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which greatly adds to the credibility of the present
6ndings.

CONCLUSION

It appears that metastable states of Ar, H2, and N2
were indeed formed in the source. The Ar caused both
surface self-ionization and secondary emission with
some reQection of metastables. The H2 most prominently

displayed a strong emission of Lyman-o. radiation on
hitting the target. The nitrogen displayed a strong
sensitivity to any traces of carbon (whether as an
oxide or a hydrocarbon not being established), leading
to the formation of CN on impact.

The extensive work and technical skill of G. A.
MacDonald are gratefully acknowledged. Dr. George
Sinnott has contributed extensively to the design and
analysis, and the author extends sincerest thanks.
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A variational solution of the Liouville equation is used to obtain collective coordinates for simple classical
Quids. Comparison is made with macroscopic analogs determined from relevant hydrodynamic equations.
Approximate eigenfunctions of the Liouville operator, when constructed from linear combinations of the
spatial Fourier transforms (fluctuations) of the mass, momentum, and energy-density operators for the
Quid, are found appropriate to low-frequency disturbances. When time derivatives of Quctuations are in-
cluded among trial functions, the variational procedure provides Quid-state counterparts of usual solid-
state phonons.

INTRODUCTION

HE states of a many-body system are char-
acterized by the eigenfunctions of the Liouville

operator I. of the system. The exact eigenfunctions of
the Liouville operator are not known for dense Quids,
nor is it likely that their discovery is imminent. How-
ever, by selecting a functional form for the eigen-
functions (designated for example as {lf}),and adjusting
parameters such that the chosen {f}satisfy a varia-
tional equation, it may be possible to determine
approotisttute eigenfunctions which manifest important
aspects of the collective behavior of the system. In
such spirit, the present investigation is directed towards
determination of collective coordinates describing ex-
citations of simple classical fluids.

Discussion of the variational Liouville equation and
the results of our calculations appear in the following
sections of this paper. The calculations, themselves, are
rather lengthy and are summarized in appendices.
Although the analysis is complete as it stands, the
reader may wish to refer to a previous article by one of

the authors' in which certain aspects of the variational
approach are discussed.

L VARIATION'AL EQUATION

Suppose that trial functions of the form P({n})
=P; ct;A; are chosen, where the {A,}are known func-
tions of position and momentum and the (n;} are
numerical coeKcients which are to be varied. Let the
"eigenfunctions" be determined according to the
variational criterion that the "eigenvalues" {&o},defined

by

~({~})=-
9*((~})4 ((~}))T

approximate the actual eigenvalues (toL} as closely as
possible. The subscript T signifies an average over a
canonical distribution, e.g.,

(AB)T dPt dq„e tsH'» "' &"——'.1(Pt, ,q.)

X&(Pr, ,g.) dpt. . . (gg e P&(o& ~ ~ on) —
(1 2)

' R. Zwanzig, Phys. Rev. 144, 170 (1966).
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equations for the {rr''} are obtained:

P n;(A;*I.A;)r oi ——P rr;(A;*A;)r,

j= 1,2, ,1V . (1.3)

number k are defined as
N

A —= V '+me'"'"'

and

(2.2)

These have a nontrivial solution if, and only if, the
determinant of the coefIicients of the {n;} vanishes:

where

and

Ie—nNI =0,

8;;=(A;*LA;),

N;;=(A; A;)r.

(1.4)

(1.5)

(1 6)

In this manner, both the {&u} and associated {n;}
may be determined.

In the following section, linear combinations of the
spatial Fourier transforms (i.e., fluctuations) of the
mass, momentum, and energy density operators are
chosen as trial functions. Various time derivatives of
these quantities also are included. Because of the
Hermitian character of the Liouville operator, all
eigenvalues {cu}are real. There are as many eigenvalues
as there are components {A;}of the trial functions.
Further, as a consequence of the particular form of the
chosen {A;}we can make the following observation:
The chosen {A;} are either pure even or pure odd
functions of momentum. Let e(e) represent the number
of {A;}having even parity in momentum and n(0)
represent the number of odd {A;};suppose E equals
the number of eomsero eigenvalues. Thus, because the
expectation of the Liouville operator between functions
of similar parity is zero, it may be shown that I'& 2 min

CN(e), m(0)j. Also, the nonzero eigenvalues always
appear in pairs of equal magnitude but opposite sign. '

