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Quantum-Mechanical Sum Rules
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Sum rules are derived for expressions of the form p~e„!Aq„!', !a!=0,1, Application of the sum
rules are given for various forms of A.

I. INTRODUCTION
' N estimating intensity of radiation, and in other
~ - applications, it is useful to consider sums of electric-
dipole-moment matrix elements, weighted by a power
of the frequency

x„'=g teA„
I
xA„

I

'.

Here xj,„is evaluated between energy eigenstates 0 and
m, e being a discrete, normalizable state; coy„ is the
frequency of these two states: o/A„——(EA —E„)/ie; a is a
non-negative integer; and the sum in k extends over
all energy eigenstates. By defining

Irs-I'= rA- r-A=
I
»-I'+

I
&A-I'+ I

&A-I'

a symmetric expression may be given

where A is any operator. The states k, r/, are eigenstates
of a Hamiltonian, which we take to be arbitrary, i.e.,
not necessarily of the simple form (4). The state n is
assumed to be normalizable. 2

Consider the quantity

eitH/AA g
—i tH/A

which is equal to the series

(if 'A.
eitH/AAe iiH/A —P—

a~
(7b)

II. DERIVATION OF GENERAL SUM RULES

To derive the desired result, we investigate a general
sum rule of the form

S„.=g (Z,—Z„).IA,„Is=+ (Z,—Z„) A,„At„„(6)

R„=s pteA. Irs„I'.
k

(2) where the commutant A, is defined recursively by

Sum rules which give a closed expression for R„are
well known for a=0, 1, 2, 3, 4.' These are Next consider

Ap ——A,
A, = /tH, A. r]. (7c)

z„o=-;(Nlr'In),
R„'= /s/2m,

2 '= (1/3m')(nip'In)=

(2/3m)(nlrb~

Vln), (3)—
R„e= (6/6m')(/sl V' VI s),
~-'=(1/3m')(nl («)' In).

(nl AteitK/AAe itH/A
I
n)— (Sa)

Inserting a complete set of energy eigenstates, (Sa)
becomes

(n I

Ate"H/"A e "H/A
I n)

=g (nIAte"H/AIIe)(kIAe "H'"ln)
In the above, V is the potential occurring in the
Hamiltonian, which is assumed to have the simple form —P eituknA

& (Sb)

H = (p'/2m)+ V(r),
min) =z.ln).

The a=1 case is the famous Thomas-Reiche-Kuhn
oscillator-strerIgth sum rule, which was important in the
development of quantum mechanics. The usual deri-
vation' of the results given in (3) proceeds by exploiting
the commutation relations between r and y and using
the identity

(&lyly)=imo/A„(klrl n).

In the present paper using a systematic technique
which differs from the usual derivation we give general
sum rules, valid when a is any non-negative integer,
and x is replaced by any operator.

* Junior Fellow of the Society of Fellows.
'H. A. Bethe, Intermediate Quantum I/IIeekanees (W. A. Ben-

jamin, Inc., New York, 1964).
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Expanding the exponential, and interchanging the
orders of sunnnation, yields

(n I

Ate�

"H/"A e "H/"
I n)

(if)' 8)'S '
2 ~A. IAA-I'=2 —

I (sc)
ir! & ~ A) G.

On the other hand, we can use formula (7b) to expand
(Sa).

)it) 1
(n,

I

Ate�

"H/"A e "H/"
I n) =P I

—
I

—(n I
At A, I n) . (9)

Ea) a!
~ It is evident that the considerations in this paper may be

extended trivially to give sum rules for expressions of the form
QA(XA —X )'!AA„!s, where XA is the eigenvalue cf a Hermitian
operator L, which possesses a complete set of eigenstates; the
states k, n are eigenstates of this operator, with n a normalizable
state; and the summation extends over the complete set of
eigenstates.
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Comparing (9) with (Sc) gives the preliminary sum rule

S..=(e)AtA. )n). (10)

(11a)

To prove (11a), we note that by definition of A,

'».-i—A'A. -i&le) (»
Since

I e) is an energy eigenstate, the second term on
the right of (11b) gives

=(el»'A. ile). (11c)
Hence we have

Equation (10) in principle gives a closed expression
for S„.One needs to cornlnute A with B a times to get
A, and then evaluate (e)AtA In). However (10) can
be simplified by making use of the relation

(n)AtA. )n)=(n)A, tA bi&&,

u&~b

only to know Ap= A, and the first two con11nutants A &,

A 2. These sum rules may be quickly derived from (13b).
Taking A=x=At, and H given by (7), the first two
comrnutants have a particularly simple form:

