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Two-Photon Absorption and Coherence*

So CARUsoTTo~ Ge FQRNAcA) AND E e PQLAcco

Istituto di Fisica dell'Universita, Pisa, Italy
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We study the probabilities for two-photon absorption processes induced by both coherent and thermal
light when acting on an atomic system. Calculations are performed with quantum electrodynamics, and we
find results similar to those obtained with semiclassical methods; that is, the two-photon absorption prob-
ability depends on the statistical properties of the light used. This probability assumes its maximum value for
coherent light.

I. INTRODUCTION

HE purpose of this work is to analyze whether and
how the two-photon transition probability in-

duced by a packet of light acting on an atomic system
depends on the statistical properties of this packet, and
to calculate its value (a) for a coherent beam and (b)
for thermal light. In previous work Iannuzzi and
Polacco' had predicted that the two-photon absorption
probability, which can be observed when an atomic sys-
tem is made to interact with a laser beam, would depend
strongly on the structure of the beam; more exactly,
that the probability obtainable with a normal laser
would be n times smaller than the one which can be ob-
tained with a Q-switched laser at the same energy,
where e is the number of spikes present in the beam.

The results of those calculations, which were obtained
in a semiclassical way, have been subsequently criticized
by Guccione and Van Kranendonk' who claim that the
two-photon transition probability does not depend on
the statistical properties of the light employed. Later
Lambropoulos, Kikuchi, and Osborn' came to the con-
clusion that the transition probability for coherent light
depends on the phase of the light employed and that the
result, which may be obtained by averaging over the
different phases, is a factor of 2 smaller than the transi-
tion probability obtainable with thermal light. We think
it worth noting that both authors' ' employ only mono-
chromatic light in their considerations, whereas up to
now experiments have been carried out only with pack-
ets of very short duration; moreover, the dependence
of the two-photon transition probability on the phase
of the incident coherent radiation, as deduced by
Lambropoulos et al. ,

' appears to have no direct physical
application. If we introduce4 the concept of poly-
chromatic light into our considerations, it appears that
the phase relation among the different Fourier compo-
nents of the packet, and not the absolute phase, plays
an important role. It is also clear that only in a coherent

~ This research was supported by the Consiglio Nazionale delle
Ricerche, Gruppo di Elettronica Quantistica e Plasmi.' M. Iannnzzi and E. Poiacco, Phys. Rev. 138, A806 (1965);
Phys. Rev. Letters 13, 371 (1964).' R. Guccione and J. Van Kranendonk, Phys. Rev. Letters 14,
583 (1965).' P. Lambropoulos, C. Kikuchi, and R. K. Osborn, Phys. Rev.
144, 1081 (1966).' G. Fornaca, M. Iannuzzi, and E. Polacco, Nuovo Cimento 36,
1230 (1965).

packet will such phase relations cause single compo-
nents of the packet to enhance the two-photon transition
probability, and therefore make the coherent-light prob-
ability remarkably greater than the incoherent-light
probability. As has already been mentioned, we shall
evaluate in the present work the two-photon absorption
probability both for a laser beam and for thermal light,
and we shall carry out the calculations within the frame-
work of quantum electrodynamics.

For the characterization of a coherent packet we shall
make use of a pure coherent polychromatic state and we
shall establish the phase relations among the single
Fourier components. For this packet we have v~hv=1,
where 7& is its duration. In order to analyze the transi-
tion probability caused by thermal light we shall use
blackbody radiation in thermal equilibrium, which can
be represented by a density-operator diagonal in the
occupation numbers, appropriately Altered through a
linear Alter, ' to obtain the same spectrum as that of our
coherent packet. Kith this kind of light an atomic sys-
tem will be illuminated for an interval r with 7&7-„
where 7., is the coherence time dered' by w,hp=1. As
a consequence of this hypothesis we And that the transi-
tion probability for thermal light is proportional, in the
ratio r,/r, to the probability which is obtained with
coherent light of the same energy. We can understand
our result for the dependence of the transition probabil-
ity for thermal light on radiation time, by the following
intuitive argument. Let us consider two packets with
the same total energy, the same frequency spectrum,
and the same cross section, but let us suppose that the
duration of the first packet is vq, and that the duration
of the second is rs, with vs= s r/2. It is clear that under
such a hypothesis, if 8~ and 82 are the amplitudes of
electric fields for the two packets, then (his)=-', (hs')
and therefore the two-photon absorption probability
per unit time induced by the former packet will be a
quarter of the probability induced by the latter (since
this quantity is proportional to the square of radia-
tion intensity). Therefore if we consider the different
durations, it follows that the total transition proba-
bilities 5'~ and 5'2 are such that (P~= 2(P». This argument
does not apply to a coherent packet because establishing