Ai, s,s=& ' 2 Iij'&i,s, s&
' ' ',

j=1
(2 1)

where, for example, 6s is defined as 6s—=k/I kI, and 4i
and 62 are two arbitrary mutually perpendicular unit
vectors. R; and p; are, respectively, the position and
momentum of the jth particle, V is the volume of the

assembly, and X the number of particles.
The mass and energy density Quctuations of wave

'A general discussion concerning eigenfunctions composed of
Quctuations and their time derivatives has been presented by one
of us (R. Z.) at the recent Copenhagen IUPAP Conference on
Statistical Mechanics; see also preceding paper, R. Zwanzig,
Phys. Rev. 156, 190 (1967).

H. APPROXIMATE EIGEHFUNCTIONS

The Fourier transform of the momentum-density
(mass-current) operator may be decomposed into one
logitudinal and two transverse modes,

nwj
(2.3)

A. Low-Frequency Disturbances

First, linear combinations of the quantities Eqs.
(2.1)—(2.3) are chosen as trial functions. Consequences
of also including time derivatives of these Quctuations
are presented in the next section.

Using A~ - A5 and calculating approximate eigen-
values according to Eqs. (1.3)—(1.6) yields two nonzero
and three zero eigenvalues. In the long-muveteegth

(smal/-k) limit, we find the nonzero eigenvalues to be
proportional to the adiabatic sound velocity, viz. ,

cd =+ I k
I csciisb =& I 0

I C(BI /Bp) 8j' '. (2.4)

In obtaining the latter result, all five Quctuation
componen. ts are included (see Appendix A, below).
However, if the trial function is constructed from only
the mass and momentum Quctuations, one obtains
instead. the following expression for the (long-wave-
length) dispersion relationship for k and &o,

~= ~ I &Ic'-~b--i= +
I &I C(BJ'/Bp)rl"' (2 5)

Similarly, on choosing a trial function composed only
of the momentum and energy Ructuations, one obtains

~= ~ I
&

I CP/p'(BP/B~). 1"' (2 6)

Note that the dispersion relation given by Eq. (2.4)
is identical to that obtained from solution of the
linearized Navier-Stokes equations in the limit of long
wavelength. Similarly, Eq. (2.5) is obtained from
hydrodynamic equations when energy transport is
neglected and Eq. (2.6) is obtained from the linearized
hydrodynamic equations of an almost incompress-
ible Quid. It is evident, therefore, that the varia-
tional procedure, when applied to the quantities
given by Eqs. (2.1)—(2.3), generates microscopic
analogs of low-frequency, long-wavelength, hydro-
dynamic disturbances. ~

This close correspondence is further evident when
eigerifueciiorss of the variational Liouville equation are
compared with those obtained from hydrodynamics.
For example (see Appendix A) the eigenvectors cor-
responding to the adiabatic situation, Eq. (2.4), are

~ J. Irving and J. G. Kirkwood PJ. Chem. Phys. 18, 817 (&950)g,
where it was 6rst noticed that the mass, momentum, and energy
density operators could be used in conjunction with the Liouville
equation to generate hydrodynamic conservation equations.

Note that all molecules are taken to be alike and
symmetric pairwise additive forces are assumed; q;;
is the potential energy between the ith and jth particles.
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found to be proportional to

BU)

Bpis

(BU
Wpsl C.s;.bA s(k), (2.7)

t BI',
where po is the mass density per unit volume, U is the
energy per unit mass, and As, A4, A5 are given by
Eqs. (2.1)—(2.3). The eigenvectors obtained from the
Xavier-Stokes equations are

BU
ip+[k[oadisb ~ k PO Pk

Bp

BU
~PO Cadiabtk[[ y (2 8)

8P p

~here UI„p~, e~II are, respectively, the Fourier-Laplace
transforms of the energy density, mass density, and
longitudinal Quid velocity. Similar correspondence
exists for eigenvectors associated with both the isother-
Inal and incompressible assemblies.

Finally, the eigenvectors associated with the zero
eigenvatues are as follows: There are two eigenfunctions
composed solely of transverse current density Quctua-
tions, iP Ai(k), iP As(k); a third has the form of an
enthalpy Quctuation at constant pressure. In the first
instance, hydrodynamic analogs are manifest in the
inability of a Quid to propagate transverse shear waves
for low-frequency disturbances. The zero-frequency
enthalpy fluctuation (which also arises from the
hydrodynamic equations) is perhaps associated with
the inability of a classical Quid to propagate low-
frequency second sound.

