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A system of harmonic oscillators in the presence of interaction, and with an arbitrary number of degrees
of freedom, is considered. The most general form of the Hamiltonian is derived under the restriction that
the states which are initially coherent remain coherent at all times. The equation of motion for the annihila-
tion operator, obtained by using this Hamiltonian, is solved, and the frequency spectrum of the annihilation
operator is discussed. By giving specihc examples it is shown that, in general, the annihilation operators (or
their eigenvalues) contain positive as well as negative frequency components and hence are not analytic
signals. Some special cases are also considered where the annihilation operators are analytic signals.

I. INTRODUCTION

KVERAL publications have appeared in recent
years dealing with the properties and applications

of coherent states. ' 7 These states are defined as the
eigenstates of the annihilation operator and are analo-
gous to the classical deterministic situation. Since the
annihilation operator is not Hermitian, the eigenvalues
are, in general, complex and the states belonging to
different eigenvalues are not orthogonal. However, these
states form a complete set and can be used as a basis
for expanding arbitrary states and arbitrary operators.
In this connection, they have been found, to be very
useful in the description of optical coherence for free-
electromagnetic fields. ' "' It is generally known that
for free field, s the time-dependent annihilation operators
have only positive freqlertc-y components so that the
eigenvalue of any linear combination of such operators
is an analytic signal. "It is of interest to study the time
dependence of the eigenvalues of the annihilation opera-
tors in the presence of interaction. In a recent paper,
Glauber" has shown that if the time derivative of the
annihilation operator does not involve a functional
dependence on the creation operator, i.e., if

dd(t)/dt= f(a(t), t), (1.1)

then the states which are initially coherent remain
coherent at all times. In another paper" we have shown
that the requirement (1.1) is both necessary and sufli-
cient for the states to remain coherent at all times and.
that for a system described by a (Hermitian) Hamil-
tonian, the function fmust be linear in the annihilation
operators. We have also obtained. the general form of
the Hamiltonian consistent with this requirement, and
showed that the eigenvalues of the annihilation operator
are in general not analytic signals. In Ref. 12, however,
only systems with one degree of freedom were con-
sidered. In the present paper some of these results are
generalized for systems with an arbitrary number of
degrees of freedom.

In Sec. II we consider a system of harmonic oscillators
with arbitrary number of degrees of freedom and derive
the general form of the Hamiltonian with the require-
ment that the states which are initially coherent remain
coherent at all times. In Sec. III the equation of motion
for the annihilation operator is solved and Sec. IV
deals with the frequency spectrum of the annihilation
operator. In the Appendix we derive the general form
of a unitary matrix U(t) which is an analytic signal and
is such that U(t) and U(t') commute for all t and t'.

*This research was supported in part by the U. S. Army
Research OKce (Durham) and by the U. S. Atomic Energy
Commission.
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II. TIME EVOLUTION OF COHERENT STATES:
CONDITIONS 05 THE HAMILTONIAN

Let us consider a system of harmonic oscillators
which is d,escribed by the canonical operators" j~ and
Px satisfy the commutation relations'e

Lqz, p),.7= ibx), , fq)„qx,)= (pz, pz. )=0. (2.1)

The system can equally be described in terms of the
canonical annihilation and creation operators 4q and

"C.L. Mehta and K. C. G. Sudarshan, Phys. Letters 22, 574
(1966).

~3 In this paper we denote all operators by a circumRex, e.g.,
j, 8, at, etc.

'4 We have chosen units such that A=1.
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dit delned by

((ogji+tpi),
(2(u),) 't'

Using also (2.9) and retaining only the terms which are
of the first order in r, we obtain the following eigenvalue
relation

Bv), (t)
[di, (t),H(t)]l {v(0)}&=t'

I {v(0)}). (2.11)
(co&gi zpx) &

(2(oi)'"
(2.3)

and, satisfy the relations

co& being the frequency of the oscillator X. The operators
a& and d&~ satisfy the commutation relations

[a)„dx t]=8 „; [a~,d .]=[a~t,d„ t]=0. (2.4)

The normalized coherent states which are the right
eigenstates of the annihilation operator a~ are then
given by' '