' A linear 61ter is a 61ter that changes the spectral response but
not the statistical properties of radiation.' L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965)„
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II. PROPERTIES OF LASER AND
THERMAL RADIATION

For the matrix density of a laser beam we write
The vector potential =A&+l+ t & may be expressed

in terms of the annihilation and creation operators uk, ,
and ak, ,t for photons of momentum Ak and polarization Q Pk, .(~k,.)dg,
s (s= 1, 2) in the form

t 2vrkc )'t'
A&+&=I

I p k—'t'ek, ,ak..exp[i(k r—ckt)],
(LtLsLs)

+k, s ~k, s =~lc, s O'k, s

2

P({-..})=-
27l

where

Pk, ,(nk, .) = 5'"{vk,, exp(i8) nk—,},,

the radiation width is equivalent to establishing its where I{crk,,})=gk,.lnk, ,), d'a=d(Rea)d(Imn), and
duration. Ink, ,) is a pure coherent state defined by

t 2s.kc q't'
At l=l

I p k 't'ek, ,*ak,,t exp[—i(k r—ckt)j,
(LtLsLsl

and

8"'(u) = b(Ren) 5(Imn) .
where L~, L2, and L3 give the dimensions of the quantiza-
tion volume in the x, y, and z directions of a space-fixed
coordinate system. The a&, , and uA, t obey the commu-
tation relations

[ok... nk „j=[~k,.t; rtk, . 'j=o,
[nk, 0 j &k', 8' g teak, k'tie, s' y

and the ag. .. form a set of complex orthogonal unit vec-
tors with

Without loss of generality we can let vA„, be real. The
e integration in Eq. (1) is necessary in view of our com-
plete ignorance of the phase of the high-frequency field. '
We recall that the square of e~„represents the average
photon number (ek, ,) of the k mode and s polarization.
Thus the density matrix of a laser beam is

«I{»..exp(i&)})({s..em(i&)}I, (2)

pi=-
fn},fmj

A. Laser Radiation

ek, 8 'ek, s' oN, B'q k'sk, s

we consider only the transverse components of the 6eld and if we introduce Fock states it has the form

because the transverse part is the only part leading to 2g

observable effects. d8

In the Glauber P representation, ~ the density operator
p of a 6eld may be written

P({~k..})I {~k,.})({~k,.}I
d'{~k,.}

Xg exp( —s . s)s &k,s+mk, s(tt fm t)
—1/2

Xexp[i(nk .—mk, ,)gjl {ttk,})({mk,}I
. (3)

The Poynting vector' operator at P(r) and t is

Ac' (~tl"'
S(r,t) =— 2 ~ttc k

' ~k
2 LtLsLs kl 81 k& ~k k(Os'

X{ak,, „exp[i(kt r cktt)] ak, ,„t ex—p[—i(k—i ri —ckit) j}
X {ak,,„exp[i(ks r—ckst) j—ak, , „exp[—i(ks r—ck&t)j}, (4)

and so the mean value of this operator for the coherent We suppose now that the field is only formed by plane
beam represented by Eq. (2) is waves which propagate in the z direction and which are

hc' linearly polarized along the x axis with unit vector s.
(S(r,t))=Tr{ptS(r,t)}= Q Q ks

L]L2L3 ~l, sl ~2& sm

X(~1/&2) sky, g
'

k2, 2(+kz, y) (+kk 2)

Xcos[(ki—ks) r—c(ki—ks)t).