B. High-Frequency Excitations

Due to viscous damping, low-frequency transverse
oscillations do not exist in a simple Quid. Qn the other
hand, the high-frequency response of the Quid is pri-
marily elastic, and rapidly varying shear disturbances
will be sustained and propagated. Nondissipative re-
sponse of a Quid to high-frequency mechanical dis-
turbances is clearly seen in time-correlation function
expressions for frequency-dependent viscosities. 4 It may
easily be shown that the high-frequency shear and bulk
viscosities are given by ss G„/io& and st+ (E' Ep)/ioi,
where G„and E„are, respectively, the high-frequency
shear and bulk modulis and Eo is the adiabatic (zero-
frequency) bulk modulus, defined as Es———V(BP/BV)s.

The Gnite time of response to a mechanical dis-
turbance is necessarily manifest in the hydrodynamic
equations for the Quid, and suitable modification of the
Navier-Stokes equations is required in order to account

R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(&965).' Molecular expressions for G„and E„may be found in Ref. 4.
Compare, also, Kq. (35) of Appendix 3, below.

oist = Ikl I (E +sG„)/pj' (2.10)

(Further discussion of high-frequency sound propaga-
tion, including an analysis of the effects of thermal con-
ductivity upon propagation velocity, may be found in a
companion paper. ')

However, the following is perhaps the most interest-
ing point. It is apparent from the previous discussion
that, for low-frequency sound propagation, a close cor-
respondence exists between macroscopic hydrodynamic
equations and the variational Liouville equation. Here,
too, a correspondence is evident: The high frequency-
dispersion relations derived frons hydrodynansics, Eqs.
(Z.tl) and (Z.10), are also obtained from the variational
I.iouvitle eqlatiom mba, ie addition to the mass aed mo-
mentum denssty fluctuations (Eqs. (Z.l)—(Z.Z)$, the fsrst
time derivatives of the latter are irsctuded among the cons

ponents of the trial functions (cf Appendix 8., below)
The associated eigenfunctions also have been deter-

mined. There are four (normalized) eigenfunctions for
transverse excitation, viz. ,

q t,s(k) = (pV/2p) "s{Ataoi„'(k)LAt) (2.11)
and

ps, 4(k) = (PV/2p) StAs~toi, , (k)I As), (2.12)

the frequency cok, (k) appearing in Eqs. (2.11) and (2.12)
being identical to the expression given by Eq. (2.9) in
the limit of long wavelength. (See Eq. (B9), below, for
a general expression, valid for large k as well. )7

R. Nossal (to be published) .
7 We recall that the I iouville operator has the property —I.A= sdA/dt Consequently, Eqs. (2.11)—{2.13).might also be written

as y~fA+~ 'A).

for this phenomenon. Thus, the (linearized) momentum
balance equation should have the form

Bv(t) BP) BE t

p; =- ———
I

Vp(t) — VU(t)y
Bt Bp) t BU p 0

t

X st(t —r) V'v(t)+ — dr
3 p

XLrt(t —r)+rtv(t —r)/V V v(r).

(Note that for a time scale relevant to slow disturb-
ances, the viscosity kernels could be replaced by Dirac
delta functions, and the familiar zero-frequency equa-
tions be obtained. ) If the frequency-dependent viscosity
is approximated by its high-frequency limits, one can
show from the Fourier-Laplace transforms of the
modified Xavier-Stokes equations that transverse shear
waves propagate with frequency &co&,("), the latter
being given by

.'"'= Ik I
I:G-/p3"' (2.9)

Similarly, if thermal conductivity is neglected, one can
show that longitudinal sound waves propagate with
frequency &co~&"), given by
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Similar collective coordinates are obtained for
longitudinal excitation. One 6nds

ps, s(k) =(PV/2p)' (As&eet '(k)LAs}, (2.13)

where, in the long-wavelength limit cot(k) is identical to
the expression given by Eq. (2.10).' In addition to the
two collective coordinates given by Eq. (2.13), the
variational calculation provides a third, viz. ,

P-[A4(k)+ ~k~tdt
—'(k)LAs(k)$. (2.14)

The collective coordinates givert by Eqs (Z.fl.)—(Z.13)
seem to be fllid state analogs of phortorts irt solids. Indeed,
as shown in Appendix C, when the molecular expressions
for ce„,(k) and cat(k) are evaluated for a harmonic solid
in the limit of low temperature, the eigenfunctions given
by Eqs. (2.11)—(2.13) are found to be identical to the
usual normal-mode variables of a harmonic lattice with
one molecule per unit cell.

