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We study the probabilities for two-photon absorption processes induced by both coherent and thermal
light when acting on an atomic system. Calculations are performed with quantum electrodynamics, and we
find results similar to those obtained with semiclassical methods; that is, the two-photon absorption prob-
ability depends on the statistical properties of the light used. This probability assumes its maximum value for

coherent light.

I. INTRODUCTION

HE purpose of this work is to analyze whether and
how the two-photon transition probability in-
duced by a packet of light acting on an atomic system
depends on the statistical properties of this packet, and
to calculate its value (a) for a coherent beam and (b)
for thermal light. In previous work Iannuzzi and
Polacco! had predicted that the two-photon absorption
probability, which can be observed when an atomic sys-
tem is made to interact with a laser beam, would depend
strongly on the structure of the beam; more exactly,
that the probability obtainable with a normal laser
would be # times smaller than the one which can be ob-
tained with a Q-switched laser at the same energy,
where % is the number of spikes present in the beam.
The results of those calculations, which were obtained
in a semiclassical way, have been subsequently criticized
by Guccione and Van Kranendonk? who claim that the
two-photon transition probability does not depend on
the statistical properties of the light employed. Later
Lambropoulos, Kikuchi, and Osborn® came to the con-
clusion that the transition probability for coherent light
depends on the phase of the light employed and that the
result, which may be obtained by averaging over the
different phases, is a factor of 2 smaller than the transi-
tion probability obtainable with thermal light. We think
it worth noting that both authors?? employ only mono-
chromatic light in their considerations, whereas up to
now experiments have been carried out only with pack-
ets of very short duration; moreover, the dependence
of the two-photon transition probability on the phase
of the incident coherent radiation, as deduced by
Lambropoulos et al.,® appears to have no direct physical
application. If we introduce? the concept of poly-
chromatic light into our considerations, it appears that
the phase relation among the different Fourier compo-
nents of the packet, and not the absolute phase, plays
an important role. It is also clear that only in a coherent
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packet will such phase relations cause single compo-
nents of the packet to enhance the two-photon transition
probability, and therefore make the coherent-light prob-
ability remarkably greater than the incoherent-light
probability. As has already been mentioned, we shall
evaluate in the present work the two-photon absorption
probability both for a laser beam and for thermal light,
and we shall carry out the calculations within the frame-
work of quantum electrodynamics.

For the characterization of a coherent packet we shall
make use of a pure coherent polychromatic state and we
shall establish the phase relations among the single
Fourier components. For this packet we have r,Av=~1,
where 7, is its duration. In order to analyze the transi-
tion probability caused by thermal light we shall use
blackbody radiation in thermal equilibrium, which can
be represented by a density-operator diagonal in the
occupation numbers, appropriately filtered through a
linear filter,® to obtain the same spectrum as that of our
coherent packet. With this kind of light an atomic sys-
tem will be illuminated for an interval r with r>7,,
where 7. is the coherence time defined® by r,Av=~1. As
a consequence of this hypothesis we find that the transi-
tion probability for thermal light is proportional, in the
ratio 7,/7, to the probability which is obtained with
coherent light of the same energy. We can understand
our result for the dependence of the transition probabil-
ity for thermal light on radiation time, by the following
intuitive argument. Let us consider two packets with
the same total energy, the same frequency spectrum,
and the same cross section, but let us suppose that the
duration of the first packet is 71, and that the duration
of the second is 79, with 79=171/2. It is clear that under
such a hypothesis, if 8; and &, are the amplitudes of
electric fields for the two packets, then (&;2)=2(8,?)
and therefore the two-photon absorption probability
per unit time induced by the former packet will be a
quarter of the probability induced by the latter (since
this quantity is proportional to the square of radia-
tion intensity). Therefore if we consider the different
durations, it follows that the total transition proba-
bilities ®; and ®; are such that ®,=2@®;. This argument
does not apply to a coherent packet because establishing

5 A linear filter is a filter that changes the spectral response but
not the statistical properties of radiation.
s L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965),
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the radiation width is equivalent to establishing its
duration.

