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In Paper I of this investigation, dynamical laws which describe the space-time development of second-
order coherence tensors of a quantized electromagnetic field éz vacuo, and the associated conservation laws,
were derived. In the first part of the present paper these results are specialized to stationary fields. Second-
order cross-spectral tensors for such fields are then introduced, and some of their properties are discussed.
A relation analogous to the Wiener-Khintchine theorem of the theory of stationary random processes is
derived. Various non-negative-definiteness conditions obeyed by the cross-spectral tensors are established,
and equations which govern the spatial variation of these tensors are deduced. Certain analytic properties
of the correlation tensors are derived, and some of their consequences are examined. It is also shown that in
the limiting case when the two space-time arguments of the coherence tensors coincide, two of our con-
servation laws reduce to the averaged form of the energy and the momentum conservation laws of the

electromagnetic field.

I INTRODUCTION

N Paper I of this investigation,® equations were de-
rived, which govern the space-time development of
the second-order coherence tensors of a quantized elec-
tromagnetic field. In the present paper some conse-
quences of these equations are deduced for the case
which is of particular importance in practice, namely,
the case when the field is describable by a stationary
ensemble. Some spectral properties of such fields are
also discussed.

We begin in Sec. II with specializing the field equa-
tions and the conservation laws derived in Paper I to
stationary fields. It is shown, in Appendix II, that in
the limiting case, when the two space-time points coin-
cide, the real parts of two of the conservation laws re-
duce to the average form of the usual laws for the con-
servation of energy and momentum.

In Sec. IIT we introduce the concept of the (second-
order) cross-spectral tensors of a quantized stationary
electromagnetic field and discuss some of their proper-
ties. In particular, we establish the Wiener-Khintchine
theorem for such a field. Our formulation is free of the
assumption of homogeneity of the field, made implicitly
in an earlier published version of this theorem. Various
non-negative-definiteness conditions, obeyed by the
cross-spectral tensors, are established and the equations
which govern their spatial variation are also given.

II. DYNAMICAL EQUATIONS AND ASSOCIATED
CONSERVATION LAWS

Since the most commonly occurring fields encountered
in nature are stationary, we begin by specializing the
basic dynamical equations derived in Paper I to fields of
this type. For a stationary field, the density operator
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commutes with the Hamiltonian operator and all the
second-order correlation tensors depend on the two
time arguments {; and ¢, only through the difference?

(2.1)

We will therefore write &;;(ry,rs,7) in place of
8:;(ry,t1; Ta,t2) etc. In the differential equations (2.27a)—
(2.34a) and (2.27b)—(2.34b) derived in Paper I we may
then replace 9/t by — /97 and 9/t by 8/97, and we
obtain the following dynamical equations relaling to
second-order coherence tensors of a stationary field in
vacuo:

T=ls—11.
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2Y. Kano, Ann. Phys. (N. Y.), 30, 127 (1964).
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9 19
ei—81;= —— —My, (2.2b)
72i c ot
a3 10
eij—Nyy=——6Eu, (2.3b)
67’21; c ot
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—&,=0, (2.4b)
0r2;
[¢]
—M=0; (2.5b)
0rz;
i) 19
€;5—JIC;/=——u, (2.6b)
3725 cor
9 19
eiji—Iyy=—— —3u, (2.7b)
(91’25 cor
—3C,;=0, (2.8b)
72i
d
— 9t,=0. (2.9b)
0r2;

As in Paper I, summation over repeated dummy indices
is implied.

The differential equations (2.2a)-(2.9a) and (2.2b)-
(2.9b) are identical with the differential equations which
couple the second-order coherence tensors of the classical
field.?

For the sake of completeness we also write down the
second-order differential equations which follow from
Eqs. (2.2)-(2.9) or more briefly from the second-order
differential equations of Sec. III of Paper I of this in-
vestigation. Thus from* 1(3.3) and I(3.4) we have

1 92
Va28k1= - -—gkly
¢ ar?

(a=1, 2). (2.10)

Each of the other three correlation tensors also obeys,
of course, such a wave equation.

The remaining second-order equations are immedi-
ately obtained from Egs. I(3.5)-1(3.8) and are

0%Cjn 1 9285
€ijk€mnl =—— , (2.11)
071;072m c? 972
628]'7. 1 azsclcl
€ijk€mnl =—— , (2.12)
071,07 2m ¢ 97?

¢ P. Roman and E. Wolf, Nuovo Cimento 20, 462 (1961). There
is a misprint in Eq. (3. 12b) of this reference: 9,,., must be replaced
by ng

4 All equations preceded by “I” refer to equations of Paper I
(Ref. 1).
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My 1 8%
€;jk€mnl =— , (2.13)
6711;(91’2m ¢z 972
0% jn 1 62imkz
€;5k€mnl = (2.14)

O71079m 2 072

From Egs. (2.2)-(2.9) one may derive a number of
conservation laws. Alternatively, and more simply, one
may obtain these laws immediately from the conserva-
tion laws of Sec. IV in Paper I by specializing to sta-
tionary fields. For this purpose we introduce the tensors