& R. Glauber, Phys. Rev, $31, 2766 (1963).

The pure coherent state of the Geld may be written

~ls, s
l~k, )=exi (—2 1~k. I') 2 —I~k, .),

n („l)um(5)
where the Ilk, ,) are Fock states.

A. I.Akhiezer and V. B.Berestetskii, Qguntgm E/ectrodynumzcs
(Interscience Publishers, Inc. , New York, 1965), p. 161.
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We now replace the summation over k by an integral,
according to the usual rule, "

1
dk,

L-„~ 2~

(np) +(—2s./Ls) N(k) .
(6)

In order to have a quasimonochromatic wave with cen-
tral frequency cko, we choose'

X(k)=n '"tn expL —P(k —kp)') (7)

with t much larger than 1/kp, where n is the average
number of photons which are present in the laser beam.
It follows from Eqs. (5a), (6), and (7) that

Hence Eq. (5) becomes

hc
(S(r t))= g (k ki)s'"(» )'"(» )"'

L~L2L3 I 1,I g

)&cosL(ki —kp) (s—ct)]. (5a)

where

f((, ))=II ..I:(1+( ..))(1+1/(,.))"") ', (12)

and (nI. ..) is the average number of photons in the lz, s
mode. The expectation value of the Poynting vector
Lsee Eq. (4)) for the thermal field represented by Eq.
(11) is

Ac
(S(r,t)),=Tr(p, S(r,t)) = - g lr(», ,).

L~L2j3 a, s

We suppose that the thermal radiation passes a linear
filter and that the out-field has a central frequency cko,
is polarized along the x axis, and that it is propagating
in the positive s direction. If the thermal radiation after
the linear filter has the same frequency spectrum as that
of our laser beam, we can use Eqs. (6) and (7), and we
have

(S(t))g=7r 't'hc'tni k expL —P(k —kp)']dk

= hc'nikp, (13)

(S(r,t))t —— ir 'I'l-ndki , dks (kiks)'t'
2LgL2

where
ni=n/LiLsLp

&(exp( ——,'PL(k& —kp)'+(ks kp)

XcosL(ki —ks)(s —ct)), (8)

and after the integration we obtain to a very good
approximation

Ac'
(S(r,t))i= 7r t nl kp exp —-(s—ct)'

)2

Ke see that the quantity l therefore corresponds to the
spatial extension of the packet in the s direction.

The total energy Iz ~ of the laser light per unit area
is expressed by

(S(r,t))(dt= hc '~'n t-

represents the volumetric density of the average photon
number. Thus we may define the spectral intensity of
radiation (i.e., the energy per unit area, time, and wave
number) as in Eq. (10) in the following manner:

Ig(k) =7r "'hc'tnik expL —P(k —kp) ).
III. U-MATRIX CALCULATION

A system of particles in the presence of a radiation
Geld may be described by a Hamiltonian

H=H, +H.+H; ~=Hp+II; ~,

where H„refers to the particles, II„refers to the radia-
tion field, H;„& represents the interaction between the
particles and the field, and H„+H =Hp The nonrela-.
tivistic interaction Harniltonian of a charged particle
with an electromagnetic field is

X k exp[ —P(k —ko)']dk= hcnpkp, (9) H „t=—(e/mc)A py(e'/2mc')A' (15)

where n p n/LiLs repre—s—ents the average photon num-
ber per unit area. Thus we deduce that the total energy
of the laser light per unit area and mave number k is

I&(k) =hc7r 't'nplk expL —t'(k —k )') (10)

B. Thermal Radiation

The density operator p& for thermal light in the Fock
representation is diagonal and has the following form':

p&=Zt ) f({».)) I t». ))(f», ) I

'P O. Von Roos, Phys. Rev. 135, A43 (1964).

where the symbols in this equation have the usual
meaning.

