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Infinite-Order Perturbation Theory for Finite Systems
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A perturbation theory is described which leads to two alternative methods for calculating the eigenvalues
and normalized eigenstates of a perturbed Hamiltonian, the results being given to all orders in the perturba-
tion. The expansions obtained are formulated in terms of two sets of partial sums which have simple, easily
characterized forms, and they combine some of the advantages of both the Rayleigh-Schrodinger and Bril-
louin-Wigner perturbation methods while avoiding some of the diQiculties of each. In particular, one form
of the perturbation expansions given here will in most cases of interest have a larger radius of convergence
than the Rayleigh-Schrodinger series. As is usual for in6nite-order treatments, the explicit form of the final
result applies only to nondegenerate levels, However, some of the intermediate relations obtained in the
derivation are of general validity. Since certain classes of unlinked diagrams appear in the expansions, the
method described here is not suitable for application to systems containing a large number of particles.

and Brillouin-Wigner (B-W) perturbation methods, and
by so doing manage to retain some of the advantages
of both these techniques while avoiding some of the
disadvantages of each. This form for the perturbation
expansions seems to be rather advantageous in a number
of problems involving systems with a 6nite number of
particles, but is not—at least in its present form —well
adapted for application to infinite systems.

The main advantages of the perturbation method
considered here (aside from the simplicity of its deriva-
tion) are the following: (1) It automatically yields
normalized eigenstates; (2) it gives alternative methods
for calculating the state vectors and the energy; (3) it
expresses all quantities of interest in terms of two sets
of partial sums which have very simple, easily char-
acterized forms; (4) when the perturbation V is a
bounded operator, it yields perturbation expansions
which generally have a larger radius of convergence
than either the Rayleigh-Schrodinger or linked cluster
series.

In its approach the development in this paper is
most closely related to the work of Van Hove' and
Hugenholtz, 7 though it may take more than a cursory
glance at Refs. 1 and 7 to make this fact apparent; in
particular, the procedure followed here is equivalent to
use of the resolvent operator. But this fact is of no
importance in the derivation, and the resolvent operator
is not referred to by name again.

In the next section we shall derive the perturbation
expansions proper. Section III is then devoted to a
discussion of the characteristic features of these ex-
pansions and of their use in actual calculations. In
order to illustrate the properties discussed, the theory is
applied to a simple soluble example in Sec. IV and
compared with a linked-cluster-expansion treatment of
the same example.

I. INTRODUCTION

~ "HE problem of time-independent perturbation
theory is usually stated in approximately the

following form: given a Hamiltonian

consisting of the sum of a part Ho whose eigenvalue
problem can be solved and a part V which may be (but
is not always) assumed to be small, find an expression
for the eigenvalues and eigenstates of H in terms of
those of Ho and of the matrix elements of V in the
eigenstates of Ho. The solution to this problem may be
obtained either by some method equivalent to use of
the resolvent operator' ' or by means of the adiabatic
hypothesis' ' (and possibly by some other methods'),
and the form of the answer is highly nonunique. As a
result, a sizeable number of treatments of the subject
have appeared in recent years emphasizing one or
another of the facets of the problem. Some of these
have considered general aspects of the derivation of
perturbation theories'; others have been interested in
the formulation of a perturbation expansion which
would be well adapted to treating some particular class
of problems, such as studies in quantum statistical
mechanics or many-particle systems' '; and still others
have done both of these. ' The present paper must be
said to belong in the second of these categories. It
presents a set of perturbation expansions for a non-

degenerate level which in effect steer a course midway
between those of the usual Rayleigh-Schrodinger (R-S)
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' K. A. Brueckner and C. A. Levinson, Phys. Rev, 97, 1344
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Per-Olov Lowdin, ]. Math. Phys. 3, 969 (1962); 3,
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II. DEMVATION OF THE PERTURBATION
EXPANSIONS