I {v})—=II I»)=II exp{»~~'—»*tti} I0) (2 5)

Since the states
I {v(0)}) (which form a complete set)

are simultaneous eigenstates of the operator d„and the
commutator [ai,8], we must have

This implies that the conunutator [ai(t),H(t)] must
depend on the annihilation operators {a(t)} alone and
not on any of the creation operators a„t, i.e., that

[ag(t),H(t)]= fg({a(t)},t), (2.12)

&xl{v}&=» I{v}&,

8
gitl {v})— e

—ll ) I2 g*l &t2
I {v})

(2.6) where fi is some function of the set of annihilation
operators {8}and may also depend explicitly on t.
Since Eq. (2.12) is valid for every X, we note that H
can at most be linear in the creation operators, i.e.,8 is of the form

Here the symbol {v}is used to denote the sequence of
complex numbers vi, v2, vi, (vx being the eigen-
value of ai); IO) denotes the vacuum (lowest energy)
state and 8/Bvi denotes formal partial differentiation
with respect to vq keeping eq* and all other variables
fixed.

To study the time evolution of the system, one can
work either in the Heisenberg or in the Schrodinger
picture. In the Heisenberg picture, the state is fixed and
we consider the time evolution of the system in terms
of the time evolution of the operators. The operator 8~
satisfies the Heisenberg equation of motion

H=Z ' 'f ({a},t)+a({a},t), (2.13)

+Q{Fi(t)a), (t)+Fg*(t)ag(t)}+p(t), (2.14)

where g is some other function. Further since II is
Hermitian, we see on taking the Hermitian ad.joint of
(2.13) that H is also at most, linear in the annihilation
operators {a}.Hence we conclude that H is of the form

B=g P (u),„(t)a), (t)d„(t)

dux(t)
i = [ai(t),8(t)],

where Fi, is some arbitrary function, the matrix &ex„(t)

(2 8) is Herrnitian and p(t) is real, i.e., that

and the problem then is to find how the state
I {v(0)})

behaves in relation to the time-depend. ent operator
dx(t). In particular we are interested in finding the
conditions under which the state

I {v(0)})is an eigen-
state of ai(t) for every X and for all times t with an
eigenvalue vi(t). For very small r, we can write, using
(2.g),

ax(t+r) = &x(t) —~r[ax(t) H(t)]+O(r') (2 9)

If the state
I {v(0)}),which is an eigenstate of ai(t)

with an eigenvalue vi(t), be also an eigenstate of
ai(t+r) with an eigenvalue vi(t+r), we must have

dg(t+r) I {v(0)})
=»(t+r)

I {v(o)})

Bv), (t)= v, (t)+r +O(r) l{v(0)}&. (2.10)

cog„(t)=a)„i(t)*; p(t) =p(t)*. (2.15)

i—
I {v(t)})=HI {v(t)}&

dt
(2.16)

'~ See for example Ref. 11.

We have thus shown that the necessary condition on
the form of the Hamiltonian consistent with the re-
quirement that the states which are initially coherent
remain coherent at all times is given by (2.14). Though
the condition for suKciency is also built in the proof,
one can see directly that if the Hamiltonian is of the
form given by (2.14) the states which are initially co-
herent remain coherent at all times. "

The same conclusion can be obtained by working in
the Schrodinger picture. In this case the operators {a}
and {at} are fixed but the state changes. The time
development of the state is governed by the Schrodinger
equation
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Let us consider the case when
l {s(t)})is an eigenstate III. TIME EVOLUTION OF COHERENT STATES

of az with an eigenvalue vz(t) for every )I. and. for all t. —EXPLICIT SOLUTION
Again for very small r, we can write, using (2.16),

Accorchng to Eq. (2.14) the general form of the

l {s(t+r)})=l {s(t)}) ir—IJ
l {st)})+0(rs) (2 17) Hamiltonian (in the Heisenberg picture) consistent

with the requirement that the states which are initially
Since we require that

I {s(t+r)})is an eigenstate of ttz coherent remain coherent at all times is given by
with eigenvalue sq(t+r), we also have

tl~l{s(t+r)})

clsg(t)= .,(t)+, — +O(. ) l{.(t+,)}). (2.18)
Bt

8=Q Q cog„(t)dg'(t) d„(t)

+g{F~(t)4'(t)+F~*(t)A(t) }+P(t) (3 1)

If „(217) „d t,„„l „h „h;h The operator ag therefore satisfies the following equa-

are of 6rst order in v-, we obtain the eigenvalue relation

Beg(t)
LaAjl{ (t)})=i I{ (t)}).