II. PROPERTIES OF LASER AND
THERMAL RADIATION

The vector potential A=A+ A may be expressed
in terms of the annihilation and creation operators ax,s
and @z, for photons of momentum 7%k and polarization
s (s=1, 2) in the form )

2mrhe \1/2
A<+>=< > > k12, say,s expli(k-r—cki)],
LiLoLs ks

27he \/? . )
A(—):( > k2% tay, T exp[—i(k-r—ckr)],
L1L2L3 ks

where Ly, Ly, and Ls give the dimensions of the quantiza-
tion volume in the %, y, and z directions of a space-fixed
coordinate system. The a;,; and @' obey the commu-
tation relations

Lak.s; awr,o1="Las,s'; ar,»T1=0,

Lar.s; awr,ort]= 81,185,047
and the ¢, form a set of complex orthogonal unit vec-
tors with
k- &,s= 0;

* —
€,s €k, st = as.s',

we consider only the transverse components of the field
because the transverse part is the only part leading to
observable effects.

A. Laser Radiation

In the Glauber P representation,? the density operator
p of a field may be written

p= /P({ak.s}) [{ar,s}){{ar,s} | @ ar,q}

1
S(,)=—-

hic? wr\ /2
2 2 k(=) eru* ek

L1L2L3 k1,81 ka, s (A7)
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where | {ax,s})=11rs|ars), d%a=dRea)d(Ima), and
|ax,s) is a pure coherent state defined by

(lk‘glak,s>=alc,s|ak,s> .

For the matrix density of a laser beam we write

JT’({ak,s})‘—~i 2WHPk,s(ak,s)déy 1)
2 )y ks
where
Prslon,s) =0 {vr, exp(if) —au,q} , 1)
and

8@ (a)=6(Rea)d(Ima).

Without loss of generality we can let v;,, be real. The
6 integration in Eq. (1) is necessary in view of our com-
plete ignorance of the phase of the high-frequency field.”
We recall that the square of vz, represents the average
photon number (#s,s) of the k mode and s polarization.
Thus the density matrix of a laser beam is

1 2%
b= / 08 {on,0 exp(i®)} ) {on.0 exp(@)}|, (2)

and if we introduce Fock states? it has the form

1 27
p=— db

27 (n}.{m} J g

XH eXP(‘“Yik,sz)vk,a"’”'3+'”’°'3(nk,s!mk,s !)_1/2
k,s

Xexpli(nk,s—mi,) 01| {ne, o} X({me, s} . (3)

The Poynting vector® operator at P(r) and ¢ is

X{akl,st eXP[i(kl'l‘—Cklt)]—dkl,u* eXp['—i(kl'l‘r—Ckﬁ):]}
X{ @y, exp[i(ke-r—ckat) ]— @py,ss exp[—i(ke r—ckat) ]}, (4)

and so the mean value of this operator for the coherent
beam represented by Eq. (2) is

fic?

2 2k

Lol 3 k1,51 ka,s2

X (w1/w2) ey, o &ha,02{Miy, 50) XMy, 00) /2

X COSI:(kl—kz) . l'—C(kl—kz)t] . (5)

(8(r,))=Tr{p:S(r,1)} =

7 R. Glauber, Phys. Rey, 131, 2766 (1963).

We suppose now that the field is only formed by plane
waves which propagate in the z direction and which are
linearly polarized along the x axis with unit vector e.

8 The pure coherent state of the field may be written

ak,sn
|, o) =exp(—% |, |2) 2———|nr.),
n

()12
where the |ny, ) are Fock states.
9 A. L. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics
(Interscience Publishers, Inc., New York, 1965), p. 161.
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Hence Eq. (5) becomes

2

(S(r,0)= 2 (Raka) 2, )12 (mig) 1

1L2L3 k1,ka
Xcos[ (k1—ks)(z—ct)]. (Sa)

We now replace the summation over % by an integral,
according to the usual rule,°

1 1
——Z——>~/dk,
L3 k 2w

(0)
(nx) — 2w/Ly)N (k).

In order to have a quasimonochromatic wave with cen-
tral frequency cko, we choose'®

N(k)=n"12%n exp[—12(k—ko)%], )

with I much larger than 1/k,, where # is the average
number of photons which are present in the laser beam.
It follows from Egs. (5a), (6), and (7) that

fc?
<S(l‘,l)>1=—1—3/2ln/dk1/dk2 (kiko)1/2
20411,

Xexp{— 3P (k1—ko)*+ (ka—ko)*]}
Xcos[ (k1—k2)(z—ct)], (8)
and after the integration we obtain to a very good

approximation

fic? 1
SHn= Z—L_ﬂ-—” ik, epr: —Z—Z(z —ct) 2] .