For the purpose of this paper it mill suffice to consider
a single atom interacting with the field and to consider
only electric-dipole contributions to a transition, and so
we neglect the term A' of the interaction Hamiltonian.
We must nom compute the rate at which the two-photon
absorption takes place. For this we introduce the time-
evolution operator of the system U(t&, ti) and the S
operator, which in the Dirac picture" is related to the

"S. Schweber, Relativistic Quantlm Field Theory (Harper R
Brothers, New York, 1964), Secs. 11.C and 11.E.



1210 CARUSOTTO, FORNACA, AND POLACCO 157

time translation U(t2, ti) by the formal expression

g=U(+co, —co).

We recall that the total density matrix p&;, which de-
scribes the 6eld and the atomic system before interac-
tion, is related to the matrix after interaction by

ppf ——Up p, Ut.

Making use of the definition

X; t——exp(iHpt/A)H;„t exp( —iHpt/A),

where H;„& is the Schrodinger operator, we may write
the operator as follows":

U=1+Ui+U2

interaction, the atom and field are uncoupled and conse-
quently one can assume that

pTi= ppipli p (19a)

where p„;= Ii)(2I is the density operator of the atom in
the initial stationary state Ii), and pt, is the density
operator of the Geld which we suppose to be the laser
light described by Eq. (3). So we have.„= z ~({-),{-»I',{-»(',{-)I,

~n~™
where

2n.

g({e),{m))=— d8
2' 0

with

( i

h)

2

'=(—~

dT1 X;.t(T1),

dT2 Xint(T1)~int(T2) ~

&a sn' ™t'

Xg exp( —pp', 2) exp/i(e2, ,—mp, ,)8$.
2, s (gg2', 1m2', I)i/2

pTf =plfppf p (19b)

If we write the density operator pz f after the interaction
as

Thus it is evident that the terms U~ and U2 give con-
tributions to the one-photon and two-photon transitions,
respectively. In order to evaluate the absorption of the
photons by an atomic system we need to introduce in
Eq. (15) only the annihilation operator A&+' evaluated
at ro, the spatial position of the atomic system. Hence
we have

(6 e(2~Ac )'I'
(h) mc(L2L2L2)

X dT exp(iHpT/h)a2, ,

Xexp(ik rp)22, , y exp( —iHpT/h), (17)

e' 2vrhc )
U2(~„~,)=— IP P (k,k,)-''

h c'm' L1L2L2]» ~1 22 tt

where p~f is the density operator of the field and p„f the
density operator of the atomic system, then the transi-
tion probability of the atom to state

I f& is given by
Tr{prfI f)(fI). The Eq. (19b) allows us to alarm that"

Recalling our assumptions with regard to the field, we
need consider only k, s modes with k, and k„null, and
polarization vector a, equal to e in all following calcu-
lations. We introduce the following equalities which
Inay be readily derived:

2e ( 2vrhc
Ihi&=(flail {~ ) i&=

hmc(L2L2L2

Xp k '~'m2+"2(fIe pIi& dt

xexp[i(E„T—E„,—hck)~/h)I {m„—8,2)), (21a)

dT1 dT2 exp(2HpT2/h)G», tt

Xexp(iki rp) 2»'.. p expfiHp(T2 —Ti)/hfu22, „
Xexp(ik2 rp) 222, „p exp( iHpT2/h—). (18)

For sake of simplicity, without lack of generality, we
can suppose the atomic system to be at the origin of our
coordinate system, i.e., rp=0.

e2 2vrhc )
I
h2) =(fl~2I {~.),2&= — —

I Z (kik2)-"'
h'c'm' L,L2L,I», 22

x~»'"~22"2(fI(e y)R(kt)(e y) Ii) dt

Xexp{i/E„r E„; hc(ki+k2) j—t/h)—

XI{~,—&,»—&.22)&, (21b)
IV. ONE- AND TWO-PHOTON ABSORPTION

WITH A LASER PACKET
where

R(k) =(Hp E„, Ack) '——
«t It& and If& be two stationary states o the atomic A M h "peg"j'Np Qgg"ijqlp (D"nod ctp parts f962)

system having the energies E~; and E~~. Before the Vol. I, pp. 235 and 281.
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g(4p —4p4)dg= 1.