Bt
(2.19)

day/dt = —iLd, II1
i g—~,„(t)d„(t)—iF„(t).

(3 2)

Hence, following an argument similar to that given in
connection with the Heisenberg picture, it is readily
seen that the general form of the Hamiltonian con-
sistent with the requirement that the states which are
initially coherent remain coherent at all times is given
by"

II=K Z to~o(t)&~t&o

+r,{F (t)
" '+F *(t)" }+P(t) (2 20)

Let us rewrite Eq. (3.2) in a matrix notation

dtt/dt= i (t) tt(t) —iF (t), —

where a and F are the column vectors

(3.3)

(3 4)

and co is the Hermitian matrix

(3.6)

(3 7)

Here U(t) is the unitary matrix

where Fq is some arbitrary function, the matrix &oq„(t)
is Hermitian and P (t) is real, i.e., they satisfy Eq. (2.15). terr (t)

It is interesting to note that if one expresses the ~(t) = (3 5)
Hamiltonian in terms of the variables (g&„pq) then the Ceggs t

form (2.14) or (2.20) is at most quadratic in jq and pq.
For such systems the dynamical brackets of the Wigner-
Moyaprphase-spaceformu]ationofquantummechanics In order to solve Eq. (3.3), let us erst assume

(in which the Weyl's rule of association between opera- F(t) =0 &n t»s case we have

tors and functions is used) reduce to Poisson brackets,
so that quantum and classical equations of motion are da/dt= —iso (t) tt (t),
identical. ""If the form of the Hamiltonian is given by
(2.14) or (2.20), a similar result holds even if one is whose formal solution is given bym

using the phase-space formulation when the rule of
association between operators and functions is that of u(t) = U(t) u(0).
normal ordering. "

'6 Apart from the c-number term P(t), this form of the Hamil-
tonian has been noted as an example by Glauber (Ref. 11).
However, as is shown here, this is the most general form of the
Hamiltonian, consistent with the requirement that the states
which are initially coherent, remain coherent at all times.

'r (a) E.P. Wigner, Phys. Rev. 40, 749 (1932); (b) J. E. Moyal,
Proc. Cambridge Phil. Soc. 45, 99 (1949).

's (a) M. S. Bartlett and J. E. Moyal, Proc. Cambridge Phil.
Soc. 45, 545 (1949); (b) T. F. Jordan and E. C. G. Sudarshan,
Rev. Mod. Phys. 33, 515 (1961); (c) E. C. G. Sudarshan, Lectnres
in Theoretical Physics (W. A. Benjamin Company, Inc., New York,
1962), Vol. 2, p. 178.

"C.L. Mehta, J. Math. Phys. 5, 677 (1964).

U(t) = exp i co (t')—dt'
0 +

(3 8)

and the subscript + denotes the time-ordering opera-

"See for example F. R. Gantemacher, Applicator ons of the'
Theory of 3fatrices (Interscience Publishers, Inc. , New York,
1959), Chap. IV.
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tion defined by the following relation":

expI —i ~(t )dt'
I

t tI

= 1++(—i)" dti dts
n=l 0 0 0

( i)n
= 1++ dti' ' ' dt~ M(tt) ' ' 'M(t„)

which, when written in the explicit form, reads

di(t)=Q Ui„(t)d„(0)

t' P—P Ui„(t) U„.t(t')F. (t')dt'. (3.13)

Equation (3.14) satisfies the boundary condition at t= 0
and the fact that it satisfies (3.3) can be verified by
direct differentiation and making use of Eq. (3.10).