In the following discussion we shall denote the nor-
mahzed eigenstates of the Hamiltonian (1) by jm) and
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those of Bo by lm)p. The labels of these two sets of variables of integration to
states will be chosen so that if

and
IIlm)=E lm)

$2= t2 —"1p

py= ty —ty
then E ~E ' as the interaction is "turned off,"in the
usual sense. The basic problem is then the calculation
of the energy diGerences

bE =Em —EmP

and transformation coeKcients p(n
I
m) for nondegenerate

levels lm)p in those systems for which a perturbation
treatment is valid. (We shall not investigate the condi-
tions under which the perturbation expansion is actually
justified. ) The approach to the problem used here de-
pends on the fact that the quantities p(ptl e 'H'lm)p, for
all m and e, contain all the information concerning the
system —and therefore, in particular, all the information
needed in constructing a perturbation theory.

Consider the expression

3'u+&= t

one may perform the integrations and transform (6)
to the form'

p S SS p V„ 00

+ +EX" 2
jV—g„(g—g„p)(g—g o) ~=s pi op—i

Vnq„pUq, pq„2 Vg2qyUqym
X . (7)

(g Q p)(Q jV o). (Q Q p)(Q g o)

This result may be put in a simpler form. Suppose
first that rt= m, and define D & (D for "diagonal" ) as

Dm'= Vmm)

e'H' p(ptle ' 'lm)pdt& ImE)0. Vmq& y Uq& j q& 2
'

Uq2q~ Uqym
(3)

(g—g )(g—g ) ~ ~ ~ (g—g )
This integral defines an analytic function of the com-
plex energy E in the upper half-plane, and this function
can be analytically continued to the lower half-plane
and to the points of the real axis which do not belong
to the spectrum of B; this analytic continuation will

actually be carried out in various expressions later
without comment. By introducing the identity operator

I=Ps lk)(k I

into the matrix element in the integral one sees that,
on one hand, (3) is equal to

o(pslk)(k lm)o

E—Eg

P) 2 (g)

where the prime on a summation means that the term
q;=m is omitted. We next define D in terms of the
D ~as

D„=QD„". —
@=1

Note that then (1/E E')+(D /(E —E—')') contains
all the terms in the sum in (7) in which

I m)p is not an
intermediate state. Now consider the terms in (7) con-
taining lm)p as an intermediate state exactly r times,
r & 1; it is a straightforward matter to verify that these
can be written as

On the other hand, we can use the standard expansion

e pHt e—~HptII(—0t)— y r+i D r+r

(&/&—&-')I 2 I

= (&/& —&-')
I(») (.= z z.') —kz —z.o)

U(0, t) =1++(—i)~ dt„ From this result one concludes that (for ps =m) (7) can
be written in the form

V (t) —AH p p Ve iH pt-
to write (3) in the form

p 6 82 p

+P ( i)"+' dt dt—~Ef
dt1e'~"

(Sc) E—E o Dj '=—8 Eo——V—
Vmq„ l

- Vq~m
~ («)

x,(~l v(t,)" v(t, ) lm)„(6) Now consider the value of (7) for the case num, and

where E =E—E„.By introducing sums over inter- 9 I.or notationa& convenience we sha]] denote the matrix eIe-
mediate states in the various terms and changing the ments of V in the eigenststes of Hp by V: V =—p(n(V(rip)o.
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define the quantities (X for "nondiagonal")

X '=(V /E —E '),

~&Qy -1~Op-1 gy-2 VC291 @ltd

Ql QB 1(E-—En') (E—Epy, p) (E—Ep, ')

carried out. In terms of the operation

8 ~ ~ ~

e~ dE 0—E=E

the result can be written in the form"

+em= p +nm" ~

y=l

p)2, o(mlm)(mlm)o=1+a'D Pa'(D„)s+ (18)

p(m l m)(m l m) ppE = it'D„+ it'(D„)'+ cP (D„)
+ " (19)

By the same sort of considerations as before one may
show that the terms in (7) containing

l m)p as an inter-
mediate state r times are (X„ /E E')(D /—E—E P)".