III. DISCUSSION

The eigenfunctions provided by Kqs. (2.11)—(2.13),
i.e., those relevant to high-frequency excitation, are
the most important results of this study. We hope
that knowledge of convenient sets of collective co-
ordinates will facilitate calcu/ation of transport parame-
ters and provide deeper understanding of properties
and behavior of Quid systems.

As previously indicated, the physical importance of
these functions is discerned from the correspondence
between their associated dispersion relations and analogs
obtained from macroscopic hydrodynamic equations.
Further, the fact that the eigenfunctions reduce to the
usual phonons when evaluated for a harmonic solid at
low enough temperature is also strongly suggestive of
their relevance. Indeed, the Quid eigenfunctions have
essentially the same mathematical form as do solid-state
phonons, with momentum Quctuations of the former
corresponding to displacement Quctuations of the
latter. We recall that a similar relationship also arises
in other contexts; for example, the internal stresses in
a fluid are related to the strain rate of chartge, whereas the
stresses in a solid are related to the strain itself.

The frequencies for which these approximate eigen-
functions are appropriate may be estimated by examin-
ing correction terms to the high-frequency limits of the
viscosities; we estimate that such collective motion
exists at least for frequencies of the order of 10" cps
and greater. On the other hand, the low-k limit (to
which the eigenvalues Kqs. (2.9) and (2.10) are appli-

However, a more complicated eigenfunction arises when
energy fluctuations and associated time derivatives are included
in the trial functions. Similarly, the frequency is somewhat
different than that given by Eq. (2.10) (see Ref. 6).

On the other hand, the eigenfunction given by Kq. (2.14)
corresponds to a zero eigenvalue and has no easily discernible
physical meaning; it is found that the expression vanishes, identi-
cally, for a harmonic lattice (see Appendix C).

cable) implies that the range of disturbance must be
greater than atomic dimensions. Gillis and Puff'0
estimate that for a simple Quid such as liquid argon
there is only a narrow range of frequency (approxi-
mately 10"—10" cps) for which the high-frequency,
low-k region exists for natural disturbances. However,
this limitation is not as serious as might seem, and it
may be shown that eigenfunctions appropriate for
natural disturbances of higher frequency have the same
structure as given by Eqs. (2.11)—(2.13), the onlydif-
ference being that the eigenvalues a&t,,(k) and &et(k)

may have somewhat more complicated wave vector
dependence (see Eqs. (8) and (9) of Appendix 8, below(.

There is yet no conclusive evidence to substantiate
the existence of hypersonic sound velocities in simple
Quids. Recent Brillouin scattering experiments, "while
demonstrating sound velocities differing from the usual
ultrasonic velocities, all have been performed on liquids
of complex structure for which the variation of sound
velocity might be due to internal molecular relaxation
processes. On the other hand, recent experiments""
involving inelastic scattering of neutrons provide con-
siderable evidence of collective motion in simple liquids.
However, we are not sure whether these data are yet
suKciently extensive to allow a conclusion that the
measured collective modes are, in fact, those demon-
strated by Eqs. (2.11)—(2.13). An examination of this
question will be presented in a subsequent paper.

0
0

0. —
0.0

0
0

—8'
U

0 0
—S' U

0 0
0 0.

(A1)

0 0 0 0'
0 8' 0 0 0

N= 0 0W 0 0
0 0 0 2 C

. 0 0 0 C 8

(A2)

"N. S. Gillis and R. D. Pu8, Phys. Rev. Letters 16, 606 (1966)."R.Y. Chiao and B. P. Stoicheff, J. Opt. Soc. Am. 54, 1286
(1964); G. B. Benedek et al , ibid 54, 1284 (1964); .E. S..Stewart,
and J. S. Stewart, Phys. Rev. Letters 13, 437 (1964); D. H. Rank
et al. , J. Opt. Soc. Am. 55, 925 (1965);H. Z. Cummins and R. W.
Gammon, J. Chem. Phys. 44, 2785 (1966).

"N. Kro6 et al. , Phys. Rev. Letters 12, 721 (1964); in Inelastic
Scattenng of neutrons in Solids and Liquids (International
Atomic Energy Agency, Vienna, 1965), Vol. II. p. 101.