U si(t1,09,7) = 8;;(x1,re,7)+3Ci;(re,r2,7) ,  (2.15)
S (r1,r2,7) =Ny (r1,12,7) — Wi (r1,xe,7),  (2.16)
and the associated scalars, vectors, and tensors
U(ry,re,7) = Upi(rs,re,7) , (2.17)
S(r1,re,7)=Spi(r,re,7) , (2.18)
U i(ry,x5,7) = €35 U ji(t,12,7) | (2.19)
Si(r,r0,7) = €8S a(r1,12,7) (2.20)
Ti(rs,xe,7) = U ;;(r1,re,7)
+ U ji(ty,re,7) — 84U i (ry,re,7),,  (2.21)
Qi(1,re,7) = S;(x1,re,7)
+S;:(r,x2,7) — 8:;Sri(rs,r2,7) . (2.22)

Some of these quantities are generalizations of quan-
tities which enter the usual conservation laws of the
electromagnetic field. In fact, as is shown in Appendix
I [Eq. (A1.19), (A1.21), and (A1.22)], the quantities
(1/4m)U(r,1,0), (c/4m)S(r,r,0), (1/4mc)S(r,r,0), and
(1/4m) T ;;(x,r,0) represent the expectation values of the
electromagnetic energy density, the Poynting vector,
the field momentum density, and the Maxwell stress
tensor, respectively, provided that contributions of the
vacuum field are neglected.

The conservation laws (4.11), (4.12), (4.13), and
(4.15) of Paper I and the corresponding laws involving
differentiation with respect to the second space-time
point are then given by the following set of equations:

19
Vo U=F-—5,

(2.23)
c ot
19
Vo S=-—U, (2.24)
cor
a 190
Tmi="F~ "‘Sm, (2.25)
aral cor
d 19
Om=t-—Un (2.26)
7 al cor

Here the upper or lower signs are taken on the right-
hand sides according as « takes on the value 1 or 2,
respectively.
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The conservation laws (2.23)—(2.26) are identical in
form with the conservation laws derived for the classical
fields. It was shown there that the real part of the equa-
tions of the form (2.24) and (2.25) may be regarded as
the generalization of the usual laws of conservation of
energy and momentum, respectively, in their averaged
form and reduces to them in the limit r, — r; and 7 — 0.
We show in Appendix IT that the same is true for Egs.
(2.24) and (2.25) relating to the quantized field, pro-
vided that the contributions from the vacuum field
are omitted.

Finally, we note a number of relations that will be
needed later. We have, from Eqgs. 1(2.20)-1(2.23),
specialized to a stationary field,

8ji(ry,re,7)= &:;*(xs, 11, — 1), (2.27)
3ji(r1,19,7) =3Cs*(x2, 11, —7), (2.28)
m’lﬁ(l‘l,rz,T) = Emj*(rg, ry, — 7') . (229)

Making use of these relations, we see that the tensors
Uij, S”, Tﬁ, and Q,;j which are defined by (215), (216),
(2.21), and (2.22), obey the relations

Uji(ry,te,7)=U;j*(ts, 11, —7), (2.30)
Sii(ryre,7)=—S:;*(12, 11, —7), (2.31)
Ti(rrre, )= Tij(t1,t0,7) = Ts*(x9, 11, —7) , (2.32)
Qji(ry,re,7) = Qui(r,te,7) = — Q¥ (r2, 11, — 7).  (2.33)

From (2.17) and (2.30) it readily follows that
ImU(r,r,0)=0. (2.34)

From (2.20) and (2.31) one has

ImS;(r,r,0)=0, (2.35)
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and from (2.32)

Im7;(x,r,0)=0. (2.36)
In a similar way one can show that
ReS(r,r,0)=0, (2.37)
ReU(r,1,0)=0, (2.38)
ReQy;(r,r,0)=0. (2.39)

III. THE CROSS-SPECTRAL TENSORS: A
QUANTUM-MECHANICAL ANALOG
OF THE WIENER-KHINTCHINE
THEOREM FOR THE ELECTRO-
MAGNETIC FIELD

In order to understand some of the spectral properties
of the field it is desirable to introduce another set of
second-rank tensors. These tensors appear naturally if
one considers the correlation amongst the spectral com-
ponents of the positive and the negative parts of the
field operators.

Consider the Fourier transforms % (r,») and ¢ (r,»)
of E®(r,) and EC(x,f), respectively, [cf. I(2.6) and
1(2.7)], viz.,

o0
P (rp)= E®)(r ety

—0

(3.1)

00
e (tp)= EO)(r,t)e2mivids.

—00

(3.2)

The “spectral correlation” may be defined as the ex-
pectation value of the normally ordered product of the
two operators ¢ (ry,r) and €% (ry,v). If we use (3.1)
and (3.2), this correlation is given by

tr{pe; 2 (r1,2)8; P (r20) } = / / tl‘{ﬁEi(_) (l‘1,t1)Ej ) (rg,ts) yexp{2wi(v'to—vta) }dtrdls

=/ / 8:i(rta; I9,l2)expf 27riv(lz-Ifl)}eXp{ZWi(VI*V)lz}dlhdiz.