This result and that obtained for the case e=m show
that (7) can be written as"

E~

o(Ilk)(him)o

E—EI,

E—E'—D
(13)

tsar

m. (14)
E—E'—D

Note that thus far the discussion has been valid for
completely general indices m and m, including those
corresponding to degenerate levels, with the sole re-
strictions being those generated by the nature of
perturbation theory itself—i.e., the requirement that
the various series considered actually converge. There-
fore Eqs. (13) and (14) hold with only this restriction.
Now let us assume in addition that the particular index
m being considered corresponds to a nondegenerate
eigenvalue E; and let C be a positively directed
circle in the complex energy plane which encloses E,
but no other eigenvalues of H. Then Eqs. (13) and (14)
show that

p(ttlm)(mlm)p ——clotV. +f)'[X„~]
+8'[lV„„(D )']+ . . (20)

The ratio of Eqs. (16) and (15) [or (19) and (18)]
yields the energy correction 8E immediately. In order
to determine the transformation coef6cients from the
unperturbed to the perturbed eigenstates it is necessary
to specify the phase of p(m l m), which up to this point
has been arbitrary. It is convenient and customary to
take this phase to be zero, and once that choice has
been made one obtains p(mlm) as the square root of
(15) [or (18)]. p(ttlm) is then found by dividing (17)
[or (20)] by p(m lm). It is perhaps worthwhile to note
again that the state lm), now given explicitly as lm)

l
rt)p p(n

l m), is norma1ized. "

III. DISCUSSION OF THE PERTURBATION
EXPANSIONS

Equations (15)—(20) are the relations on which per-
turbation calculations may be based. Since these ex-
pressions are all formulated in terms of the functions
D and g„, it is advantageous to examine the nature
of these latter quantities before considering the per-
turbation expansions proper. One sees from the de6ni-
tion in Eqs. (8) and (9) that D can be written as

p(mlm)(mlm)p=, (15)
2xi c E—E'—D

(21)

where S~ is the set of Pth-order diagrams beginning and
ending at lm)p in which all intermediate states are
physical and different from

l m)p. Note that the right-
hand side of (21) is somewhat analogous to the linked-
cluster expression for 5E . The differences are that D
is obtained by summing over diagrams which may be
unlinked [e.g., for two-body interactions in a ferrnion
system diagrams like those shown in Fig. 1(a), but not
those in Fig. 1(b), can occur] but which are states of

(E E o)dE
(16)

2m.i g~ E—E~'—Dm
o(mlm)(mIm)p5E =

X„dE
o(ts l m)(ml m)o —— . (17)

2~i cmE—Em' —Dm

If in addition we assume (as is very frequently done)
that E ' is also a nondegenerate eigenvalue of IIO, and
that C may be chosen so as to enclose both E and
E but no other eigenvalues of Ho or H, then the inte-
grations on the right in Eqs. (15)—(17) can be explicitly

» This result is obtained at once by expanding the denominators
in each of the integrals and noting that, under the stated hy-
potheses, D~ and E„are regular inside |" .

& Van Hove has obtained by a lengthier method an expression
for the exact eigenstates which is closely related to that obtained
from Eqs. (18) and (20); see Refs. 1 and also L. Van Hove,
Lecture Notes, University of Washington, 1958 (unpublished).
However, the remaining equations —and particularly the expres-
sion for the energy correction obtained from Eqs. (15) and (16) or
(18) and (19)—have apparently not been stated before.

