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Correlation Theory of Quantized Electromagnetic Fields. II. Stationary
Fields and Their Spectral Properties~
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In Paper I of this investigation, dynamical laws which describe the space-time development of second-
order coherence tensors of a quantized electromagnetic field in vucuo, and the associated conservation laws,
were derived. In the first part of the present paper these results are specialized to stationary fields. Second-
order cross-spectral tensors for such fields are then introduced, and some of their properties are discussed.
A relation analogous to the Wiener-Khintchine theorem of the theory of stationary random processes is
derived. Various non-negative-definiteness conditions obeyed by the cross-spectral tensors are established,
and equations which govern the spatial variation of these tensors are deduced. Certain analytic properties
of the correlation tensors are derived, and some of their consequences are examined. It is also shown that in
the limiting case when the two space-time arguments of the coherence tensors coincide, two of our con-
servation laws reduce to the averaged form of the energy and the momentum conservation laws of the
electromagnetic field.

I. INTRODUCTION commutes with the Hamiltonian operator and all the
second-order correlation tensors depend on the two
time arguments t1 and f2 only through the difference'

(2.1)7'= tt2 —tt] .

We will therefore write 8;,(rr, rs, r) in place of
B,,(r, ,tr., re, te) etc. In the differential equations (2.27a)—
(2.34a) and (2.27b)—(2.34b) derived in Paper I we may
then replace 8/c)t& by 8/Br and 8/c)—te by 8/Br, and we

obtain the following dynamical equations relating to

second order coheren-ce tensors of a stationary field in
vacu0:

(2.2a)

8
6ijk Kjl — Bkl p

Bf1i C 87
(2.3a)

8
B,l ——0,

~f1i
(2.4a)

(2.5a,)X;l——0;
gf1i

0 1
&ijk jl ~kl y

Bf1i C 87
(2.6a)

IL DYNAMICAL EQUATIONS AND ASSOCIATED
CONSERVATION I AWS 8 1 8

&ijk ~jl kl )
C &97

(2.78)
Since the most commonly occurring fields encountered

in nature are stationary, we begin by specializing the
basic dynamical equations derived in Paper I to fields of
this type. For a stationary Geld, the density operator

*Research supported by the U. S. Army Research Ofhce
(Durham).

f During the academic year 1966—1967 Guggenheim Fellow and
Visiting Professor at the Department of Physics, University of
California, Berkeley, California.' C. L. Mehta and E. Wolf, preceding paper, Phys. Rev. 157
1183 (1967).

(2.8a,)X;l——0,
Bf1i

(2.9a)-- mril ——0;
Bfh

' Y. Kano, Ann. Phys. (N. j('.), 30, 127 (1964).
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' 'N Paper I of this investigation, equations were de-
- rived, which govern the space-time development of

the second-order coherence tensors of a quantized elec-
tromagnetic Geld. In the present paper some conse-
quences of these equations are deduced for the case
which is of particular importance in practice, namely,
the case when the Geld is describable by a stationary
ensemble. Some spectral properties of such fields are
also discussed.

We begin in Sec. II with specializing the field equa-
tions and the conservation laws derived in Paper I to
stationary Gelds. It is shown, in Appendix II, that in
the limiting case, when the two space-time points coin-
cide, the real parts of two of the conservation laws re-
duce to the average form of the usual laws for the con-
servation of energy and momentum.

In Sec. III we introduce the concept of the (second-
order) cross-spectral tensors of a quantized stationary
electromagnetic field and discuss some of their proper-
ties. In particular, we establish the Wiener-Khintchine
theorem for such a Geld. Our formulation is free of the
assumption of homogeneity of the Geld, made implicitly
in an earlier published version of this theorem. Various
non-negative-definiteness conditions, obeyed by the
cross-spectral tensors, are established and the equations
which govern their spatial variation are also given.
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(2.2b)

(2.3b)

8 5R'n 1 8 Xkl
~ijk~mnl

8'fy&BP2m C 8T

8 Xjn 1 8 5gkl
&ijk&mnl

Bfj&Bf2m C BT

(2.13)

(2.14)

gl,.—0,
~~2i

mli ——0;
~~2i

8 1 8
&ijk lj lk p

Br2i c BT

(2.4b)

(2.5b)

(2.6b)