"S.J. Cocking and P. A. Egelstaff, Phys. I.etters 16, 130
(1965);S. H. Chen et at. , ibid. 19, 269 (1965).

APPENDIX A: APPROXIMATE EIGENFUNCTIONS
FOR LOW-FREQUENCY EXCITATION

In Sec. II, results of the variational procedure were
stated for trial functions composed of Quctuations of the
mass, momentum, and energy density operators $cf.
Eqs. (2.1)—(2.3)$. Some details of the calculations
leading to these results are presented in this Appendix.

The matrices 0 and N Lcf. Eqs. (1.8) and (1.9)j
have the form
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from which, by Eq. (1.10), eigenvalues are determined
to be

(ei 2 a——{(A U'+BW'+2CUW)/
/(W[AB —C')) )')2 (A3)

and express [WC+AU] as

[Wc+A U) = —([k
i p()'/PV)

X[P+(B«-)/B«-').]&(A«-')')
(~ k~ po /PV)(BPIBT) ((AV ) ) (A9)

603,g, 5 =0. (A4) Similarly, it may be shown that [C'—AB] is given by

The eigenvectors associated with or~, 2 are easily seen
to be

[WB+O'Cj
P),2(ki A 5(k) — A 4(k)

[WCyA U)

~2,2[C2—AB]
Az k) . AS

[Wc A U)

One now needs to evaluate the matrix elements A, 8,
C, W, W, U, and the various combinations of the latter
which appear in the above expressions. As an example,
let us evaluate the third term appearing in Kq. (AS),
which we shall designate as y,

([C2 A—B)/[W—C+A U))~, ,2 (A6)

[O' AB)=——p()'[(BE(m)/BT) ) ]2
X((&V("))')((&T)') (A10)

where hT is the fluctuation in temperature. Finally,
making use of various thermodynamic identities, as well
as the relation

((aT)') = (kT'/Mz. „)Cv(")), (A»)

y —ik i
cvi, zp()(BE™/BP)y, (A12)

which is the third term appearing in Eq. (2.7).
Other terms appearing in Kqs. (2.4) and (2.7) are

obtained from Eqs. (A3) and (AS) in similar manner,
although the derivations are of somewhat greater length.

where Cv(")=(BE /BT)v is the specific heat per unit
mass at constant volume, one obtains

Suppose we seek an eigenfunction of the form

~ 0

U h' h
'

d d
APPENDIX 8 ' COLLECTIVE COORDINATES FOR

U= (A,*IA,)—

may be shown to be

U= —(IkI/PV)p&™, (A7)

n

P=g n,B;,

where p equals the mass density and B™is the enthalpy
per unit mass. Also, W, def(ned as W—=—(A2*LA4) is
easily demonstrated to have the explicit form

W=(I kI /PV) p. (A8)
Consequently,

I WC+A U]= (kpo/PV) [(@)*p() II™(p)*p)))
where S~ and p~ are the energy and mass fluctuations
per unit volume [cf. Kqs. (2.2), and (2.3)). Convert the
latter to fluctuations per unit mass, e.g.,

($4p)p4E(m)((AV(m))2)p3((AV(m))(AE(m)))

p 2[p E(m) (BE(m)/BV'(m))r)((/V(m))2)

(vz(k) =0. (84)

In the long-wavelength limit, the evaluation of
X(k) appearing in Eq. (81) is particularly easy. First,
expand ((LAi)*LAi) as follows:

where Bi——A, (k), B,=LA, (k), B,=A, (k), B4 LA2(k), ——
B.-=A, (k), B6——LA2(k), and Bz A4(k). From K—q—s.
(1.4)—(1.6), eigenvalues are determined to be

M(, 2(k) = a(((LA))*IAi)/(Ai*A ))"'
=—&[X(k)/W)'t' (81)

co2,4(k) = a(((LA2)*LA2)/(A2 A2))'t' (82)

ra, ,,(k) = a(((LA2)*LA2)/(A, *A,))')2, (83)

((IAi)*LAi)==X= V '({g [Fz+(ik P(/m)Pz]'zzie'"'"'){ P [F —[i(k.P )/m]P„) zzie + ""))'
=k'V 2($ {(F) z"'.i)(R( k)+(Pz uz/m)(Pz k)) P [(F„ui)(R k)+(P u)/m)(P„k)])+0(k').