From (3.15) we see that the eigenvalue of the operator
az(t) is given by

&~(t)~(t) . ~(t ) (39)
nit = Ui„tt„0

To verify that (3.7) is the solution of (3.6), one only
has to differentiate (3.7) and use the following relation
which is obtained by differentiating (3.8) and using
(3.9)

U(t) = —iso (t) U(t) .

In the case when the matrices to(t) and &o(t') com-
mute, i.e., when

i P—P U,„(t) U„.t(t')F, (t')dt'. (3.16)

Explicit solution can also be obtained in the Schrod-
inger picture. In this case the operator di is time-
independent; however, its expectation value does depend
on time and satisfies the equation of motion

we can write

I co(i),co(t')]—=0, for all t, t', (3.11) i—({~(t)) I dil {e(t))&= ({~(t)) I I d,Ifjl (e(t) )& (3 17)
dt

(
U(t) = expI i to(t')dt' I—

=expI i co(t')dt' I. (—3.12)

If
I fe(t))& is an eigenstate of et', we see from (2.20)

that 8 must be of the form

B=Q P co),,„(t)t4ttt„

+r.{F(t) '+F *(t)" )+P(t) (3 18)

(3.19)Ui(t) =—i P a)i„(t)e„(t)—iF),(t),

an equation similar to (3.2). Hence if we proceed in a
similar manner as in connection with (3.2) we obtain~(t) = iU(t) Ut(t) = —iU(t) Ut(t)

=-' LU(t) U'(t) —U(t) U'(t)], »(t) =Z Ui. (t)e.(o)

Equation (3.17) then gives
However in the general case when L&o(t),eo(t') j/0, U(t)
cannot be expressed in such a closed form. On the other
hand if we are given the unitary operator U(t), we can
readily evaluate co(t) in all cases from the relation

which is obtained on multiplying Eq. (3.10) by i Ut(t)
on the right and using the fact that U(t) is unitary.

One can now write the solution of (3.3) in the more
general case when F(t)WO

d(t) = U(t)d(0) —iU(t) Ut(t')F(t')dt', (3.14)

"Such time-ordering operations are also used in quantum field
theory; see for example S. S. Schweber, An Introduction to
Re4tieistic Quorttum Field Theory (Harper and Row, New York,
1961),pp. 330—334.

Alternatively one can write U(tl as a "product integral" in
the form

t N

U (t) = exp —i co t')dt' = lim exp( —ibtco(t —nest) ).
+ &~~ n-O¹t=t

i P g—Ui„(t) U„.t(t')F. (t')dt', (3.20)

where U(t) is the unitary matrix given by (3.8).
We see that the eigenvalues obtained in both the

Heisenberg and the Schrodinger pictures I Eqs. (3.16)
and (3.20)j are identical.

The state
I (e(t))) which is an eigenstate of di with

eigenvalue vi(t) (for all X and for all t) is thus given by
the following equation

I (~(t)))=III»(t) &

=exp(Z(»(t) dit —»*(t)~i)}I o& (3 21)
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so that

some special cases:
t =—coo)0

L t s discuss

d (4.6) thaild P —=0. Equations (4.5) and

a(t) =e '" oat(0-),

(4.10)b(v) = it' (v —opp/2tr) d(0)t,&')F, (t')dt', (4.1)—iP+UI, „(t) U„. t, ' ', 1
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—toIOt etoIOt

0

k(v) = g (f)e21I'tvttgtI
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'
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on Press, Oxford, England, 19, n e .,
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of (4.23) we obtain

COO

b(.)=a(0) si .——
i

2~)
3.0

Strp
(ct'+p')'t'e e "~~"I)sin(tr(2trv —top)

—tan —
'(cr/P)) 0(2trv —ppp); (4.24)

where 0(x) is the Heaviside step function

e(x)=1 1f x&o,
=0 if x(0. (4.25)

The eigenvalue b(v) of the operator b as given by
(4.24) is plotted in Fig. 2.