'P The expressions for (3) given by the right-hand sides of (13)
and (14) seem to have been given erst by L. Van Hove, Refs. 1.
However, he does not appear to have written down the left hand-
sides of these equations. Some discussion of the derivation of the
expressions on the right in (13) and (14), together with an applica-
tion, is given by S. Teitler, ].Math. Phys. 4, 1119 (1963).
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(0)

(b)

FIG. 1. (a) An unlinked diagram of the type which can occur
in the summation (21). (b) An unlinked diagram which is excluded
from the sum (21) by the requirement that all intermediate states
diGer from the initial state.

the physical system, while bE& is obtained by summing
over all linked diagrams regardless of whether or not
these are exclusion principle violating or contain more
internal particle lines than the number of particles in
the system. In addition, D contains the complex vari-
able E, instead of the E ' appearing in 6E . In the same
way one can see that

where T~ is the set of pth order diagrams beginning at
~m)() and ending at ~)z)() in which all intermediate
states are physical and different from ~m)(). This ex-

pression differs from the corresponding linked cluster
expansion for the nonnormalized transformation coeffi-
cient (()()z~m)))vtv in that, once again, some unlinked

diagrams but no nonphysical diagrams are contained in
the sets T„, and E appears in place of E '. The appear-
ance of the contributions of unlinked diagrams makes
the perturbation theory in the form given by Eqs.
(15)—(20) inappropriate for application to infinite

systems.
However, in the case of finite systems the incon-

venience occasioned by the appearance of unlinked
diagrams can be more than offset by the fact that
contributions due to nonphysical intermediate states
need not be considered. In the first place, it can be the
case that the number of exclusion-principle-violating
diagrams one would have to sum in the linked cluster
expansion is as great as or greater than the number of
unlink. ed diagrams appearing in the series derived here. "

'3It must be emphasized that there is nothing incorrect or
questionable about the nonphysical diagrams which appear in the
linked-cluster expansions. The point is simply that if these dia-
grams can be ignored then there are fewer terms to sum.

()jV (&) =el()D (&)(1+c))D (s)] (23)

~4 It is impossible to make statements about the convergence of
the perturbation series for an unbounded U without considering
the nature of U in detail. One might find it reasonable to suppose
that a perturbation series which had superior convergence prop-
erties for bounded V would in most cases have superior con-
vergence properties for unbounded U as well; but this assumption
would be pure conjecture."A. Katz, Nucl. Phys. 20& 663 (1960)."T.Kato has proved [Progr. Theoret. Phys. (Kyoto) 4, 514
(1949)j that the Rayleigh-Schrodinger expansion converges for
(~V~~ &d/2; and this is the strongest possible result in terms of
the norm of U, since the problem considered in Sec. IV is an
example of a situation where the Rayleigh-Schrodinger expansion
diverges for

~~
V~~)d/2. For finite systems the convergence prop-

erties of the Rayleigh-Schrodinger and linked-cluster expansions
are the same.

"Note that one must use the integral relations (15)—(17) in
order to take advantage of the superior convergence properties of
the series for D and E . The convergence properties of Eqs.
(18)-(20) are similar to those of the Rayleigh-Schrodinger
expansion.

A rather extreme example of a situation of this sort will

be provided by the simple problem considered in Sec.
IV. A much more important consideration, however, is
the fact that in the case where V is a bounded operator, '4

it is precisely the exclusio)z pri-)zcip/e r)iol-atAzg diagrams
which limit the radius of convergence of the linked-
cluster expansion. " In such a case the radius of con-
vergence of the series (21) and (22) is generally greater
than that of the linked-cluster series, a feature which
might be of importance in some applications. In fact,
for E in the vicinity of E ' one sees immediately that
the radius of convergence of (21) and (22) is

~~ V~~ =d,
where

~~ V~~ is the opera, tor norm of V and d is the dis-
tance from E ' to the nearest point in the remainder
of the spectrum of Bo. From the manner in which D
and 1V„appear in Eqs. (15)—(17) it is then clear that
in most cases the radius of convergence of these expan-
sions will be considerably larger than the best value, "
~~V~~= (d/2), which can be proved for the Rayleigh-
Schrodinger expansion. " Finally, it might be worth
pointing out that the D and E are probably the
simplest quantities expressed in terms of the V„, from
which a perturbation expansion can conveniently be
constructed.