From Eqs. (2.2)—(2.9) one may derive a number of
conservation laws. Alternatively, and more simply, one
may obtain these laws immediately from the conserva-
tion laws of Sec. IV in Paper I by specializing to sta-
tionary Gelds. For this purpose we introduce the tensors

U;;(rl, r2, T) = h;; (rl, rs, T)+Be,,(rl, rs, T), (2.15)

S;l (rl, r2, T) =OR;j(rl, r2, T)—Kjj(rl, rs, T), (2.16)

and the associated scalars, vectors, and tensors

8 1 8
&ijk lj lk y

t'2i C BT

(2.8b)

U (fl r2 T') = e jkUjk(f'l 12T)'
S'(fl I'2 T) = e kS k'('11 r2 T)'

U(fl r2 T) = Ukk(rl r2 T)

(2.7b) S(11 f2 T) =Skk(rl, rs, T),

(2.17)

(2.18)

(2.19)

(2.20)

Xli——0.
~~2i

(2.9b)

(2.10)

As in Paper I, summation over repeated dummy indices
is implied.

The differential equations (2.2a)—(2.9a) and (2.2b)—
(2.9b) are identical with the differential equations which

couple the second-order coherence tensors of the classical
field. '

For the sake of completeness we also write down the
second-order differential equations which follow from

Eqs. (2.2)—(2.9) or more briefly from the second-order
differential equations of Sec. III of Paper I of this in-

vestigation. Thus from' I(3.3) and I(3.4) we have

T (ll 12 T) ='U'j(1112 T)'

+Ujj(rl 12 T) 8 'jUkk(fl 12 T), (2.21)

Q;j(rt, r2, T) =S;;(rl,r2, T)
+S;,(rl, r2, T) —8;jSkk(rl, r2, T) . (2.22)

Some of these quantities are generalizations of quan-
tities which enter the usual conservation laws of the
electromagnetic 6eld. In fact, as is shown in Appendix
I LEq. (A1.19), (A1.21), and (A1.22)j, the quantities
(1/42r) U(r, r,0), (c/42r) S(r,r,0), (1/42rc) S(r,r,0), and

(1/42r)T;;(r, r,0) represent the expectation values of the
electromagnetic energy density, the Poynting vector,
the 6eld momentum density, and the Maxwell stress
tensor, respectively, provided that contributions of the
vacuum held are neglected.

The conservation laws (4.11), (4.12), (4.13), and
(4.15) of Paper I and the corresponding laws involving
differentiation with respect to the second space-time
point are then given by the following set of equations:

1 a
v U=w- —S,

C BT

Each of the other three correlation tensors also obeys,
of course, such a wave equation.

The remaining second-order equations are immedi-

ately obtained from Eqs. I(3.5)—I(3.8) and are

(2.23)

1 8
v. S=+-—U

C 8T
(2.24)

1 O'Bkl
7c'

(2.11)~ijk~mnl
&Zi~&2m 8 1 8

T l=~——5
8& l COT

(2.25)
1 ~ BCkl

7
C' gT

(2.12)~ijk~mnl
~~zi~~2m

8
Q I=&——U .

C BT
(2.26)

2 P. Roman and E. Wolf, Nuovo Cimento 20, 462 (1961).There
is ™sprintin Eq. (3.12b) of this reference: 8, must be replaced Here the upper or lower signs are talIen on the right-

hand sides according as o, takes on the value 1 or 2,
4 All equations preceded by "I"refer to equations of Paper I
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Uj (ri r2 r) = U (I'2 rl r)

S,;(rl, rs, r) = S;;*—(rs, rl, r), —
T,,(rl, rs, r) = T,,(rl, r2 T) T's (12 ll r),
Qst(rl 12 7) Q (iirlt'2 r) = Q~1 (12 rl r) .

(2.30)

(2.31)

(2.32)

(2.33)

From (2.17) and (2.30) it readily follows that

ImU(r, r,O) =0. (2.34)

From (2.20) and (2.31) one has

ImS, (r,r,O) =0, (2.35)

The conservation laws (2.23)—(2.26) are identical in
form with the conservation laws derived for the classical
field'. It was shown there that the real part of the equa-
tions of the form (2.24) and (2.25) may be regarded as
the generalization of the usual laws of conservation of
energy and momentum, respectively, in their averaged
form and reduces to them in the limit r2 ~ r~ and r ~ 0.
We show in Appendix II that the same is true for Eqs.
(2.24) and (2.25) relating to the quantized field, pro-
vided that the contributions from the vacuum field
are omitted.