142

We see that the quantity / therefore corresponds to the
spatial extension of the packet in the z direction.

The total energy Ir; of the laser light per unit area
is expressed by

4o
IT1=/ (S(r,t))ldt= hc1l'_1/2n0l

X / k exp[—B(k—ko)2]dk= henoko, (9)

where no=n/L1L, represents the average photon num-
ber per unit area. Thus we deduce that the total energy
of the laser light per unit area and wave number £ is

Li(k) = ticr2nolk exp[—B(k—Fko)?].  (10)

B. Thermal Radiation

The density operator p, for thermal light in the Fock
representation is diagonal and has the following formS:

pe=2_(n) f({ma,s}) | {m,s} ){{nr,s} | , (11)

100. Von Roos, Phys. Rev. 135, A43 (1964).
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where

F{mn,s}) =TLe, LA+ (e, ) A1/ (ur o)) 171, (12)

and (n,s) is the average number of photons in the k,s
mode. The expectation value of the Poynting vector
[see Eq. (4)] for the thermal field represented by Eq.
(11) is

fic?

(8(r))e=Tr{pS(r,)} =——— X k().

1LoLgk.s

We suppose that the thermal radiation passes a linear
filter and that the out-field has a central frequency ck,
is polarized along the x axis, and that it is propagating
in the positive z direction. If the thermal radiation after
the linear filter has the same frequency spectrum as that
of our laser beam, we can use Egs. (6) and (7), and we
have

(S@)e=m1he’lm, / k exp[—P(k—ko)*Jdk
=hc*niko, (13)
where
nm= ’ﬂ/LngLg

represents the volumetric density of the average photon
number. Thus we may define the spectral intensity of
radiation (i.e., the energy per unit area, time, and wave
number) as in Eq. (10) in the following manner:

I(k)=n""2hclnk exp[ —12(k—ko)?]. (14)

III. U-MATRIX CALCULATION

A system of particles in the presence of a radiation
field may be described by a Hamiltonian

H=’Hp+Hr+Hint=H0+l'Iint;

where H, refers to the particles, H, refers to the radia-
tion field, H;n; represents the interaction between the
particles and the field, and H,+H,=H,. The nonrela-
tivistic interaction Hamiltonian of a charged particle
with an electromagnetic field is

Hine=—(¢/mc)A-p+(e*/2mc*)A?, (15)

where the symbols in this equation have the usual
meaning.

For the purpose of this paper it will suffice to consider
a single atom interacting with the field and to consider
only electric-dipole contributions to a transition, and so
we neglect the term A? of the interaction Hamiltonian.
We must now compute the rate at which the two-photon
absorption takes place. For this we introduce the time-
evolution operator of the system U(f,t:) and the S
operator, which in the Dirac picture!! is related to the

11§, Schweber, Relativistic Quantum Field Theory (Harper &
Brothers, New York, 1964), Secs. 11.C and 11.E.
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time translation U (ls,t1) by the formal expression
S = U(+ ®©, —x ) .

We recall that the total density matrix pr;, which de-
scribes the field and the atomic system before interac-
tion, is related to the matrix after interaction by

prs= UprUt. (16)
Making use of the definition
Hing= eXp(’iHot/h)Hint eXp(— lHot/h) ,

where Hiyn is the Schrodinger operator, we may write
the operator as follows!!:

U=1+U1+U2,

7 f
U= (——) / dr1 Hint(71)
h &
N\2 2 71
U,= <___> / d11/ d1s Hine(71)3Cint(72) .
h 1 &

Thus it is evident that the terms U, and U, give con-
tributions to the one-photon and two-photon transitions,
respectively. In order to evaluate the absorption of the
photons by an atomic system we need to introduce in
Eq. (15) only the annihilation operator A evaluated
at ro, the spatial position of the atomic system. Hence
we have

i\ e / 2mhe \'/?
()Y g
#/mc L1L2L3 k,s

with

ta
X/ dr exp(iHor/h)ax,s
51
Xexp(ik-ro)er s p exp(—iHor/h), (17)
and
Uallot)y=—— (2"’“)22(/%“1/2
tolr)=— -
w h2c2m? L1L2L3 k1,81 ka,s2 e
t2 t1
X/ dT]/ de eXp(iHoT1/h)dk1,sl
1 t1
Xexp(tki- ro)er,, o P eXp[iH o(r2—71)/ % ]Aks, 52
Xexp(tka-1o) ey, 50 exp(—iHoro/%). (18)

For sake of simplicity, without lack of generality, we
can suppose the atomic system to be at the origin of our
coordinate system, i.e., ro=0.

