which
are usually assumed known. The total wave function
¥ satisfies an integral equation

Y(x)=¢(x)+ / K (x,y)¥ (y)dy

=¢(@)+(K (), 2

which is often difficult or impossible to solve; thus
approximations for ¥ must be used in evaluating 7'

If we assume that the dominant contribution to T
comes from a region about the point x=1x,, and that this
point is known, then there are two obvious require-
ments for a good approximation to ¢: (1) It must have
the correct amplitude at x=wxo, and (2) it must vary
properly in the region about x=x,. Usually physical
arguments are invoked to suggest trial functions which
hopefully satisfy the latter requirement, but the first
requirement seems to be universally ignored. Instead,
the trial function is made to have the proper asymptotic
normalization, which is quite ineffective since V vanishes
asymptotically (i.e., 2% ). In this paper we propose
a method of “renormalizing” the trial functions which
has proved remarkably successful.

Suppose 4 is the amplitude of ¥ at x=xo. Then we
may define a new function ¢ with unit amplitude at o,

Y@)=4y&), d)=1, 3)
in terms of which
T=A{ps| V). “)

The advantage of this formulation is that any approxi-
mation to  will automatically have the proper ampli-
tude just where the contribution to 7 is greatest.

To find 4, we simply use the definition of i in Eq. (2):

A= (x0) = (x0)+A(K (x0) )

= (w0)/[1—(K (@0)§)]; ©)
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if now we write  (x) =y (x) /¢ (o), the final expression
for T is!

(os| V)
¥ (o) — (K (o))

This is obviously exact if ¢ is exact, and in fact can be
derived in one step from Egs. (1) and (2). If exact wave
functions are used, 7" must be independent of xo; we
have given the above derivation to indicate one cri-
terion? for choosing xo when approximate wave func-
tions are used. In this regard, note that Eq. (6) is
independent of the over-all amplitude of ¥, as opposed
to Eq. (1); the price we pay for this advantage is
having to estimate xo and having to calculate the
additional factor, which in many cases is not much more
difficult to evaluate than {(¢;| V|¢).

As an example, we calculate the total cross section
for scattering from a square well of strength
Uo=2mVo/#* and range R. The plane-wave Born
approximation based on Eq. (1) is

Tporn=UoR*j1(QR)/Q, Q=2k sin3f; (N
the renormalized approximation based on Eq. (6) is
Trenorm= TBorn/[1+ U0R2 (eix_ 1 _ix)/x2:| ) (8)

where x=2kR and we have used xo=0. The total cross
sections obtained from these expressions are shown in
Figs. 1-3, plotted against U¢R? for various values of
kR. In the resonance region UoR?*>w? the Born
approximation fails badly, whereas the renormalized
result gives an adequate account of the nonresonant
or average cross section. Note the flattening of the

T'=¢(x0) (6)

11n partial-wave analysis Eq. (6) (or a variation thereof) has a
venerable history. The renormalization was first introduced in
order to obtain an integral equation for ¥; with an absolutely
convergent iterative solution [R. Jost, Helv. Phys, Acta 20,
256 (1947); G. F. Drukarev, Zh. Eksperim. i Teor. Fiz. 25, 139
(1953)]. Later various approximation theories made use of it,
but without emphasizing the flexibility of the trial function [e.g.,
P. Swan, Nucl. Phys. 18, 245 (1960); Henry Brysk, Phys. Rev.
133, B1625 (1964)]. Most recently it has appeared in strong-
interaction calculations [H. Pierre Noyes, Phys. Rev. Letters
15, 538 (1965); K. L. Kowalski, ibid. 15, 798 (1965)7.

2 One might instead require that the approximate 7" be station-
ary with respect to .
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renormalized curves at UoR? grows large; this occurs
because Eq. (8) is independent of V, to first order in
1/V when exp(ik-1) is used for ¢.
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Fic. 1. Total cross section for scattering from a square well for
kR=0.25. The curves represent the exact value (solid line), the
ordinary Born approximation (long dash), the renormalized Born
approximation (short dash), and the renormalized approximation
based on Eq. (10) (dot-dash).
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F1G. 2. Same as Fig. 1, except for kR=4.
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F16. 3. Same as Fig. 1, except for kR=9.

To capitalize on the amplitude-independent feature of
this approach, one should use trial functions whose
behavior near xo is more reasonable. In the present
case we may use a plane wave with the correct
wavelength

y=er, K*=2m(E+V)/%, )
which can be still further improved by adding a wave
reflected off the back surface of the well
Y=eTrk e, B= (b= K)/ (b K)eHET. (10)
Calculation of 7" with these wave functions is no harder
than before, and the results using Eq. (10) are also
presented in Figs. 1-3.

The success of Eq. (10) as a trial function for ZR<K1
and kR>>1 is easily explained. One can show?® that in a
partial wave expansion for ¢, the terms for I<kR
are given quite well by Eq. (10), and in fact the /=0
term is exact. The terms for />%R are incorrect but
make negligible contribution anyway. Hence Eq. (10)
should give good results, provided that the terms for
I~kR do not contribute a large fraction of the total
cross section.

Equation (6) may also be used for phase-shift calcu-
lations, and for direct reactions if the denominator can
be reasonably approximated. Encouraging results have
been obtained in both cases, and will be reported in the
near future.

8 A. L. Latter, Phys. Rev. 83, 1056 (1951).