So, if hen«Ro, we get for the probability of two-photon
absorption

P. (2)
4x2e4

(2')"'—
64pg (24pp —4p,)Ir43

Ig2m4c' kp'

xl(flT(kp)li&l'. (26)

V. ONE- AND TWO-PHOTON ABSORPTION
WITH THERMAL LIGHT

If we consider the radiation field as consisting of
thermal radiation then the density operator p&; of the
atom and the held before interaction is diagonal and its
expression is given by

pr'= p4li&('I =XI-) f({33k})li, {43k})(i,{ek}I,
where f({33k})is defined in Eq. (12). We suppose that
the atom interacts with the 6eld in the time interval
(0—r) which is large comps, red to characteristic times
of atomic transitions and to the coherence time of radia-
tion. According to this assumption, Eqs. (22) and (24)
will still be valid, provided that we replace g~„~ ~

Xg({n},{m})by+( ) f({e„})8() ( ). This substitution
is due to the different structure of the density operator
of the field.

Moreover, we must modify the limits of integration
accordingly in order to take into account that the evolu-
tion of the density operator resulting from the interac-
tion can be obtained by applying the time-translation
operator instead of the S operator. Therefore, following

we get, to a good approximation,

164rpe4 t 1
I'; f"'=

I I
Iz4' expl —2P(kp —kt, /2)'7

h'm4c' kkf;k p/

X l(fl T(kr;/2) li&l', (2&)

where Iz 4 is expressed by Eq. (9).
Equation (25) gives us the transition probability

when the absorption linewidth Ro is much less than the
width 64p=c/t of the incident radiation. On the other
hand, if the upper level belongs to a band we have
her«boer and we must introduce the line-shape function
g(4p —pp, ) which we suppose normalized so that

Eq. (22), the one-photon transition probability is given

by the expression

2x'Ac e
Tr{pTf I f&(f I }= Z 2 f({33k})(k~k3)

LgL2L3 A c m I 1 » (&}

7 7

x(~k ~k,)'"I (fl e yli&l' dt's dt3

XexP I i(E„r—E„;—hck q) tq/h j(E~—r E„;—hck3)—t3/h7

x({ .—&. -,}I{ .—s, ,}&. (27)

Ke recall the equality

Zi. l f({ .})(.;..)"({..-~...}l{.-~...})
=(~„)s„„.

If we go into the continuum as in Eq. (6), we can write
Eq. (27) in the following form:

2m. ltc e'
T {"lf)(fl }= — k-'~(k)IgL2L3 52m2c2

dt exp/i(E„r E„hck—)t/h7—

x l(fl'pli&l'dk.
If we now introduce the radiation structure expressed
by Eq. (7), we obtain that the probability of one-photon
absorption for thermal light I'; f(') is given by

e2

I 4(kr')1(fl 'pli&I', (2g)
A2m2c4 kf,'

where

I,4(k) = I4(k) dt

is the energy irradiated in time v., which can be readily
calculated from Eq. (14).

jn Eq. (28) we have made use of the approxima, tion
generally employed in perturbation problems, " that

7 2 27r7.
dt expl i(E~f—E„,—hck) t/h7 = 8(kf, —k) .