IV. ONE- AND TWO-PHOTON ABSORPTION
WITH A LASER PACKET

Let |7) and | f) be two stationary states of the atomic
system having the energies E,; and E,;. Before the
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interaction, the atom and field are uncoupled and conse-
quently one can assume that

(19a)

PTi= PpiPii,

where p,;= |1){¢| is the density operator of the atom in
the initial stationary state |4), and py; is the density
operator of the field which we suppose to be the laser
light described by Eq. (3). So we have

pw={ % }g({n},{m})li,{n}xi,{m}l ;
where
1 27 B
Bt )= / s

Uz snkns'*‘mk,s

XIT exp(—us,s%) expli(ne,s—my,)0].
ks (nk,s!mk,s!)l/z
If we write the density operator pry after the interaction

as
(19b)

where piy is the density operator of the field and p,; the
density operator of the atomic system, then the transi-
tion probability of the atom to state |f) is given by
Tr{prs| f){f]}. The Eq. (19b) allows us to affirm that!?

Tr{prs[ YA} =Trlops [ XS} Tl . (20)

Recalling our assumptions with regard to the field, we
need consider only k, s modes with %, and %, null, and
polarization vector e, equal to ¢ in all following calcu-
lations. We introduce the following equalities which
may be readily derived:

sy iy i€ ( 2T\
)= (f154] {m},w—%(h%)

~+o0
X Pt fepli) [ dt
k

—00

PTf=PLiPpf

Xexpli(Epr— Epi— hck)t/ ]| {nc—0u}), (21a)

and

2mh
c )Z (kako)—112

2
ha)={f|Sa| {ns},i)=— _<
| z) < [ 2| } H2c2m2\LiLoLg/ k1,ka

~+00
X P! f| (e D)R(k1) (e-p) [4) [ dt

—00

Xexp{i[ Eps— Epi— he(krt+ka) ]t/ 1}

X [ {”x_axh“axkz}): (21b)

where
R(k)=(H p— Epi—#ck)™,

12 A, Messiah, Mecanique Quantique (Dunod Cie., Paris, 1962),
Vol. I, pp. 235 and 281.
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In order to study the rate at which one-photon absorption takes place we must introduce in Eq. (16) the Sy
corresponding to Eq. (17). So with the help of Egs. (20) and (21a) we obtain

Tr{pr|f><f|}=h2m2c2<L LL)k k2 {n}.{m)

22 X g{n},{m}) (kike) V2 (nr ma) M

+o0
X/ dl1/ dls exp[i(Epf—Epi— hckl)tl/h_i(Epf_Epi_ hckz)tz/h]

If we approximate'? the preceding expression as follows:

({m,(— 6xk2} l {”K_ 5,0“})% ((mx} { {nx}>7
we find that
% } g({n}{m})ni P *({mi} | {ne})

= ()X mag) 2.

If we substitute this last equation in Eq. (22) and take
the limiting case of the continuum, following Eq. (6),
we get

Te{prs | 1)/ }7;;? = / dky / dks

X (kke) VAN Y2 (k1) N1 2(ko) 8 (k 7i— k1)
X8(ksi—ko) | {fle-p|i)|?,

] €2 \2%/ 2mhc \? s
wtor 2400 =(5,2) ()
{ors| IS rmet) \LuLaLa) ivibake (i

X (fle-pl )| *({me—bura} | {me— b }) . (22)

where ckji=wri= (Eps— E,)% . Introducing the prop-
erties of the laser light expressed by Eq. (7), and with
the approximations used previously, the probability of
the one-photon absorption P;., ;™ is expressed by

e2

PV =Tr{prs| {){f|}=(2m)?

Tomich b2

Xi(ks) [ (fle-pli)]?, (23)

where I;(ky;) is given by Eq. (10). This result is identical
to that obtained with a semiclassical treatment.4

For the two-photon absorption, substituting the value
of S. resulting from Eq. (18) into Eq. (16) and recalling
the relations (20) and (21b), we have

2 g({n},{m}) (kakoksk d) ™2 (npymugmugmeg)1?