Next, notice that the molecular definition of the high-
frequency shear modulus G is given by'

G„=PV '( P (d/dt)(R(*Pz*) P (d/dt)(R„'P„*))
(8S)

= e/P+2)r/1Se2 dr g( )(r)(d/dr)[r4dp/dr),

so that one Ands

X= (k'/P V)G„. (86)

~2.2=~ lkl(G /p)"' (87)

Consequently, in the long-wavelength limit, co&,2 is
given by
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The expression given by Eq. (C6) is similar to the

approximate eigenvalues presented in Eqs. (2.11)—(2.13)
For example, from Eqs. (2.13) and (83) we have

(C7)LA 2(k) ai00—'(k)A2(k))
»,2= + IkILB-(k)/j 3'j2 (88)

with A0(k) defined as
where g„(k) is defined as

This expression is identical to the dispersion relation
given by Eq. (2.10).

We remark that the general expression for cv&,&, valid
as well for large k, may be shown to be given by

k'c Q2p
k2(2 (k)= --+c2 dz(g2($)L1 —cosk Q — . (89)

()422

A2(k)= V ' Q P" ke '"'Rc

and 00(k) delned as t cf. Eq. (83)$

(C8)

(In the above expression, pkz is a coordinate in a direc-
tion perpendicular to k.) Note that Eq. (85) is a good
approximation to Eq. (89) for values of k such that

~
k

~
ski& 1, Rkr being a molecular radius beyond which

82&p/Br2 is not appreciably different from zero.
The longitudinal eigenvalues ~~("& are found in a

similar manner. Determination of associated eigen-
vectors is without difficulty.

APPENDIX C: REDUCTION TO USUAL
NORMAL-MODE VARIABLES

We now prove the assertion that the liquid-state
"eigenfunctions, "when evaluated for a harmonic solid
in the limit of suf6ciently low temperature, reduce to the
usual normal-mode variables for a harmonic lattice
with one atom per unit cell. In order to simplify the
presentation, discussion appears for a one-dimensional
solid only.

The mathematical expression for a phonon of a
harmonic solid is usually given as

))4"'"-t pk~z(0kIlk J,

(02(k) = ((LA 2)*J.A 2)/(Az*A0). (C9)

which, for the harmonic lattice, has the form

X= 3k2&V/P2V2

+(Vzp) —i p Q OcIczeik(Rj0 B, l0)(ejk(6—Bj 0B)))
—(C10)

Similarly, the denominator of Eq. (C9) is evaluated as

Indeed, for small k, A2(k) and Pk are proportional and,
in order to prove that j)00 0 has the form of Eq. (C6) it is
necessary only to show that the frequency derived by
the variational procedure (0(k) is identical to the usual
phonon frequency (dk. (We propose, i.e., showing that
the dispersion relations are equal. )

The latter is accomplished as follows. The numerator
in Eq. (C9), which we shall designate as X, may be ex-
pressed as

X= —V '( Q (P "k) e*"'"c(d/dk)

XQ {LF&—(ik Pj/jrz)Pjj ke 'k'"'}),

where gk and Pk are defined as

gk=(iV jlV)'j2+ 8E,e kBj'
W = rjzX/P V'.

Thus, for the harmonic lattice &0(k) is given by
C2)

(C11)

and
p

—(ilfl jc)t )
—i / 2 Q p .e

—k Bj0 (C3 rjz(02(k) —3k2/P+P 0@,,e
—ik(Bi Bj )(eik(0Bj—0Bj)) (C12)

E; being the equilibrium position of the jth atom,
M; its displacement, and I'; its momentum. The fre-
quency col, is related to wave number k according to the
dispersion relation

(eik(0Rj 0Ri)) e—i(k—2/2)((0Rc —0R))2) (C13)

Because the potential energy is quadratic, the
quantity (e'k""c' '"")may be written as

2 —Q 0Cc ejk (B Bj.0j)0

l
(C4)

But, for example,

M is the atomic mass and 4~; is the equilibrium value
of the second derivative of the potential energy of
interaction between the jth and 1th particles.

We now note that, because ql, is related to the time
derivative of pk as

(m, ~zj) = —p-'
$0@. . $0@. .

Xln dR'exp —(P/2) P P 0C„,P„~,
n l

pI= —&I ga&

the phonon is equivalently represented by

4'k" ' LPk+z(0k Pkl.