Now that the functions D and X„have been char-
acterized more fully, let us consider their roles in the
perturbation formulas obtained in Sec. II. The seem-

ingly most explicit of the relations given there are
Eqs. (18)—(20); these provide well-defined expressions
for all the transformation coefficients and energy shifts
in terms of certain series and ratios of series, and prob-
ably constitute the most convenient starting points in
practical calculations where the series converge and one
is interested in an accuracy corresponding to the reten-
tion of terms of only the first few orders in the perturba-
tion expansion. Suppose, for instance, that one wishes
to calculate the energy correction through fifth-order
terms. It is only necessary to make V vanish (by
replacing E ' by E '+ V everywhere) in order to be
able to write, from Eqs. (18) and (19),
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where the superscripts in parentheses indicate the maxi-
mum order in the perturbation through which the
superscripted quantity is correct. (This expression
agrees with the Rayleigh-Schrodinger expansion through
fifth-order terms, but in addition contains some higher-
order contributions. ) O'D (3) may be evaluated either

by differentiating the defining equation for D and
substituting values directly into the resulting expres-
sion, or in appropriate situations —by calculating D ~3'

not only at E ' but also at E '~6 and numerically
differentiating. Similarly one sees that (still with
V =0)

o(e
~
m) "'= ()'s~~"'+-'&'x

+BoD (')()'1V (') . (24)

(b)

FIG. 2. The two types
of vertices which can oc-
cur in the one-particle,
two-level system.

Calculation to higher orders than those just con-
sidered by utilization of Eqs. (18)—(20) is entirely
feasible in principle. However, in practice it would

quickly become an unpleasant task because of the
necessity for evaluating higher-order derivatives of the
D and Ã„. In situations where a greater accuracy or
la, rger radius of convergence is desired (and perhaps
even in some other cases) it is therefore convenient to
use a different approach which eliminates the necessity
for knowing the derivatives of D and E„and sub-

stitutes for it the requirement of knowing these func-
tions for several values of E. After a preliminary
calculation by means of Eq. (23) (or perhaps a lower-

order expression) to determine an approximate value
for J", one can select an appropriate curve C in the
complex energy plane and numerically perform the
integrations in Eqs. (15)—(17). For many problems this
procedure can be carried out accurately and rapidly on

a high-speed computer, so the technique suggested is of
more than academic interest.

All of the calculational methods described here make
use of the fact that Eqs. (15)—(20) express the perturba-
tion expansions entirely in terms of the partial sums

D and E„ for which the explicit general form is

easily given. The price one must pay for using only D
and Ã„has been seen to be the necessity for knowing

these functions for a finite set of values of the energy E,
and not just for one. This is not in general a disad-

vantage, for it essentially amounts to a matter of trans-

ferring part of the calculational process from physicist
to computer.

It is worth noting that the perturbation expansions
given here share some features of both the Rayleigh-
Schrodinger and Brillouin-Wigner expansions but avoid
some of the difficulties of each. In particular, the series D
and E„have the same simple structure as certain quan-
tities appearing in the B-W method, which is a simpler
structure than that encountered in the R-S method;
but it is not necessary here, as it is in the ordinary 8-W
procedure, to be able to evaluate these series at E
(the exact energy eigenvalue of the total Hamiltonian).
Instead one may use the series (18)—(20), where every-

thing is evaluated at E 0, or the integrals (15)—(17),
where the only requirement is that C contain the one
eigenvalue E of II in its interior. This last requirement
is considerably less demanding than that of knowing E
itself. Finally, it should be observed that the fact that
the energy shifts and transformation coefficients must
be calculated as ratios of the series (18)—(20) allows

one to understand somewhat better the relatively corn-

plex structure of the Rayleigh-Schrodinger expansions.