00 —+o0
X{fITR) | 0| T (k3) | £ dll/ dty exp{il Epr— Epi— he(katks) Jt1/ h—1[ Epy— Epi— hc(ks+ka) 1o/ i}

where
T'(k)=(e-p)R(k)(e- D).
Making the following approximation
(= Buig— Bee} | {1e— Buy— Buka} )= ({mm} [ {0}
we then have'®

> g{n}{m}) uenrmegme) VX {mi} | {ni})

{n}{m}
- (nkl)”2<m2>1/2<nk3>1/2<%k4>1/2.

If we introduce this result into Eq. (24) and take into
account Egs. (6) and (7), we obtain that the probability

13 With lengthy calculations it is possible to prove that this
approximation is unnecessary.

X({mx_axka_akkti} ] {nK—akkl_axk2}>7 (24)

of two-photon absorption P, ;® is given by

) /dklfdk2
1L2

X/dkg/dk4 (krkoksks) " 2N V2(ky) N 2(ky)

)2 4
Pooy® = Tr{pns| )1} = (

mict

XNY2(fg) NV2(ky)d(kyi—k1—ko)d(kri—ks—Fy)
X T ) |9 T (ks) | )

Thus if we integrate, remembering that / is very large,

14 E. Corinaldesi and F. Strocchi, Relativistic Wave M echanics
(North-Holland Publishing Company, Amsterdam, 1963), p. 271.
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we get, to a good approximation,

1om%ts 1 \?
Pi_d(Z): < > Ile exp[— 2l2(k0—kﬁ/2)2]

h2m466 kﬁko
X TRsi/ D)2, (25)

where I7; is expressed by Eq. (9).

Equation (25) gives us the transition probability
when the absorption linewidth dw is much less than the
width Aw=c/! of the incident radiation. On the other
hand, if the upper level belongs to a band we have
Aw<dw and we must introduce the line-shape function
g(w—w,) which we suppose normalized so that

/ glw—we)dw=1.
0

So, if Awéw, we get for the probability of two-photon
absorption

71'24

- 1
Pi_)f@): (27!')1/2—*Awg<2w0—w0)11112
h*mc® kot

XS TE ). (26)
V. ONE- AND TWO-PHOTON ABSORPTION
WITH THERMAL LIGHT

If we consider the radiation field as consisting of
thermal radiation then the density operator pr; of the
atom and the field before interaction is diagonal and its
expression is given by

pri=p| )| =2 () f({me}) |1, {me}) G, (i} [,

where f({n:}) is defined in Eq. (12). We suppose that
the atom interacts with the field in the time interval
(0—7) which is large compared to characteristic times
of atomic transitions and to the coherence time of radia-
tion. According to this assumption, Egs. (22) and (24)
will still be valid, provided that we replace > (n},(m)
Xg({n},{m}) by 2 ny f({#.})8(n},(m}. This substitution
is due to the different structure of the density operator
of the field.

Moreover, we must modify the limits of integration
accordingly in order to take into account that the evolu-
tion of the density operator resulting from the interac-
tion can be obtained by applying the time-translation
operator instead of the .S operator. Therefore, following

=) (Y 5
()
{ors| XS]} tm2c2) \LiLoLy/) k1Esks ks (m)

FORNACA, AND POLACCO
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Eq. (22), the one-photon transition probability is given
by the expression

2rhe €2

2 2 f({m})(erke) ™2

LiLoLg #%c2m?2 k1,k2 (n)

Tr{ors| f){f]}=

X(%klnk2)1/2l(f[s-p|i>]2/ dh/ s

Xexp[i(Epf—Em— th1)t1/h—1:(Epf—Epi— hckz)lz/h]
X {{ne—ere} | {me—bui}).  (27)
We recall the equality
Z{"} f({nx})(nkxnkz)UZ({"K_ axkz} I {"x_ 6&1:;})

= <nk1>6k1k2-

If we go into the continuum as in Eq. (6), we can write
Eq. (27) in the following form:
2nhec €2

Tetors| 1) = ———— [
1442143

2

X

/ dt exp[i(Eps— Epi— hek)t/ 1]
0

X [{fle-pld)| *dk.

If we now introduce the radiation structure expressed
by Eq. (7), we obtain that the probability of one-photon
absorption for thermal light P;,;® is given by

2

1
Py W= (2m)? k—‘ln(kﬁ) [(fle-pli)|?, (28)

th 2 64 fz'2
where

I oll) = / "Lkt

is the energy irradiated in time 7, which can be readily
calculated from Eq. (14).