(C5)

(C6)

= (2P) ' + 1n{dete}
804;; 804,,

=(2P)-'{(C-') +(C-') }
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Consequently, the dispersion relation may be written as

mce'(k)=3k'P '+P 'e "e *"t~"'~t"

)&exp ——'k'P '{C" '+C" '+C" '+C'" ') (C14)

where C;; ' is the ith- jth element of the inverse of the
matrix '4. For supciently small values of p ' (i.e. , for
low temperatures), the usual pkonon dispersion relation

Eq. (C4) will follow from Fq. (CI4).
The necessary limiting value of P is related to(he

lattice spacings and interparticle potential energies. For
example, for a lattice of nearest-neighbor interactions,
Eq. (C14) may be shown to be

mme'(k) =3P 'k'+2mcc

X f1—(cosk8)e t"t'ti"&'"& '} (C1$)

where, in the above expression, em~' equals the lattice
force constant and 5 is the lattice spacing. Thus, in this
instance, in order to obtain the usual phonon dispersion
relation, the inequalities mien'p5'))1 and ksj(mptcz')«1
must be satisfied.

Let us now prove the assertion made in Ref. 9, viz. ,
that the eigenfunction given by Eq. (2.14) reduces to
zero when evaluated for a harmonic lattice. Indeed, for
small k

@ —= LA (k)+ i
k

i
'I.A (k) g

ik(M—N/V)' '[qi, +tc 'ps). (C16)

Thus, in virtue of Eq. (Cs), one has

iP lsttioe(k)=P Q F D

P H YS ICAL REVIEW VOLUM E 157, NUM BER j. 5 MAY 1967

Relaxation Theory of Spectral Line Broadening in Plasmas*

EARL W. SMITH't AND C. F. HOOPER, JR.
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In this theory of spectral line broadening in plasmas, the radiation process is treated as the relaxation of an
excited atom, weakly coupled to a thermal bath, to a state of lower energy. The theory presented here em-
phasizes the Liouville-operator formalism, as developed by Zwanzig, and may be considered an extension of
Fano's theory of pressure broadening in neutral gases. It may further be considered an illustration of a case
in which an observable quantity can be expressed in terms of a well-de6ned correlation function, which can
be evaluated without resorting to a microscopic analysis of the interactions. A comparison is made with
the impact theories of Griem, Kolb, and Baranger; specifically, it is shown that the assumption of binary col-
lisions and the impact approximation are not necessary in the relaxation theory. Of special importance are
frequency-dependent "width" and "shift" operators which produce asymmetries in the intensity pro6le that
are not predicted by the previous plasma-broadening theories. These asymmetries are illustrated in an
application of the relaxation theory to the Lyman-o. line. The line shape is calculated to second order in the
weak-coupling potential, and a comparison is made with experimental observations of this line.

1. INTRODUCTION

HE shape of the broadened spectral lines emitted
or absorbed by neutral and ionized gases is de-

termined primarily by the interparticle forces present
in the gas. Consequently, much effort has been devoted
to the development of a theory which will accurately
predict the shape of these lines. Such a theory would
permit the observable characteristics of a given line
(shift, width, etc.) to serve as noninterfering probes for
a determination of the temperature, density, etc. , of
the gas.

~ This work was supported by the National Defense Education
Act (title IV), the Research Corporation, and the National
Aeronautics and Space Administration.

t The work reported here is based on a dissertation submitted
to the University of Florida in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

The most successful line shape calculations have been
obtained by the impact theories of Kolb, ' Griem, ' and
Baranger. ' These theories use a time-dependent pertur-
bation and employ an impact approximation that is
based on a binary-collision model.

The application of these binary-collision-impact
(BCI) theories to the Stark broadening in plasmas is
plagued by the familiar divergences that result when a
binary-collision model is used to treat long-range inter-
actions. Attempts to avoid these divergences by means
of impact-parameter cutouts have led many BCI theories
to neglect the long-range electron-atom interactions.

' A. C. Kolb and H. R. Griem, Phys. Rev. 111,514 (1958).
s H. R. Griem, Ftasrrta SPectroscoPy (McGraw-Hill Book Com-

pany, Inc., New York, 1964).
'M. Baranger, Atonic and Molecllor I'rocesses, edited by D.

Bates (Academic Press Inc., New York, 1962), Chap. 13.