Since the field is stationary, &;;(ry, rs, fa—71) may be
written in place of 8;;(ry,l1; rs,t2) and we have, if we in-
troduce new variables 7=t,—#, 0=1,

tr{pe; O (r1,0)8;® (120")}

)

0
=/ (gij(rl,rz,T)eZ”i”7dT/
—o0 —0

= Wq;j (e) (rl,rg,v) 5(1}— Il/) y

e21ri0 (v’-—v)do

(3.3)

5P. Roman and E. Wolf, Nuovo Cimento 20, 477 (1961).
Equation (2.26) of this reference is incorrect. It should read

=0, — % 8— 87, W_)WT’

where superscript 7" denotes the transpose.

where$

©

Wi @@eyrep)= [ 8i(ryrer)e ™ dr.  (3.4)

—

¢ We implicitly assume here that the Fourier transform (3.4) of
&;; exists, as will be the case in most situations of practical interest.
Whether or not the Fourier transform exists in the ordinary sense,
one may define a frequency distribution tensor Fy;( (ry,rs,») by
means of a Fourier-Stieltjes integral. In the case when Wy;(©) exists

OF (O [dp=TW ;).
However, we will not consider here this refinement which is well
known in the theory of stationary random processes [see for
example, A. M. Yaglom, An Introduction to the Theory of Stationary
Random Functions (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1962), Secs. 10 and 157].

Note added in proof. The tensor analogous to W (® was discussed
in the framework of the classical theory of electromagnetic fields
in a recent paper by A. D. Jacobson [IEE Trans. Antennas Propa-
gation 15, 24 (1967)]. He defined this tensor as the Fourier
transform of the corresponding second-order correlation tensor &
rather than as a spectral correlation.



157

Since 8(v—»")=0 if v5%»’, we see that the different
frequency components of the two operators € and €
at any lwo (distinct or coincident) points are uncorrelated.
Correlation only exists for spectral components of the
same frequency and may then be expressed in the form

v+Av/2
tr{ﬁéi(‘) (I‘l,V)éj +) (l'g,V') }dvl

= Wij(e)(r17r2;”) )

lim
A0 f avsa

(3.5)

where the tensor W9 is the Fourier transform of ihe
second-order coherence tensor 8;;. It is evident that in the
language of the theory of random processes W ;;(r1,re,v)
is the (second-order) eleciric cross-spectral tensor of the
quantized electric field.

Let us now set

w® (I‘,I‘,V) = Wii(E) (l‘,l‘,V)

v+Av/2
= lim / tr{pe O (xp) - e () }dv', (3.6)
A0 J o avse
8(r,r,7)=8,(r,1,7)
=tr{pEO(r,) - ED (r,14+7)}. 3.7)
From (3.4) it then follows that
W (t,rpy)= 8(r,r,7)e* ™ dr (3.8a)

—00

8(t,1,7) = / W©(t,rp)e2dy.  (3.8b)
0

By writing the lower limit of integration in (3.8b) as
zero rather than — o, we imply that & does not contain
any negative-frequency components. That this is so,
follows from the analytic behavior of &, as shown in
Appendix I, Eq. (A1.5).

According to (3.7), &(r,r,7) represents the trace of
the electric correlation tensor for the special case when
the two points r; and r; coincide (r;=r;=r). Moreover,
it follows from (3.8b) and Eq. (A1.17) of Appendix I that
(1/4m)W ) (r,r,v)dv represents the contribution from the
frequency range », v+dv to the expectation value of the
electric energy at the point r, provided that the contri-
bution from the vacuum field is neglected. The Fourier
transform relation (3.8b), which connects &(r,r,7) and
W@ (r,rp) is thus evidently the quantum-mechanical
analog of the Wiener-Khinichine theorem™ of the theory
of stationary random processes.

7 A restricted formulation of this quantum-mechanical analog
was given by R. J. Glauber [Phys. Rev. 131, 2786 (1963)].
Though not explicitly stated, his formulation applies only to the
narrow class of stationary fields which are spatially homogeneous.
This restriction is evident from the fact that Glauber’s expression
(10.15) for the energy spectrum is independent of position; this
result is a consequence of the incorrect assumption, made in his
Eq. (10.13), that for any stationary fields his P({«x}) function is
independent of the phases of the az’s. It has been shown by Kano
(Ref. 2) that for a radiation field with a finite or countable infinite
number of modes N (> 1), the phase independence implies not only
stationarity, but also homogeneity of the field.
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Returning to Eq. (3.5), we note that the electric
cross-spectral tensor satisfies the relation

ng(e)(rl,l'z,v)= W,;j(e)*(l‘z,l'l,v) . (39)

Moreover, this tensor is non-negative-definite in the
sense that for any arbitrary set of functions fi(r),
(i=1, 2, 3), for which the integral on the left-hand side
of (3.10) below is defined,

fd371/d372 fi*(rl)W,-,-(e)(rl,rz,u)f,-(rg)20. (310)

The proof of this inequality as well as its relationship to
the non-negative-definiteness condition I(5.4) which the
electric coherence tensor obeys, is discussed in Appendix
IIT. Here we only note that with the special choice
i) =08480® (r—ry), (3.10) implies that each diagonal
component of the tensor W;; for ry=r, is non-negative,
so that