Finally, we note a number of relations that will be
needed later. We have, from Eqs. I(2.20)—I(2.23),
specialized to a stationary held,

Bi (I l rs, r) tg, ;=*(r2 il, r),— (2.27)

X,&(rl,rs, r) =X,; (rs, rl, r), — (2.28)

OR, ,(rl, r2 T) OI'' (rs, rl, r) . —(2.29)

Making use of these relations, we see that the tensors
U;;, S;;;T... and Q;; which are defined by (2.15), (2.16),
(2.21), and (2.22), obey the relations

and from (2.32)
ImT;s(r, r,0)=0. (2.36)

In a similar way one can show that

ReS(r, r,O) =0,
ReU;(r, r,0) =0,
ReQ;;(r, r,0) =0.

(2.37)

(2.38)

(2.39)

e&+&(r,v) = Q&+&(r h)&, 2vvivtdh (3 1)

e& &(r,v) =— Q&—
&(1 h)a 2vvivtdh— (3.2)

The "spectral correlation" may be defined as the ex-
pectation value of the normally ordered product of the
two operators e& '(rl, v) and 8+&(rs,v). If we use (3.1)
and (3.2), this correlation is given by

III. THE CROSS-SPECTRAL TENSORS: A
QUANTUM-MECHANICAL ANALOG

OF THE WIENER-KHINTCHINE
THEOREM FOR THE ELECTRO-

MAGNETIC FIELD

In order to understand some of the spectral properties
of the field it is desirable to introduce another set of
second-rank tensors. These tensors appear naturally if
one considers the correlation amongst the spectral corn-
ponents of the positive and the negative parts of the
6eld operators.

Consider the Fourier transforms e&+&(r,v) and e& &(r,v)
of E&+&(r,h) and 8& &(r,h), respectively, Lcf. I(2.6) and
I(2.7)$, viz. ,

tr{pe, & &(rt, v)e, &+&(rs v )}= tr{p E;& (rt, ht)E, &+&(rs,hs) )exp{22ri(v'h2 vhl) )dhlCh2

8,,(rt, ht,
. r2 h2)exP{2&riv(hs —hl))exP{22ri(v' —v)h2)Chldh2.

Since the field is stationary, b, ;(rl, r2, hs —hl) may be
written in place of ho;;(rt, hi, rl, h2) and we have, if we in-
troduce new variables 7 =t2—t~, 8=t2, W ' &(r&rtvs)vV=" Bt,(rt, rs, r)e'""'dr. (3.4)

tr{pe;& &(rl,v)e;+ (rs,v'))

(rlo, rtsv T)e'~'"'d T ~2' i8
(v'—v) do

=wt, &'&(rt, rs, v) f'&(v v'), — (3.3)

where superscript T denotes the transpose.

2 p. Roman and E. Wolf, Nuovo Cimento 20, 477 (1961).
Equation I'2.26) of this reference is incorrect. It should read

' We implicitly assume here that the Fourier transform (3.4) of
8;; exists, as will be the case in most situations of practical interest.
Whether or not the Fourier transform exists in the ordinary sense,
one may de6ne a frequency distribution tensor F;;(')(rI,r2,v) by
means of a Fourier-Stieltjes integral. In the case when 8;;(') exists

aF;, & &t'av=W;;& &.

However, we will not consider here this re6nement which is well
known in the theory of stationary random processes Lace for
example, A. M. Yaglom, An Introducti on to the Theory of Stationary
Random Rttnohions (Prentice-Hall, Inc. , Englewood Cliffs, New
Jersey, 1962), Secs. 10 and 15).