IV. APPLICATION TO A SIMPLE EXAMPLE

To illustrate the matters which have been discussed,
let us consider the (exactly soluble) problem of finding
the ground eigenstate and eigenvalue for a simple two-
level system described by the Hamiltonian matrix"

H= i= i+ )=HO+V. (25)
e E2') 0 E2') e 0)

In order to facilitate a subsequent comparison with the
linked-cluster expansion' it is convenient to take the
eigenstate to be nonnormalized, as in that theory; the
ground eigenvalue and "correctly nonnormalized" eigen-
state of (27) may be seen to be

Eg E)0—((0/2)(L1+ (2E/M)2j )'—1}

(—1)~(2e) !/ eq'~—E 0 (26)
e!(e+1)!Karl

1
(27)

k —((o/2e) ( t 1+(2E/(0)']')' —1)}
where &=—E2' —E1'&0.

Now let us obtain these results from the perturbation
theory which has been developed in the preceding sec-
tions. Since in this case

V12 ~21 &p V11 V22

' An equivalent problem is treated in detail by Katz (Ref. 15).



PER TURBATION THEOR Y FOR F I N I TE SYSTEM S 1219

FrG. 3. The second-order contribution to
5E in the linked-cluster expansion.

one sees that

Plt Jl g

Fie. 5. Higher-
order contributions
to the energy in the
linked-cluster expan-
sion.

2
,
2X---

l
I

---X

Di ——(oo/(p p o) )
&»= (&/(& —&o') ) i (29)

(—1)&(2~) t

o(2 I 1)(1I 1)o————g — . (32)
or &=o (tt!)o

One may easily check that the ratio of (31) to (30)
agrees with (26), and the ratio of (32) to (30) (this
yields the nontrivial transformation coefficient for the
nonnormalized state vector) agrees with the lower
component of (27).

It should be observed that though this is a trivial
problem neither the Rayleigh-Schrodinger nor the
linked-cluster expansions yield solutions with only a
trivial amount of effort. I et us consider briefly the
application of the linked-cluster expansion techniques
to this system, which we shall think of as being a
one-fermion system. Because of the form of the potential
only the two types of vertices shown in Fig. 2 can occur.
The first-order contribution to I1)titbit is given by the

no contributions to either quantity appear above second
order. It is then a trivial matter to verify that the inte-
grals (15)—(17) yield the correct values. A somewhat
less trivial fact is that the series (18)—(20) can be
written out explicitly, and after a negligible amount of
computation are found to be

(—1)~(2~—1) t

o(1 I 1)(1 I
1)o——1++ (30)

+=i I t(g —1) .f

diagram of Fig. 2(a); it was noted earlier that this is
the fo/al contribution to X2~. The second-order con-
tribution to 8E~ is shown in Fig. 3, and this in turn is
the total contribution to Dj. The higher-order con-
tributions to I1)~~ are given in Fig. 4, and the higher-
order contributions to 8Ej correspond to the diagrams
of Fig. 5. Note that all the diagrams in these two last
series are exclusion-principle violating, and that in each
case there are an infinite number of them. A comparison
of the one-term expressions for D~ and %~i with the
infinite series above gives one some appreciation (though
this is an extreme example) for the amount of simplifica-
tion which can sometimes occur when nonphysical
intermediate states can be ignored. The example also
shows (again, in an extreme case) the difference in the
radius of convergence of the series D, E„and the
linked-cluster expansions for the energy and state vec-
tor; D and E„have infinite "radii of convergence"
(being one-term series), while it is obvious from Eqs.
(26) and (27) that, precisely because of the exclusion-
principle-violating terms, the linked-cluster expansions
can only converge for o(ot/2.

It should be remarked that by dint of ingenuity and
considerable effort the form of the general term in the
linked-cluster expansions for this problem can be ob-
tained"; five pages of concentrated calculation are
required, as compared to the three or four lines needed
to obtain Eqs. (30)—(32) by means of the methods
developed here. This degree of disparity between the
two methods in the amount of computational labor re-
quired is certainly not general. However, the example
indicates that there are certain classes of physical
problems (not all as simple as this one) which might be
more advantageously treated by the method developed
here than by the standard techniques.

FIG. 4. Higher-
order contributions
to the state vector in
the linked-cluster ex-
pansion.
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