W@ (t,xp)=W ;@ (t,r,v) 20, (3.11)

a result that was to be expected from the physical sig-
nificance of W9,

By analogy with the electric cross-spectral tensor, we
may introduce three other cross-spectral tensors, which
involve the magnetic field. Let A and A be the
operators which bear the same relationship to the mag-
netic field operator as &%) and 8 bear to the electric
field operator. Then [cf. (3.1) and (3.2)]

0
AP ()= A®(x)eividt,

—00

(3.12)

O@p)= | AO(,)e 2wt

—00

(3.13)

where H® and H©® are the positive- and negative-
frequency parts of the magnetic field operator . We
then readily find, by analogy with (3.3), that

tr{phs O ()b 4 (10') }

=6(v—u’)Wﬁ<")(r1,r2,v) s (314)
tr{pe; ) (r,2)hy P (120}
=8(w—v )W ;™ (r,rev), (3.15)
tr{ph: O (r1,0); (r2,)}
= B(V—V')W@',‘(")(Il,rg,v) , (3.16)
where
W,;j(h) (I‘1,l‘2,V) = GCij(rl,rz, 7)62“'” dr, (3 1 7)
W 350m) (1, 2,v) = N;j(rs,re,7)e2 @ dr, (3.18)
W,'j(") (I'l,l'z.ll) = E)“Lﬁ(rl,rz,r)eh”'”dr .

o (3.19)
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The physical interpretation of Egs. (3.14)-(3.19) is, of
course, strictly analogous to that given in connection
with Egs. (3.3) and (3.8a). We may call W;® the
(second-order) magnetic cross-spectral tensors and
W™ and W™ the (second-order) mixed cross-
spectral tensors of the quantized electromagnetic field.
These tensors evidently satisfy the following relations
which correspond to (3.9):

W3 ® (t1,00,0) = W 3P (r2,11,0) (3.20)
qu;(m)(rl,rg,v) = Wij<")*(l‘2,l‘1,1/) . (3.21)

The Fourier inverse of the relation (3.17) is essentially
Wiener-Khintchine theorem for the magnetic field. If
we add this Fourier inverse relation and the relation
(3.8a) involving the electric correlation and recall the
definition (2.17) of U, we obtain the relation

U(rr,r) =/ {W©(txp)+W D (t,rp)}e 2 7dy. (3.22)
0

This relation expresses the Wiener-Khintchine theorem
for the total (electromagnetic) field.

There are corresponding relations involving the vector
S and the tensor 7'; defined by Egs. (2.20) and (2.21).
From Egs. (2.20) and (2.16) and from the Fourier in-
verses of Egs. (3.18) and (3.19), it follows that

00
Si(r,l‘,T) = €k
0

{Wik (=) (l',l',ll)

— W™ (r,rp)}e 2 7dy. (3.23)

From the physical interpretation of the vector S(r,r,0)
given in Appendix I, Eq. (A1.20), and from (3.21) it
then follows that the quantity

1
—€ip{ Wi ™ (1,1,0) — W, ™ (x,1,0) }dv,

4mc
(i=1,2,3), (3.24)

represents the contribution, from the frequency range
v, v+dv, to the expectation value of the field momen-
tum, provided that the contribution from the vacuum
field is neglected.

From Egs. (2.21), (2.15), (3.8b), and the Fourier
inverse of Eq. (3.17), it follows that

Tii(r7r)T) Z/ {Wﬁ(e) (r,r,u)—i-Wﬁ‘e) (l',l',l/)
0

+ Wii ® (I’,l’,l/) + I’Vji(h) (I',l‘,l/)
— 55;[Wkk<e) (r,r,v) + W™ (r,xp) JJe 2 7dy.  (3.25)

From the physical interpretation of the tensor 7;;(r,r,0)
given in Appendix I, Eq. (A1.22), and from Egs. (3.9)
and (3.20), it then follows that the quantity

1
2-{ Wi (e w)+ Wi (1,rp)
m

- %Bij[Wkk (e) (r,r,u)—}— Wkk ) (r,r,u)]}dy (326)
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represents the contribution from the frequency range »,
v+dv to the expectation value of the Maxwell’s elec-
tromagnetic stress tensor, provided that the contribu-
tions from the vacuum field are neglected.

Representations analogous to (3.22), (3.23), and
(3.25) also exist, of course, for the scalar S(r,r,7), the
vector U,(r,r,7), and the tensor Qy;(r,r,7).

The following non-negative-definiteness condition in-
volving the four cross-spectral tensors holds:

[ d*n / @Pra{ f* () Wi (r1,12,0) f(x2)
+g* ()W i;® (r1,12,9)g5(r2)
+ f* )W i (11,10,7)g(x2)
+g* ()W i; ™ (t1,109) f5(r2)} 2 0.

Here fi(r) and g(r), (i=1, 2, 3), are arbitrary sets of
functions for which the integral on the left-hand side of
(3.27) is defined. This inequality is established in
Appendix III. Here we only note that if we choose
g2:(r)=0, (i=1, 2, 3), we recover the non-negative-
definiteness condition (3.10) on the electric cross-
spectral tensor. If we choose f;(r)=0, (i=1, 2, 3), we
obtain a similar condition on the magnetic cross-spectral
tensor.