Ap=x,

A i ——(fi/im, )p. ,

k2 BV
A2=-

m Bx

(14a)

The sum rules for X„defined by (2) (with an extra
factor of h when compared to S„)are

x.o= (el x2) e),
1 the

2inz (2m)

(n)A'A. ln&=(nl [A"a—»']A -iln)
= &nl [a,A]tA. , I e&

= (n
I
A,tA, , I n) . (11d)

x.o=—(e)p,o)n),
m2 (14b)

aild
A,t= (—1)'A, (13a)

S "=(—1) (el (A.)'le),
S~"+'=o(el (—1) A,A,+i+(—1) +'A,+iA, )n) (13b)

=-'(—1) ( I[A. A ]I ).

III. APPLICATIONS

tA'e discuss some of the standard applications of the
well-known sum rules (3); as well as develop new results
from the general formulae (12) and (13).

A. It is evident from (13b) that to obtain the well-
known sum rules for R„;u=o, 1, 2, 3, 4; one needs

Evidently this procedure may be continued b times to
yield (11a).Thus we can give many, formally different,
expressions for each S„
S„.= (el AtA.

I e) =(e)A&A. , I e)=."
= (nl A.-i'Ail e&= (nl A-'A In) (12a)

Linear combination between these can give still more,
formally different, sum rules. For practical purposes,
the simplest expression for S„ is the one for which A
needs to be commuted with H the least number of
times, since in general the A, s increase in complexity
with increasing u. Thus the sum rules we shall be con-
cerned with for the most part are

S."=(n)A.tA. )n),
S "+'= (n I

A,tA, i I n) = (e I
A,~otA,

I e) (12b)
=-', (e)A, A~i+A~i A, le).

Further simplification occurs when A is Hermitian. In
that case we have

X„'= e, e = m e

X„4=—~

Although A3 is formidable, X„ is still simple since it
involves only the commutator of A2 with A3.

1x.'= (el [Am, Ao]le)
2k'

/8
e —~V n

(el (VF.)' In)
2nz3

(e I (-,' V'F,' F,V'F,) I e) . —
2m3

(15b)

We have introduced the force F=—VV. The symmetric
sum is

g„'= (n I

(-',V'F' —F V2F)
I e) .

6nb'
(15c)

Obviously the symmetric version of these results, E„
defined by (2), agrees with (3).

The general sum rule (13b) may be used to give sum
rules for higher a. To calculate X„', we need A3 which
is given by

k3 BV BV
Ao ——[II,Ao]= p. V +V p . (15a)

2tpPz — 8$ 8$
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Further sum rules for a&5 contain increasingly
complicated expressions. Thus X„' is

1
X„p= (~l(12 ~F,+~P, y)2l~).

4~4
(16)

Once some information about the potential V is
available, the sum rules can yield an estimate for the
behavior of

l
r2„l2 when the energy E(k) of the state 73

is large.
For example, for a central potential which is Cou-

lombic at the origin, there is an argument (given, e.g. ,
in Ref. 1) that utilizes the a=3 and a=4 sum rules,
and that shows that if E(k) is large and 23 is an s state,
then

l
r&„l2 varies as 4p&„", 4(m (5. We apply this

argument to the a=4 and a=5 sum rules to obtain a
high-energy estimate for

l
r2„l2 when 24 is a p state.

For a central potential which is Coulombic at the
origin, we have at the origin

V =a/r,
F=42r/r3,

Taking q along the x axis and setting 80——e'&, we have

~0 ~0

Bi = -', iq P,—Bp+Bp P,—
-'lm zm

(" i ("i-
=Bo iql p, —I+@q'I

ki423 J (2223i

=Bp[iqA 1+l'3q2X„'],

Bit= [iqA 1+Aq2X„']Bpt

(19a)

B2=B6[(iqA,+hq'X„')'+iqA 2],
B2t = [(iqA 1+hq2X„') 2+iqA 2]Bpt. (19b)

The two commutants, Bi and 82, are sufhcient to
determine B„(q) for a=0, 1, 2, 3, 4. From (12b)

We have expressed Bi in terms of the quantities Ai
and X ', defined in (14a) and (14b), respectively,
which arise in connection with the dipole sum rules.
The next commutant 82 is

(~ V)2=422/r4,

6 12m
1q2P2 F.q2F =~2 — g (r)

r'

(17a)
B„p(q) = (22 l

BpBtp
l n) = 1, (20a)

1 1
B-'(q) =-(~

I
Bo'Bil ~)=-(~liqA1+&q2X-'le). (20b)