In Eq. (28) we have made use of the approximation
generally employed in perturbation problems,!s that

2 2T
2*—5(@”— k) .
4

/ dt exp[i(Eps— Epi— hek)t/ 1]
0

By analogy with Eq. (24) the two-photon transition
probability may be written

2 f({ni}) (kkoksk )™ *(ngympgnigine,)

X T (Ra) |4) (2| T (es) | f)/r dtl/r dty exp{i[ Eps— Epi— he(kitko) 11/ h—i[ Epy— Epi— he(ks+ka) 1o/ 1}
0 0

X({nx'—axks_aﬁdm} | {”x_ axh—axkz})' (29)

15 A. Messiah, Mecanique Quantigue (Dunod Cie., Paris, 1964), Vol. II, pp. 627 and 628.
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If we go into the continuum after taking account of the
following relation

> {n} f({”x})(”kxnkznksnh) 1z
X ({"x_ 6kk3— 6"'94} I {”K_ 6“"1_ 6xk2}>
= (10, ) (M) (B ko, g+ O B ) 5
then Eq. (29) becomes

wr/ €2 \?%/ 2mwhc \?
Tr{prlf><fl }= ?(hmzﬁ) (LleLa) /dklfdkz
X (Bak2) ™ N (k1) N (k2)d(kri—k1—k2)

XS T () +T (ko) |4)] 2.

If now we introduce Eq. (7) for the radiation, we have
for the two-photon absorption probability with thermal
light Pi_>f<2)

™\ Y21 1672%%/ 1 \?
P,-»,<2>=4<—) — ( ) o
2 cr W2mict kﬁko

Xexp[—21(ko—ks:/2)2]|(f| T(k1:/2) |5}, (31)

where
I,—g=/ Itdt.
0

Equation (31) gives us the transition probability when
0w Aw, i.e., when the absorption linewidth is much
smaller than the width of the incident radiation. On the
other hand, if Aw<éw, we can easily perform calcula-
tions as in the preceding paragraph.

(30)

VI. DISCUSSION AND CONCLUSION

An examination of Eqgs. (23) and (28) shows that the
one-photon absorption does not depend on the statisti-
cal properties of the light employed. In fact, such
formulas, which give the transition probability for ther-
mal light and the transition probability for a coherent
beam, respectively, are the same. If we compare Eq. (25)
with Eq. (31), we notice that they differ from each other
by the factor

Introducing the coherence time,
written in another form

2\V2 ¢,
B=<—> =,
T T

this factor may be

(32)
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Such an expression shows clearly that the transition
probability for two-photon absorption really depends
on the statistical properties of the light employed, which
is expressed, in this case, by ..

It is easy to see that these considerations are still
valid in the two-photon transition E1E2 and E1M1?
and so on. So for a laser beam formed by 7 spikes we
have 7./7=~1/n. The dependence of the transition
probability, for these interactions, on the statistical
properties of light can be made more evident by intro-
ducing the second-order correlation function, defined as
follows”:

GOV (ry,t1; ro,t2) =Tr{pA (r1,t) AP (ra,12) } ,

where p is the density operator of the field. From Eq.
(12) and with the help of our assumptions on the field
we have

whe

2
GUD(r11; 1,5) = ( >§ E~Ymyexp[ick(tz—t1) ]
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We observe that in our case the function G-V is inde-
pendent of r.

Introducing this result into Eq. (29), after considering
Eq. (30), and supposing that |(f|7(k)|7)|2 is nearly
constant for the modes in which the occupation number
is evaluated, we may write

Pi»fmi(i)zl ST/ 2)10)|? f i f it

h2 m262
Xexplicksi(ti—t2) ]| GV (f,t0) | 2.

Once more the relation between P;_,;® and the correla-
tion function GAV(fy,f;) shows the wvalidity of our
affirmations. We notice that if in Eq. (32) r.=7 we
have B=1, and therefore we obtain again the results of
Eq. (25).

We have supposed in all our calculations that the
f({n.}) represent a set of statistically independent Bose-
Einstein distributions. This concept seems to play no
role in the transition probability, since it is appears only
in Eq. (30). On the contrary, the statistical indepen-
dence of the photons or of the photon groups is auto-
matically taken care of in the transition probability by
supposing that the operator density is diagonal in the
Fock states and that 7,<7.