For the sake of completeness, we also write down dif-
ferential equations which couple the four cross-spectral
tensors. If we take the Fourier transforms of Egs.
(2.2a)—(2.9a) and use (3.4) and (3.17)-(3.19), we obtain
the set of equations

(3.27)

2wy
Gz]k—WJl (e) = —————Wkl(") , (3 .283)
371,‘ c
iy
€si—W 10 = —— W 4y | (3.29a)
71 c
2wy
€si—W 1 = —W 1@ (3.30a)
71¢ c
2wy
€W 1™ = — W 1, @ | (3.31a)
37‘1,‘ c
-——W“(“):O, (,u=e, h, m, or ), (3323’)

(91‘1,'

the arguments of all the W’s being ri,rs».
In a similar way, the Fourier inversion of Egs.
(2.2b)—(2.9b) gives the set of equations

2miv
iip— WO =—MWy,™,

(3.28b)
725 c
9 2wy
€iji—W 1;W = ———W ™, (3.29p)
7r9; 2
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d 2mwiv
€ Wl] = _Wlk(h) ) (3.30b)
723 [2
2wy
eij— W™ = ——W @, (3.31b)
Jra; c
d
—Wy®=0, (u=e, h, m, orn). (3.32b)

072,

From these two sets of equations one may derive, in
a way similar to that of the derivation of the equa-
tions of Sec. III in Paper I, the following second-order

equations:
4r2y?
(Va2+ ; )Wij(“)=0, (3.33)
c
(a=1or 2, u=e, h, m, or n);
9?2 dr2?
€;jk€mnl an (&= Wkl(h) 5 (3.34:)
071,072m c
9? 4r2y?
€jk€mnl— an(h)': W}cl(e) y (3.35)
071:072m c
92 4?2
€ijk€mnl— Win = — W™, (3.36)
971:072m c?
02 4722
€k €mnl WinW = — Wi, (3.37)
071,079m c?

This completes our discussion of the mathematical
framework of the second-order coherence theory of the
quantized field. An application of some of our results to
the study of the cross-spectral properties of blackbody
radiation will be described elsewhere.

APPENDIX I: ANALYTIC PROPERTIES OF THE
CORRELATION TENSORS AND SOME
OF THEIR CONSEQUENCES

Let F(f) be an arbitrary operator and let the super-
script (4+) and (—) denote its positive- and negative-
frequency parts, respectively, defined as in 1(2.6) and
I(2.7). The positive- and the negative-frequency parts
may be expressed in the form (cf. footnote 3 of Paper I)

1 Fi—r)
P ()= 15110 —
K T

dr. (A1.1)
w =T—17

Let G and G© be the positive- and the negative-
frequency parts, respectively, of another operator G,
and let us consider the correlation function

Clta—t1)= (FO(1)GD (1)), (A1.2)

where the quantum-mechanical expectation value is to
be taken with respect to a density operator of a sia-
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tionary field. We have, if we use (A1.1) and a similar
relation for G, ~

C(r)= lim lim —

m->+0 n2>+0 42
e (Ft—1)G+7—712))
X/ / dTIde A .
oo (r1Fin1) (ra—1ina)
Since the field is assumed to be stationary
<ﬁ(t— Tl)é(t+ T—T9) )= <F(t)@(t+ T+71—72)),

and using this result the integral on the right-hand side
of (A1.3) may be simplified by introducing new variables
a=73—r71, B=79+71. The integration over 8 can then
immediately be carried out and we obtain

<F OG@+7—a))

a—in

(A1.3)

C(r)= hm —

>+0 Qg

(A1.4)

The quantity on the right-hand side is nothing but
[cf. (A1.1)] the positive-frequency part of the correla-
tion function (A()G(t47)), so that we have the result

C=(FOOGD ) =(FOG+)®. (ALS)
In a similar manner one may show that
(FOOCO(t4))=(FOGU+7) . (AL.6)

The equation (A1.6) may be rewritten in the form

GO+ PO@)=(FOG(H+)) O
—([FHW),GOu+1T),

where [4,B7] denotes the commutator AB—BA.

It is seen from (A1.5) that the correlation function
C(r) contains only positive-frequency components.
Hence under very general conditions assumed here to
be satisfied,® C(7) is the boundary value on the real
7 axis of a function which is analytic and regular in the
lower-half of the complex 7 plane. This statement is
equivalent to saying that the real and imaginary parts
of C(r) are Hilbert transforms of each other,8 i.e.,

(A1.7)

1 r° ImC(7)
ReC(r)= ———P/ - dr’,
T Jow T—7T
(A1.8)
ReC(+)
ImC(r)= +—P / —d7’,
T J—» T -_T

where P denote; the Cauchy principal value of the in-
tegral at 7'=1.

In particular, if we choose # and G to be the Cartesian
components of the electric or of the magnetic field
operators at the space-time points ry, ¢ and ro, {47, re-
spectively, we may conclude that all the four correlation
tensors  &;;(ryre,7), 3Ci(ryre,T), My(ryre,r), and

8 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Clarendon Press, Oxford England, 1948), 2nd ed., Chap. V.
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Iij(r1,1s,7) are analytic signals.? Further, it follows from
1(2.20), specialized to stationary fields, that

Re&ij(r1,r2,7) = HE: O (11,t) E;P (1, 147))
+3(E;O (1o, t41)E D (11,0)).