B '(q) =q'X„',
1

B (q)= (nl [iqA1+ hq2X 1]—2ln)
A2

(20c)

Thus for l=1 p states, R„4 is finite but E„3 diverges
because of the r ' singularity at the origin. (We assume
the potential is sufficiently well behaved away from the
origin, so that no other singularities arise in the radial
integration. ) (Note that the delta function in the a= 5
expression does not contribute when l)~2.) Returning
now to the definition of E„ in terms of the in6nite
sums (2), we replace the high-energy, continuum con-
tribution to the sum by an integral and assume that in
this high-energy limit lrp„l2 varies as 4p2„(The.
continuum wave functions are taken to be normalized
on the energy scale. ) Then for t= 1, the sum rules state
that

q2X 2+q4(X 1)2 (20d)

1
B„'(q)= (23 l (iqA 1+—hq2X„')'

A'

+ (iqA 1+hq'X„')iqA2 ln)

q2X 3+3q4X 2X 1+q6(X 1)3 (20e)

1
B„'(q)=—(23

l [(iqA 1+Aq2X„')' —iqA 2]
A4

At the origin, the radial wave function varies as r' and
the integrand of the radial integral arising in the When the state e has definite parity, which we now
evaluation of E„behaves near the origin as assume, (23lA, l22) vanishes since A, is odd. Then B„'

(21 2 fg 4) becomes simply
(17b)6r" ' 122rr" —'5(r) (a= 5) .

co~„4 chal J,„converges,

k ™dG0@~ dlverges-

(17c)

)& [(iqA1+Iiq2X ')'+iqA2]
l
22)

=4'X '+g'~ +4X 'X ')
a4

+6q6X 2(X 1)2+q8(X 1)4 (20f)

Hence 5(m&~6. Explicit evaluation for a Coulomb
potential when the state 42 is 2P, gives m, =S.S.

B. As a second application of (12b), we calculate
sum rules of the form

B. (q)=Z ~2. l(p"')2. I' (18)

We have used the dipole sums X„,Eqs. (14), in the
above.

B '(q) is Bethe's well-known generalization of the
osci11ator strength sum rule, which is important in
calculating the energy loss of charged particles passing
through matter. '
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I
(e™~)2„ I

2= g (Zq) mC (k rZ)
m=o

cp(k, zz) =!I2,
- (—1)"(g")-2(g" ")~-

c (k,n)=Q
r!(m r)!—p=o

B„'(q) for a)4 involves increasingly complicated
expressions. However, it is evident that these expres-
sions will always be expressible in terms of matrix
elements of the commutants A arising in dipole sum-
rule calculations. Also it is evident on dimensional
grounds that J3 (q) will be a polynomial in q' of order
a (see also below). We may utilize this fact to obtain
further sum rules by expanding both sides of (18) in
powers of q and equating coeKcients. We now proceed
to do this.

Expanding
I
(e' ')2„I'=

I
(e"*)2„I'gives

Performing the k sums and grouping together powers
of q gsves

( 1)mqzm(gpm) —
2m —1 ( 1)r(2m) I—

0=+ 2+ 2
m=2 r!(2m —r)!

(22b)

That (22b) is identically satisfied follows from the fact
that

2m—1 (—1)"(2m) I 2m (—1)"(2m) I

2+ E
r=1 r!(2m —r)! r=p r!(2m —r)!

= (1—1)' =0. (22c)

Nontrivial results are obtained when a)0. In that
case, the term in (21b) proportional to !I2„does not
contribute since Qz, 4p2„82„=4p„„'=0when a)0. From
(21b) we have

&. (q) =2 ~~-'1(e"*)"I'

mt
L1+.( 1)mj(gm) =q'X ~+ P (—1)"q'" P 4pk. 'd„(k,zz) . (23)

tn=2

"-' (—1)"(g") (g" ")
(21a)

r!(m —r)!

When m is odd, the exponents r and m —r are either
even and odd, respectively, or odd and even, respec-
tively. In either case (x")„2(g ")2„vanishes by parity.
Therefore c =0 for m odd. We may therefore, write
(21a) as P 4p2„d„(k,rz) =0, m)a&~1. (24)

It is seen that B„contains a term q2X„. This has been
explicitly demonstrated for a=1, 2, 3, 4; see Eqs. (20).