Note added ie proof. The tensor analogous to 8'«) was discussed
in the framework. of the classical theory of electromagnetic Gelds
in a recent paper by A. D. Jacobson DEE Trans. Antennas Propa-
gation 15, 24 (1967)g. He de6ned this tensor as the Fourier
transform of the corresponding second-order correlation tensor g
rather than as a spectral correlation.
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lim
—d, v/2

tr{pe;& &(ri,v)e;&+&(rs,v'))dv'

Since b(v —v')=0 if vWv', we see that the diferent
frequency components of the two operators e&+& and e& &

at any fwo (distinct or coincidenf) Points are uncorrelated.
Correlation only exists for spectral components of the
same frequency and may then be expressed in the form

v+hv/2

Returning to Eq. (3.5), we note that the electric
cross-spectral tensor satisles the relation

W;&'&(ri, rs, v) = W,;&' (rs, rt, v). (3 9)

Moreover, this tensor is non-negative-de6nite in the
sense that for any arbitrary set of functions f;(r),
(i= 1, 2, 3), for which the integral on the left-hand side
of (3.10) below is defined,

where the tensor W;;&'& is the Fourier transform of the

secor/d-order cohererIce terIsor 8;;.It is evident that in the
language of the theory of random processes W;, (ri, r2, v)

is the (second order) -electric cross spectra-l tensor of the

quantised electric field.
I.et us now set

W&'&(r, r, v) = W;;&'&(r,r,v)

v+3,v/2

= lim tr{pe& (r,v) 8&+ (r,v'))dv', (3.6)
—b, v/2

d'ri d'rs f,*(r,)Wg; ' (ri, rs, v)f, (r )s&~0 (3..10)

W &'(r,r,v) =W;, &'&(r,r,v) & 0, (3.11)

The proof of this inequality as well as its relationship to
the non-negative-definiteness condition I(5.4) which the
electric coherence tensor obeys, is discussed in Appendix
III. Here we only note that with the special choice
f,(ri) = 3;q3&s&(r ri)—, (3.10) implies that each diagonal
component of the tensor lV;, for r~= r2 is non-negative,
so that

W &'&(r,r, v) = h(r r,r)e""'dr, '

$(r,r, r) = 8,,(r,r, r)
=tr{pZ& &(r,t) 8&+&(r,f+r)).

From (3.4) it then follows that

(3.7)

(3.8a)

a result that was to be expected from the physical sig-
nihcance of 8'('.

By analogy with the electric cross-spectral tensor, we

may introduce three other cross-spectral tensors, which
involve the magnetic Geld. I.et h(+) and h& ' be the
operators which bear the same relationship to the mag-
netic 6eld operator as e(+~ and e& ) bear to the electric
field operator. Then [cf. (3.1) and (3.2)$

h(r, r, r) = W&'(r, r,v)c '~'"'dv. (3.8b)

&fi&+&(r,v) = 8&+&(r f)e"'"'dt (3.12)
By writing the lower limit of integration in (3.8b) as
zero rather than —~, we imply that 8 does not contain
any negative-frequency components. That this is so,
follows from the analytic behavior of h, as shown in
Appendix I, Eq. (A1.5).

According to (3.7), h(r, r, r) represents the trace of
the electric correlation tensor for the special case when
the two points ri and rs coincide (ri= rs ——r). Moreover,
it follows from (3.8b) and Eq. (A1.17) of Appendix I that
(1/4s.)W&'&(r, r, v)dv represents the contribution from the
frequency range v, v+dv to the expectation value of the
electric energy at the point r, provided that the contri-
bution from the vacuum held is neglected. The Fourier
transform relation (3.8b), which connects h(r, r, r) and
W&'(r, r,v) is thus evidently the quantum-mechanical
analog of the 8'ieger-Ehietchime theorem~ of the theory
of stationary random processes.

7 A restricted formulation of this quantum-mechanical analog
was given by R. J. Glauber LPhys. Rev. 131, 2786 (1963}g.
Though not explicitly stated, his formulation applies only to the
narrow class of stationary fields which are spatially homogeneous.
This restriction is evident from the fact that Glauber's expression
(10.15) for the energy spectrum is independent of position; this
result is a consequence of the incorrect assumption, made in his
Eq. (10.13), that for any stationary fields his P({nl,)) function is
independent of the phases of the I, 's. It has been shown by Kano
(Ref. 2) that for a radiation field with a finite or countable infinite
number of modes X()1), the phase independence implies not only
stationarity, but also homogeneity of the field.

lt& &(r,v)= II&—
&(r f)c 2+ivtdf— (3.13)