By analogy with Eq. (24) the two-photon transition
probability may be written

e' )3t' 27rhC )3
Tr{p~fl f&(fl }=

I I I I & & f({&k})(k~kpkpk4) "3(~k,~kp~kp~k4)"'
(hm c f Q ]I3I3) k4, kp, k3k4

f RJ

7 7

x (f I T(k&)
I i)(i I

Tt(kp)
I f) dh dt3 exp{i(E3f E„; hc(k&+kp) 7t /—h —4iLE—yf E„;—hc(k3+k4) 7t3/h}

0 0

X({~.—~.k —~.k }I{~.—~.k, —~.k }). (29)

"A. Messiah, Mecanigue Quuntigue (Dunod Cie., Paris, 1964), Vol. II, pp. 627 and 628.
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Equation (31)gives us the transition probability when
Ro&(her, i.e., when the absorption linewidth is much
smaller than the width of the incident radiation. On the
other hand, if h~&(Ro, we can easily perform calcula-
tions as in the preceding paragraph.

VI. DISCUSSION AND CONCLUSION

An examination of Eqs. (23) and (28) shows that the
one-photon absorption does not depend on the statisti-
cal properties of the light employed. In fact, such
formulas, which give the transition probability for ther-
mal light and the transition probability for a coherent
beam, respectively, are the same. If we compare Eq. (25)
with Eq. (31),we notice that they differ from each other
by the factor

a=4I —
I

t
k2) cr

Introducing the coherence time, this factor may be
written in another form

t 2q'I' r,
(32)

If we go into the continuum after taking account of the
following relation

p(„& f((N„))(e&„N&„mp,eg„)"'
X((N.—lI,p,—&,p,) I (N.—t&,p,—t&.p, ))

=(~~,)(~p,)(4,,r„4,, p,+4„p.4, , p,), (30)

then Eq. (29) becomes

s'r ( e' ) ' 2s'kc
»(t »I f)(fl) =

c Ehm'c') LgL,L,)
X (kykp) 'cV(kg)E(kp) &(kt g

—kg —k2)

x I(fl 2'(k~)+ 2'(k2) li) I'

If now we introduce Eq. (7) for the radiation, we have
for the two-photon absorption probability with thermal
light I'; ll')

f'll) '~ 1 16''e'( 1
~*-f"&=4I —

I

A-
(2) cr k'm'c'Ekt kp)

Xexpl —2P(kp —kf;/2) ]I (f I T(kt;/2) I i)I, (31)
where

Such an expression shows clearly that the transition
probability for two-photon absorption really depends
on the statistical properties of the light employed, which
is expressed, in this case, by T,.

It is easy to see that these considerations are still
valid in the two-photon transition E1E2 and E1M1'
and so on. So for a laser beam formed by m spikes we
have r,/v=1/N. The dependence of the transition
probability, for these interactions, on the statistical
properties of light can be made more evident by intro-
ducing the second-order correlation function, defined as
follows':

G&' '&(rg, tg, r2, tp) =Tr(pA~ &(rg, t&)A(+&(r2, tp)),

where p is the density operator of the field. From Kq.
(12) and with the help of our assumptions on the ffeld

we have

t' 2~ac )G" "(r,t&, r,4) =
I IP k '(eq)expl ick(tp —tq)).
(L&LpLp) P

We observe that in our case the function |"(")is inde-

pendent of r.
Introducing this result into Eq. (29), after considering

Eq. (30), and supposing that I(flT(k)li)l' is nearly
constant for the modes in which the occupation number
is evaluated, we may write

2( eP )P 7 T

I I (fl I'(4~/2) li) I

'
kP kmPcP)

Xexpl ick j'(t$ t2)) I

G&' '&(t&,tp) I
'.

Once more the relation between E; f (') and the correla-
tion function G("&(t~,tp) shows the validity of our
aKrmations. We notice that if in Eq. (32) r,=r we

have 8=1, and therefore we obtain again the results of
Eq. (25).

We have supposed in all our calculations that the

f(fe„))represent a set of statistically independent Bose-
Einstein distributions. This concept seems to play no
role in the transition probability, since it is appears only
in Eq. (30). On the contrary, the statistical indepen-
dence of the photons or of the photon groups is auto-
matically taken care of in the transition probability by
supposing that the operator density is diagonal in the
Pock states and that v, &v.