According to previous remarks, 8„'(q) is a poly-
nomial in q' of order u. Hence the coefficients of q' in
(23) must vanish for m) 4z There. fore we can give the
sum rule

I ( 'e2),„ 'I=8,. 1—q'(x')

00 2 (g2m)

+g ( 1)mq2m
m=2 (2m)! (21b)

When explicit expressions for 8„'(q) are available,
as in Eqs. (20) for a= 1, 2, 3, 4, the coeflicients of q',
m~&42, in Eq. (23) can be evaluated. Thus combining
(23) with (20), we have

+q'Ig2„I'+Q (—1)™q2™d(k,zz),
m=2

2m—1. ( 1)r(gr) &(g2m
—r) &

d (k,rz)= P
r!(2m —r)!

(X.')'= =Q 4pj, „pd2(k, zz),
4m'

3X„2X„'=Q 4p2„'d2(k, zz),

(rzI A14I zz)
+4X.'X„'=P 4p1, „4d2(k,zz),

(25a)

(25b)

(25c)

We now form the sums 8„.The a=0 case does not
give any new result. For when a=0, we have according
to (20a) and (21b)

(X 1)2—
Sm'

= —P 4p1.„2dz(k, zz), (25d)

( 1)mq2m2 (g2m)
1=+4. 1++

(2m)!

(—1)'
+q'2 I*-I'+& (—1)"q'" &

k m=2 r=i r!(2m —r)!

XQ (g")„1,(g2" ')2„. (22a)

6X~'(X ')'= —P 4'pd12(k, zz), (25e)

(X„')'= =Q 4p2„4d4(k, zz) .
16m'

(25f)

It is striking that some of the above sum rules,
Eqs. (25a), (25d), and (25f), give a result independent
of the state m. When the oscillator-strength sum rule,
which also gives a result independent of the state e,
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is written in the present notation, it takes on the form four expressions:

X '= = —p p11, d1(k,n).
2m

(26a) S„'(1)= u„*(r)AtA,u„(r)dr,

Comparing this to (25a), (25d), and (25f), the following
generalization suggests itself

t hq
(X„') =i

i
=(—1) P pp1„'d. (k,n). (26b)

&2m)

S„'(2)= u„*(r)A 1tA,u„(r)dr,

S„'(3)= u„*(r)A2 A 1u„(r)dr,

(28)

To establish (26b) we first prove that

B.=Bp{(hq'X„') +O(q"—')}. (27a)
S„'(4)= u„*(r)A ptA u„(r)dr.

We prove (27a) inductively. For a=1 it is true, see
(19a). Then, assuming (27a) for B„

B. ,=)HB.j=r II Bo{(kq'X ')'+O(q" ')}$
B {(Qq2X 1)a+O(q2a —1)} (27b)

Inserting B1 from (19a) gives

—B {(kq2X 1)a+1+O(q2a+1)} (27c)

which establishes (27a). Next we use (10) to evaluate
B- (q)

1
B '(q)= —(niBp B.in)=q"(X ') +0(q"—') (27d)

Comparing this to the expansion of B„(q) in powers
of q', given in (23), gives the result (26b). Thus (26b)
is indeed true and provides a generalization of the
oscillator-strength sum rule.

We conclude this discussion of the sum rules for
B„'(q) with the remark that the result that B„'(q) is
correctly given by the dipole approximation to e'&*,

see (20c), is well known' and plays an important role
in Bethe's theory of the energy loss of a charged
particle passing through matter. This fact, which is
somewhat mysterious when taken in isolation, is seen
to be a special case of our formula (24).

C. As a final application of the general sum rules
(12) we note that (12a) gives several, formally different,
expressions for S . Further, formally different, ex-
pressions are obtained by taking linear combinations
of these. By utilizing the fact that e is an energy eigen-
state, we showed that all these expressions are identical
Lcf. Eqs. (11)j.However, frequently the exact eigen-
function is unknown and only approximate wave
functions are available. With an approximate wave
function, the various expressions for S„of course are
no longer identical. One may therefore test the accuracy
of the approximate wave function by examining the
discrepancies between the various expressions for S„.
In particular, if one can persuade oneself that the
various expressions for S„ test different parts of the
wave function one can determine where the approximate
wave function is inaccurate. For example in calculating
S„', with an approximate wave function I„, we have

Suppose AtA3 and AatA are large only for small r,
while A&tA2 and A2tA& are large only for large r. If
there is a significant discrepancy between S„'(1) and
S„'(4), but not between S„'(2) and S„'(3), we may
conclude that I„is inaccurate for small r.

This procedure becomes particularly effective, if it
can be shown that S does not depend on the wave
function. This may happen independent of the form of
Hamiltonian, as in the oscillator sum rule. It may also
happen because of the fortuitous nature of the potential.
For example R„' and E„' do not depend on the wave
function when the potential is a harmonic oscillator.
With the general sum rules that we have derived, given
a potential, it may be possible to construct an expression
which does not depend on the wave function.

where a= 1, 2, . The prime on the sum indicates that
all states m with E =E„are omitted.