Let us consider next an explicit case when tp(t) is not
of the form (4.21) but is given by

6) (t) = tpp—
(t ~)'+PI (t+~)'+Ps

p)p) 0, P)0. (4.26)

GOp

b (v) = a(0) bi v ——
i

2~i

If we substitute (4.26) in (4.6) and use Eqs. (4.7) and
(4.5) we obtain, after simplification, the following ex-
pression for b(v):

I I I I I t 0 I I

-5.0 a]p 0 a] p
tgp

5.0

components also and hence is no longer an analytic
signal, as was expected. For comparison, we plot tp(t)
given by (4.26) in Fig. 3 and the eigenvalue b(v) of the
operator b which is given by (4.27) in Fig. 4.

Qase 4. Forced oscillator with time dependent f-requency.
In the general case when the frequency cv is time de-
pendent and the forcing term F(t)AO, we have [Eq.
(4 5)j

a(t) = U(t)a(0) —iU(t) U*(t')F(t')dt', (4.28)

where U(t) is given by (4.6). If we denote the Fourier
transforms of U(t) and F(t) by u(v) and f(v) re-
spectively, i.e., if

FgG. 3. Time dependence of the frequency of an interacting
harmonic oscillator in a special case when a(t) is not an analytic
signal.
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FIG. 2. Frequency spectrum of d(/) for an interacting harmonic
oscillator with co(t) given as in Fig, 1.
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FIG, 4. Frequency spectrum of 4(t) for an interacting harmonic
oscillator with pt (t) given as in Fig. 3.



'U, (, )p(t )dt',U(t) ~(0)—iU(t)

ATF Ss « OHEREDyNAM I C y205

b(„)=u(.)~(0)+

(4.31)v' —"

ression foi b(") 'the fp]& w»g expr

u(v) —u(v+" )
b(v) =

)
—2w&&Idv

I

(4.37)

(4.»)

(4.39)

f(v) = 2~i&Idt

(4.41)u(v) =
(4.32)

(4.42)

)~(t) =~o+2 ~
(t (»)'+pi i

f( )
—2~s~&dv,p(t) =

well aspsitive- as we

„d p(t), th' ' . ;,„by (3.8) '"

(4 31) that &(t
'

Fourier repre-
where z(t) a

nitary matrix g

see frpm
negative-«e l

n be seen tha&

d second.
b is the colum

V

b( )=
(b„( )]

s respective y)
el] as negat've-

terms r
o tive- as wecontain p

of F(t)transf orms

comp»e"" '

t,f "(t) is»a"
„both the

yt is also evident t
cy comp» n"s '

t l Fnrther le& ns
d („), respectiveiyI ' '

art and t e c-
ative-frequency

(4.40

q-numb . ~

l since a n g
l th t frpIIl the

be analyt'
of them cannot

he number

tic signa s,
ance t, a"utionfrom pn o

3 abpve that t

—OO

tr
h seen in case

analytic sign
r. We have se

0 js aIlpart, name y
the fpim give

U(t)e' '"

pf', „'d,„lyif (t) ha'' '

d +&» are rea„&» are non "eg
«of d(t), by

where coo and
the c-number parIf we denote econstants.

A (t), i.e., if we write

U(t) = u (v)& 2wivldv— (4.43)
t) U*(t')F(t')dt',A(t)= iU t—

we have, using aalso (4.6),

F t =iU(t)—(U*(t)A(t))
dt

(4.33)

(4.42), (4.43) and its Her-
the Fourier trans-4.36) and taking epint ln

we obtain a er
mitian a j

the resu ting
ssion for v .S1IIlP 11'6cations the o ow'

u(v) —u(v+ v')

=iA(t) (o(t)A (t). — (4.34) b(v) =u(v) d(0)+

6 t is an analytic 'gsi nal if
dF()i i b

Hence we
is iven ya i.e.)

y t II I Id II (4 44)&(ut(v") f(v"—v')dv dv

egree

e rees of Freedomarith Several Degrees o

e u E s. (4.1), (4.3), andLet us rewrite Eqs, , nd
notation

()

tie signal, w1th the onlyA t isanar irbitrary analytic signa, w' nl

We wi ll now consider ri
Soof freedom.

Iui„(v) —ui„(v+ v

ZZ

X v . "—' dv'dv". (4.45)XNgtIt P o & P dP dP

rt

= —'U(t) Ut(t')F (t')dt',A(t)= iUt— (4.46)

.45 that d(t) has, in genera,

t the c-num erI.et us d.eno e
letusw i el.e.)