If on the right-hand side we make use of the identities
(A1.5) and (A1.7), we find that

Re&-j(rl,rz,r) = %(Ei(rl,t)Ej(r2, i+ T)>
— (L (0,0, (12, 147)]). (AL9)

Now the term on the right-hand side, involving the
commutator, has a simple interpretation. To see this let
|0) represent the vacuum state, so that

E®|0)=0 and (0|E@=0. (A1.10)

The expectation value in the vacuum state of the opera-
tor E(ry,t)E;(rz, t4-7), which for short we denote by
(O] E«1)EA2)|0)=OH{EC ()+E:D(1))
X{L;9(2)+E;%(2)}]0)
=(0|[E:%(1),E;2(2)]]0), (AL11)
where (A1.10) was used. Now since the commutator is
a c-number, the expectation value of the commutator on
the right-hand side of (A1.11) may be replaced by its
expectation value with respect to any state of the field.
Hence the average of the commutator on the right-hand
side of (A1.9) is the vacuum expectation value (de-

noted by subscript “vac”) of the operator Ei(r1,0)
X E;i(rs, t+71), i.e.,
(CE:D (21,0), 59 (xs, t4-7)])
= (Bu(r,)Ej(ta. 147) vae.  (A1.12)
It follows that (A1.9) may be expressed in the form
Regii(rl)r%T) = %(Ei(rlyt)EAj(rzy + T) )
— %(E,‘(l‘l,l)Ej(l'z, t+ 7') >v30 . (Al 13)
In a strictly similar manner it may be shown that
RedC;; (r1,r2,7) = 5(H s(r1,) Hi(xs, t+17))
—HAi(r ) Hits, t4-7) hvae,  (A1.14)
ReN,j(r1,10,7) = 3(Es(re,0) H;(xs, t+7))
_%<Ei(rl,t)ﬁj(r2, t+ T) )vac ) (Al 15)
Reds;(r1,00,7) = 3(H i(11,0) By (x, t417))
- %(ﬁi(rlyt)Ej(r% t+ T) >vac . (Al . 16)
With the help of the relations (A1.13)-(A1.16) we
may readily write down simple expressions for quanti-
ties of special physical interest. We have from (3.7) and

(A1.13) and from the fact that, because of (2.27),
&(x,1,0) is real,

6(r,r,0) = g’i‘i(ryr’o) = %({E(r’t) } 2>_ %—({E(l‘,t) } 2>Vac )

? It follows that each of the quantities U, Sy, U, S, U, S, Ty,
and Qj;, defined by Eqgs. (2.15)-(2.22) is also an analvtic signal.
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so that
the expectation value of the eleciric energy density is
1/4m)E(x,r,0)+v.c., (A1.17)

where v.c. denotes ‘“vacuum contribution. Similarly,
the expectation value of the magnetic energy densily is

(1/4m)3C(r,r,0)+v.c. (A1.18)

On combining (A1.17) and (A1.18) and on using (2.17)
and (2.15), we see that the expectation value of the elec-
tromagnetic energy density is

(1/47)U (t,1,0)+v.c. (A1.19)

Further we have from (2.20), (2.16), (A1.15), and
(A1.16), on taking the real part and using (2.35),

Si(r,r,O) = Refiijjk(l‘,l',O)
= %[({E(r)t) Xﬁ(l',t) }1> R .
—{H(@ ) XE®@)}:) ]+ v.c.,
so that

the expectation value of the energy flux (Poynting vector)
is

(¢/4m)S(1,1,0)+v.c. (A1.20)

and

the expectation value of the electromagnetic momentum
density is
(1/47¢)S(x,1,0)+v.c. (A1.21)

Finally, we have from (2.21), (2.15), (A1.13), and
(A1.14) on taking the real part and using (2.36),

Tij(r)ryo) = %({El(r;t)EJ(r)t)>+ <E](r:t)E1(r)t)>
- 6ij<Ek(r;t)Ek(r’t) >+ <ﬁi(r;t)ﬁj(r)t)>
() Hix,0)— 6 Hi(r, ) Hi(x,0))}+-v.c.
so that

the expectation value of the Maxwell's electromagnetic
stress tensor is

(1/471') Tﬁ(l‘,l‘,O)‘,‘V.C. (A122)

APPENDIX II: LIMITING FORMS OF THE
CONSERVATION LAWS (2.24) AND ((2.25)

A. The Conservation Law (2.24)

Consider first the real part of the conservation law
(2.24), with a=1;

1 9
ReV1 . S(l’1,r2,’7) = —Re—U(rl,rz,'r) . (AZl)
¢ OJr

We examine each side separately. We have, if we use
(2.20), (2.16), (A1.15), and (A1.16),
Rev;: S(l‘l,rz,T)
9 I
= e BB~ BADE) Yve
71:
(A2.2)
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As before, the variables (1) and (2) in the various
operators refer to space-time point ry,¢ and rs, 47, re-
spectively, and v.c. denotes a vacuum contribution.
In (A2.2) we proceed to the limit r; — r.=r, 7 — 0 and
obtain the formula

9
ReV1-S(ry,r2,7) | =rymr; r=0= %eifk<—(Ejﬁ k_HjEk)>

oH oF
P L W

%ez]k< j

a7; ar;
Here and elsewhere in this Appendix, the variables not
shown explicitly in the various operators are r, f, e.g.,
E;=E;(r,), etc.