W;;&"&(ri,rs, v) = 3&'.,;(rl)l 2&r)e'~'"'dr, (3.17)

W;;&"&(ri,r,,v) = BT(;;(ri,rs, r)e'~'"'dr, (3.18)

W;;&"&(rt,rs. v) = K;;(rt,rs, r)e""'dr.
(3.19)

where II(+& and II( ~ are the positive- and negative-
frequency parts of the magnetic field operator 8. We
then readily find, by analogy with (3.3), that

tr{pA;& &(ri,v)h;&+&(rs, v'))
= 3(v v') W;,—&"&(ri,rs, v), (3.14)

tr{Pe & &(ri,v)h, + (r2,v') }
= i&(v —v') W;;& &(ri, rs, v), (3.15)

tr{ph, ;& &(ri,v)e;&+ (rs, v'))
= h(v —v') W;, &"&(ri,rs, v), (3.16)

where
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U(r, r, z.) = (W&'&(rrv)+W&"&(r r&)}e ~'"'dz. (3.22)

This relation expresses the Wiener-Khintchine theorem
for the total (electromagnetic) field.

There are corresponding relations involving the vector
S and the tensor T;; defined by Eqs. (2.20) and (2.21).
From Eqs. (2.20) and (2.16) and from the Fourier in-
ve~ses of Eqs. (3.18) and (3.19), it follows that

S;(r,r, r) = e;;&, (W p&"&(r,r,z)

W.i&ni(r r &)}&
—2+&vrd& (3 23)

From the physical interpretation of the vector S(r,r,0)
given in Appendix I, Eq. (A1.20), and from (3.21) it
then follows that the quantity

The physical interpretation of Eqs. (3.14)—(3.19) is, of
course, strictly analogous to that given in connection
with Eqs. (3.3) and (3.8a). We may call W, ;&"& the
(second-order) magnetic cross-spectral tensors and
Wg& & and W;;&"' the (second-order) mixed cross-
spectral tensors of the quantized electromagnetic field.
These tensors evidently satisfy the following relations
which correspond to (3.9):

W, ,'"'(r ir zv) = W;; " *(rz,ri,&), (3.20)

(rlprzp) = K '"'*(rz,rip p) ~ (3 21)

The Fourier inverse of the relation (3.17) is essentially
Wiener-Khintchine theorem for the magnetic Geld. If
we add this Fourier inverse relation and the relation
(3.8a) involving the electric correlation and recall the
definition (2.17) of U, we obtain the relation

represents the contribution from the frequency range v,

»+dv to the expectation value of the Maxwell's elec-
tromagnetic stress tensor, provided that the contribu-
tions from the vacuum Geld are neglected.

Representations analogous to (3.22), (3.23), and
(3.25) also exist, of course, for the scalar S(r,r, r), the
vector U;(r, r, r), and the tensor Q;;(r,r, r).

The following non-negative-definiteness condition in-

volving the four cross-spectral tensors holds'.

d'ri d'rz ff;*(ri)W; &(ri,rz, v)f,(rz)

+g;*(ri)W;; "'(ri,rz, v) g;(rz)

+f'*(ri)Wv'"'(ri, »p)k(rz)

+g;*(ri)W;, &" (ri, rz, v)f;(rz) }~&0. (3.27)

Here f,(r) and g, (r), (z=1, 2, 3), are arbitrary sets of
functions for which the integral on the left-hand side of
(3.27) is defined. This inequality is established in
Appendix III. Here we only note that if we choose
g;(r)=—0, (z=1, 2, 3), we recover the non-negative-
definiteness condition (3.10) on the electric cross-
spectral tensor. If we choose f;(r)=—0, (i= 1, 2, 3), we
obtain a similar condition on the magnetic cross-spectral
tensor.

For the sake of completeness, we also write down dif-
ferential equations which couple the four cross-spectral
tensors. If we take the Fourier transforms of Eqs.
(2.2a)—(2.9a) and use (3.4) and (3.17)—(3.19), we obtain
the set of equations

2X'sv

(3.28a)

e,;&,(W;„&"&(r,r,v) W, ,&"&(r,r,p) }—dv,
4m.c

(i= 1, 2, 3), (3.24)

8

Bfyi

27i sp
gr (m) (3.29a)

represents the contribution, from the frequency range
i, v+dp, to the expectation value of the field momen-
tum, provided that the contribution from the vacuum
field is neglected.