1206 MEHTA, CHAND, SUDARSHAN, AND VEDAM

where A(t) is the column vector whose elements are weobtainfrom (4.1) thefollowingexpressionfor d), '(t):
Aq(t). On differentiating (4.46) with respect to t and
rearranging terms, we then obtain

d&'(t) = ( Ue(t) }&,d&'(0) —i(ve(t) }), {Ug*(t') }&,

F (t) = iA(t) —iU(t) Ut(t)A (t) . (4.47)

X(VF (t') }ddt'. (4.54)
Now, if we require that d), (t) is an analytic signal,

both the terms on the right-hand side of (4.36) must We note that unlike in (4.1), the different modes are
separately be analytic signals. This will be so if and now uncoupled and the problem becomes similar to
only if U(t) and F(t) satisfy the following requirements: that relating to systems with one degree of freedom.

u(v) =0 for v(0; (4.48)

(1) The matrix U(t) is an analytic signalpp i.e., APPENDIX: GENERAL FORM OF A UNITARY
MATRIX THAT IS AN ANALYTIC SIGNAL

(A1)fv(t), v(t') j=0 for all t, t',

In this Appendix we will show that if a unitary
(2) F(t) is given by (4.47) where A(t) is the column matrix U(t) is an analytic signal and satisfies the

vector whose elements are arbitrary analytic signals condition
subject to the condition A (0)=0.

The general form of a unitary matrix which is an ana-
lytic signal is not known. If, however, the unitary matrix
U(t) also satisfies the property that the commutator

it must be of the form given by (4.50).
Since U(t) commutes with U(t'), we can find a time-

independent unitary matrix V such that

LU(t), v(t')/=0, for all t, t', (4.49) U(t) = Vt U, (t) V, (A2)

it is shown in the Appendix that U(t) must be of the
form

U(t) Vte 4y i~pt g g—(k)—(t) V (4.50)

2l(k) (t) (tI &(P)+.&P(k)) (t] &(k) &P(k))—1 (4 51)

where I is the identity matrix, n(") are real diagonal
matrices, and P(") are non-negative definite diagonal
matrices. All the matrices V, y, (pp, n(~), and p(~) are
time independent.

It is of interest to note that when U(t) satisf(es (4.49)
or, equivalently, when (p(t) satisfies (3.11), we can write

v(t) = vtv, (t)v, (4.52)

where V is some time independent unitary matrix and
Uq(t) is a diagonal matrix. In this case, if we make a
unitary transformation on the canonical annihilation
operators d), (t), viz. ,

Here V is a unitary matrix, p is a real diagonal matrix,
&pp is a non-negative definite diagonal matrix and gq
denotes product over an arbitrary number of Slaschke
matrices

where Uq(t) is a diagonal matrix whose elements are
unimodular. Thus if U(t) is an ana, lytic signa, l, so is
Uq(t). The matrix elements of U~(t), which are now
unimodular analytic signals, must therefore be of the
form"

(Ud(t) j&,
——exp( —ip), —i(pp&t) g 8),(" . (A3)

t—nil')+ipse("&
)

(k) ip„ (k)
(A4)

where n&,
'"' are real and pi("& are non-negative constants.

We can therefore write

Uq(t) = exp( —iy —i(ppt) g (tl n" +()ip "—)()

X (tl —a(")—ip("') ' (A5)

where y and n(~) are real diagonal matrices; p)p and P'"&

are non-negative definite diagonal matrices, I is the
identity matrix and g& denotes product over an arbi-
trary number of factors.

From (A5) and (A2), we conclude that U(t) must be
of the form given by (4.50), viz. ,

Here y}, is a real constant, Mop is a non-negative constant
and P&, denotes product over an arbitrary number of
Blaschke factors

d), (t) —+ a), '(t) = V),„d„(t), (4 53)
U(t) = Vte '' '""g (tl —n(')+iP ("))

6 A matrix will be said to be an analytic signal, if all its matrix
elements are analytic signals. X (tl —o, ("&—ip("&) 'V. (A6)