If we use the operator form I(2.1) and 1(2.2) of Max-

well’s two main equations, the last equation may be
rewritten in the form

ReV:: S(rl;r277') I ri=ro=r; T=0=—;~<V : (EXﬁ—ﬁXE))

1, oE ol
1o E-—+ﬁ-—>+v.c. (A2.3)
2\ 3 ot

Next let us consider the term on the right-hand side
of (A2.1). We have, if we use (2.17), (2.15), (A1.13), and
(A1.14),

a
Re—U(rl,rz, T)
or

10 . -
=5a——{(Ek(l)Ek(Z)H—(ﬁk(l)Hk(2)>}+v.c. (A24)

We again proceed to the limit ry— ro=r, 7— 0. If we
make use of the fact that, because of stationarity, the

o B

(0

0 1
Re_Tmz (l'1,l‘2,7') = 5 { <

(97’11
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aiz)Am( )> B ""<
@)+ <
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two averages on the right of (A2.4) depend on the two
time arguments only through their difference, we find
that!o

a
Re—U (r1,r5,7)
ar

ri=re=r; 7=0

_%[ %?.E>+<%q.ﬁ>}+v.c. (A2.5)

On substituting from (A2.5) and (A2.3) into (A2.1)
(taken in the limit which we are now considering), we
obtain the result

1,9
(V-(EXH—-HAXE))= —~<—(E2+ﬁ2)>+v.c. (A2.6)
2¢ \ot

If we omit the vacuum contribution, (A2.6) is seen to be
the averaged form of the energy conservation law of the
electromagnetic field.

It is quite easy to see that had we started from the
conservation law (2.24) with a=2 rather than a=1, we
would have also been led to the conservation law (A2.6).

B. The Conservation Law (2.25)
Next let us consider the real part of the conservation
law (2.25), with a=1:

V] 1 9
Re—T mi(r1,r2,7) = ——Re—Sn(ry,rs,7). (A2.7)
¢ Or

61’11

We again examine each side separately. We have, if we
use (2.21), (2.15), (A1.13), and (A1.14),

Ei(1 )Ak( )>}
Iru M( )>— lm<

ﬁk( )>]+vc (A2.8)

We next proceed to the limit r; — ro=r, 7 — 0 and obtain

i)
Re——T mi(r1,1s,7)
aru

ri=re=r; 7=0 2[ 61’1
aEz 5

(')Ek

_a_(EmEl+ELEm_5l"vaEk)>] —{ —(H A+, —-—51mﬁkﬁk)>}

e e Y N ) e

Let us now consider the term on the right-hand side of (A2.7). We have from (2.20), (2.16), (A1.15), and (A1.16),

Grm

ReaiSm(rl,rg,r)=%emkl;{(Ek(l)ﬁ;(Z))——(ﬁk(l)E;(Z))H-v.c. (A2.10)

Next we proceed to the limit r;— rs=r, 7— 0 and use an argument similar to that employed in connection

10 Actually, for a stationary field, considered here, this term vanishes identically. This result follows from the relation U(r,r,7)
U*(x, r, —7) that can be deduced from (2.17) and (2.30).
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with (A2.5). We then find that"

oF
Re—Sm(l'l,l'z,’r) = —gem“{ —kﬁl>

(e
=_%<§;{(Exﬁ)m—(ﬁxﬁ)m}>

_of, _ 9E
+%€mkz<<Ek—'—Hk—“—)>+V.C. (A211)
ot ot

ri=re=r; =0

Now with the help of the operator form of Maxwell’s
equations [I(2.1)-1(2.4)] the terms in the last line in
(A2.11) may be rewritten in the same form as some of
the terms in (A2.9). We have, if we use the first Maxwell
equation, 1(2.1),

oM, oF,
émkz<Ek—at— = ""Cemkleabl<Ek > ,

97,

or, if we use the identity I(3.2),

R oH, . oF,
6mk1<Ek—> = —¢(Omadbk— Ombdar) <Ek
at 07,

GVl
ey (] - e

Here, in going to the last line we also used the Maxwell
equation 1(2.3).
In a strictly similar manner we obtain the identity

B J:f8
5mkl<1?lca—‘f = —6{ ﬁma_—
ot

afk

+<17k ark> <ﬁ o } (A2.13)

Finally on substituting from (A2.9) and (A2.11) into
(A2.7) (taken in the limit r; — 15, 7 — 0), and on using
the identities (A2.12) and (A2.13), we obtain the result

9 . A
'G__(EmEl‘l"ElEm_ SumLir Ly
71

A A5 )

1/9
=—<—(E><3—17XE)m +v.e. (A2.14)
¢ \d¢t

11 A similar remark applies here as in connection with Eq.
(A2.5): For a stationary field considered here, this term vanishes
identically. This result follows immediately from the relation
ZS‘ngr,;',r)=Sm*(r, r, —7), that can be deduced from (2.20) and

31).
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If we omit the vacuum contribution, (A2.14) is seen to
be the averaged form of the momentum conservation law of
the electromagnetic field.