We first concern ourselves with the a=1 case. The
general formula (10) for S„' suggest an expression for
S„',

(')
S '=p (E2—E ) '(Ap [2= (n(AtA 1)n), (30a)

where the inverse commutant A & is dined by

(H,A 1j=AP A. ——(30b)

Taking matrix elements of (30b) gives

(E2—E ) (k
~

A 1[n) = (k
~

A
~
n) . (30c)

Inserting a complete set of states in the right-hand side
of (30a) gives

+Z (nI A'I ~&(~ I A-11n) (3od)

IV. GE5'ERALIZATION

In this section we examine to what extent the general
methods for sum rules, developed in II, can be applied
to sums which are weighted by a negative power of the
energy difference.

S„-.=g' (E,—E„)- ~A, „~2, (29)



QUANTUM —MECHANICAL SUM RULES 1225

We have separated the sum over all states into a sum
over the states k for which E~/E„, and another sum
over the states m for which E =E . In the first sum,
(k I

A il rs) may be evaluated froin (30c). However in
the second sum, we cannot evaluate (ml A tin&, since
(30c) does not determine (mlA rfrs& when E =E .
Then (30d) becomes

(~ I
A'A-il ~)—2 (~ I

A'I m&(mf A-i
I I&

=S '. (30e)
jv~—jv„

Thus it is seen that the correct formula for S„'is not
(30a), but (30e).

We now prove the general result

S„'=(rs I
AtA,

I
rs) —P (rs

I
At

I m)(m I
A .I

rr), (31a)

To prove (33a) we proceed as in II
(~IAtA .I~&=(~ILH,A,7tA .I~)

=(rbf (A )tHA . H—(A )tA .I )
=( I(A )'(HA .—A .H)l )

= (& I
(A-i)'A- +i I ~& (33b)

Continuing this procedure fr times gives (33a). Thus the
simplest expression for S„'is

S„- =(~IA .tA. I~&—P (~IAt fm)

X(mlA s. l~&,

S "'+'&= (e I A,tA —~—r I rs& 2 (rs
I
At

I m&

(34)
x(mlA s. rlrs&

=(rslA . rtA .IN) —P (rslA'lm)

where the inverse commutant is de6ned recursively by

LH,A,7=A .~r. (31b)

=Z'(~IA'lk&(klA-. I~)

(~IAtlk&(klA I~&=S„. (32c)
( )

This proves (3'la).
Again we may give several, formally different, ex-

pressions for S by using the fact that

('+
I
A bA +b I

r—s& = (—rs I
A'A .I rs& . (33a)

To prove (31a) we first establish by induction that

(Eb—E„)'(klA .Is&=(klAls). (32a)

According to (30c), (32a) is true for a=1. We assume
it true for a. For a+1 we have

IHA . 7=A
(Eb—E„)(klA . ill)=(kfA .Irs),

(Eb—E„)+i(klA ill)=(Eb —E„) (klA lg& (32b)
=(klA fl),

which establishes (32a). Inserting a complete set of
states in (tbl AtA,

I rs& yields

(rsfAtA .In& P(N I—A'fm&(mlA .In&

x(mlA .. rl~&.

The inverse commutants A „defined by (31b), are
not unique, as any constant of motion, which commutes
with the Hamiltonian, may be added to A, . Since a
constant of motion has zero-valued matrix elements
between states of diferent energy, this nonuniqueness
does not affect the final result.

If (m I
A

I
e& is nonzero, where m is a state with energy

E„, (32a) shows that (mlA .IN) diverges. Thus, the
right-hand side of (34) is the difference of two infinite
quantities, and care must be exercised in an evaluation.
If (mlAlrs) vanishes, then (mlA .IN) can be finite,
and the subtracted sums on the right-hand side of (34)
vanish.

Although we have succeeded in giving a closed form
for S„,expressions (34), these are rarely of practical
value since in general one cannot calculate the inverse
commutants A, . For the particularly simple case of a
harmonic osci)lator, A can be obtained when A=x.
However the sum S can just as easily be calculated.
directly in that case, because of the simple nature of
the matrix elements of x.'

' Special cases of our formula (52c) have been derived by A.
Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233, 70
(1956). C. Schwartz /Ann. Phys. (N. Y.) 6, 156 (1959)g applied
the results of Dalgarno and Lewis to obtain approximate results
for sums of the kind discussed in part IV of the present paper.