It is not difficult to see that had we started from the
conservation law (2.25) with a=2 rather than a=1,
we would have also been led to the conservation law
(A2.14).

We can summarize the result of the calculations
carried in this Appendix by saying that we have shown
that if vacuum contributions are neglected, the real
parts of the conservation laws (2.24) and (2.25) reduce
in the limit r; — rg, 7— 0 to the averaged form of the
energy and the momentum conservation laws, respec-
tively, of the electromagnetic field.

APPENDIX III: NON-NEGATIVE-DEFINITENESS
CONDITIONS FOR THE CROSS-SPECTRAL
TENSORS

In this Appendix we will establish the non-negative-
definiteness conditions (3.10) and (3.27), which the
cross-spectral tensors satisfy and we will discuss their
relationship to the non-negative-definiteness conditions
which are obeyed by the field correlation tensors.

We again make use of the inequality

tr(pdt4)>0, (A3.1)
which holds for any arbitrary operator 4 for which the
left-hand side exists, because the density operator p is
non-negative-definite. In particular, let us choose

v+Av[2

./; Av/2

where fi(r), (i=1, 2, 3), are arbitrary functions of the
space point r, for which the integrals in the equations
which follow are well defined and (v—%Av, »+3Ay) is an
arbitrarily small frequency interval. As before, summa-

tion over repeated dummy indices is implied. From
(3.3), (A3.1), and (A3.2) it follows that

v+Av /2
/ V/d371/d372 fi*(rl)
Av/2

XW i@ (es,xep) fi(rz) 2 0.
Since this inequality holds for integration over an
arbitrarily small frequency range, it follows that the
electric cross-spectral tensor W.;(®(ryre,y) obeys the
non-negative-definiteness condition

/ ¥ f:(2)é; P (rp), (A3.2)

(A3.3)

/ . f Braf M)Wy (rytop) ()20, (A34)

which is (3.10).
If instead of the operator (A3.2) we started with the
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operator
v+Av/2
A= dv / @*r{ fu(r)e; (r,V)+gs(r)ﬁs(+)(r’V)}(A3.5)

v—Av/2

and used also Egs. (3.14)-(3.16), we would obtain in a
similar manner the non-negative-definiteness condition
(3.27), namely,

/ d’n / @Pro{ f* () Wi (11,12,9) fi(x2)
F8* () WP (11,12,2) g (12)
+ f* @) Wi (r1,12,) g5(x2)
+g* () Wi;™ (1, re0) fi(12)} 20. (A3.6)

The condition (A3.4) was derived here from first
principles, but it may also be regarded to be a conse-
quence of the non-negative-definiteness condition which
the electric correlation tensor &;;(ry,re,7) obeys, i.e., the
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fi(r;t) = gz(r)a(t) ’

/' . '/d3f1d372dl1d12{f,;*(l'l,h)gij(l‘l, I, tz—tl)fj(l'z,tz)}
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condition I(5.4), specialized to a stationary field:

/' . '/d371d37’2dt1dt2

XA f*(X1,11)8:5(x, 15, ta—11) fi(X2yt2) } 2 0.

The proof of this statement is rather long and will not
be given here. It will suffice to say that this result is
essentially an obvious generalization of Bochner’s
theorem,!? on the assumption, made implicitly through-
out this paper, that the frequency distribution function
is differentiable throughout the whole frequency range
(0<v< »), i.e., that the Fourier-Stieltjes frequency
representation of the electric coherence tensor 8;;(ry,re,7)
may be replaced by the ordinary (Riemann) Fourier
representation.

The converse, namely, that (A3.4) implies (A3.7), is
also true and can be quite easily established: We have,
if we use the Fourier inverse of (3.4), with the choice

(A3.7)

(A3.8)

= / d’ni / d®r2 g:*(r1)g;(r2) f dy / dh / dtz 8(1)0(t2) W 359 (21, rop)e2m o taty)

If now (A3.4) is assumed to hold, the integrand on the
right-hand side of (A3.9) is non-negative and (A3.9)
then shows that the non-negative-definiteness condition
(A3.4) on the electric cross-power spectrum implies the
non-negative-definiteness condition (A3.7) on the elec-
tric coherence tensor &;; of a stationary field.

In a similar manner, it may be shown that the more
general non-negative-definiteness condition (A3.6) on

=/ du/d3r1/d3rz g ()W i@ (r1,r2,v) gi(te) . (A3.9)
]

the cross-spectral tensors and the more general non-
negative-definiteness condition I(5.3) on the coherence
tensors, (specialized to a stationary field), are equivalent
to each other, i.e., each of them may be derived from the
other.

12S. Bochner, Lectures on Fourier Integrals (Princeton Univer-
sity Press, Princeton, New Jersey, 1959), p. 326; see also R. R.

Goldberg, Fourier Transforms (Cambridge University Press,
Cambridge, England, 1961), Chap. V.