From Eqs. (2.21), (2.15), (3.8b), and the Fourier
inverse of Eq. (3.17), it follows that

8
p;., ( )—

~fli

2Ãzp g, (.)

23 zpg„()8
8';)( )=-

t9fii

(3.30a)

(3.31a)

T;;(r,r, z )= (W;;&'&(r,r, r )+W;;&'&(r,r,i) W'i'"'=0, (&M= e, h, zzz, or zz), (3.32a)
~~li

+W;;&"&(r,r,»)+ W;;&"&(r,r,v)

—8 LWi&, &'(r r v)+Wi&, &"&(r r &)j}e '~'"'dv (3.25).
From the physical interpretation of the tensor T;,(r,r,0)
given in Appendix I, Eq. (A1.22), and from Eqs. (3.9)
and (3.20), it then follows that the quantity

the arguments of all the 8"s being r~, r~, v.
In a similar way, the Fourier inversion of Eqs.

(2.2b)—(2.9b) gives the set of equations

2' $P

(3.28b)

1—(W. &'&(r,r,v)+W "&"&(r,r,»)
2' —-', &&,,jWi&, &'&(r,r,z)+ Wi i &"&(r,r, v) j}&&tz (3.26)

2x'zv

(3.29b)
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8 27) iv
Wlj(-) =

Bf2; C

tiortary field. We have, if we use (A1.1) and a similar
relation for G&+&,

2x'iv8
gr, .(m)

f2i

C(r)= hm lim
(3.31b) si~s ss~s 4s.s

(F(t r i)G—(t+ r rs) &-
dridrs . (A1.3)

(ri+ irti) (rs —ir&s)W~, ~"&=0, (ti=e, h, r&t, or rt). (3.32b)
Bf2,

j
4m'»')

V'.'+ iW;, &»=0,
C2

(3.33)

From these two sets of equations one may derive, in
a way similar to that of the derivation of the equa-
tions of Sec. III in Paper I, the following second-order
equations:

Since the held is assumed to be stationary

(F(t— )G(t+ — ))=—(F(t)G(t+ + — )),
and using this result the integral on the right-hand side
of (A1.3) may be simplified by introducing new variables
n= rs ri, P=—rs+ri. The integration over P can then
immediately be carried out and we obtain

(n= 1 or 2, ti= e, It, r&s, or rt); C(r)= lim
&~' 2xi

(P(t)G(t+ r—~) &

do.' (A1.4)

~ijl t-'mnl

Bf] 'Bf2m

4x'v2
p . (.) — g , (&)

c2

4x'v'
(e)

c2
ijl Gm~l ~~ jnTJ/'. (A)

t9f]. 'Bfo

(3.34)

(3.35)

The quantity on the right-hand side is nothing but
Lcf. (A1.1)j the positive-frequency part of the correla-
tion function (F(t)G(t+r)), so that we have the result

C( )—= (F' '(t)G"'(t+ )&=(F(t)G(t+ )&"' (A15)

ijlt: &mnl

~fzi~f2m

4x'v'
W &"& = — Wsi&"& (3.36)

c2

In a similar manner one may show that

(P&+&(t)G&-&(t+r)&=(F(t)G(t+r))&-&. (A1.6)

ijI 6m&l tv j~
TJ/' (~)

Bf] 't9f2

4z'v'
W„&-&. (3.37)

c2

This completes our discussion of the mathematical
framework of the second-order coherence theory of the
quantized 6eld. An application of some of our results to
the study of the cross-spectral properties of blackbody
radiation will be described elsewhere.

"F(t—r)
P&+&(t) = lim dr.

~~o 2vri .~r—ig
(A1.1)

Let 6(+) and 6( ' be the positive- and the negative-
frequency parts, respectively, of another operator G,
and let us consider the correlation function

C(t,—t,) = (P&-&(t,)G&+&(t,)), (A1.2)

where the quantum-mechanical expectation value is to
be taken with respect to a density operator of a sta

APPENDIX I: ANALYTIC PROPERTIES OF THE
CORRELATION TENSORS AND SOME

OF THEIR CONSEQUENCES

Let P(t) be an a,rbitrary operator and let the super-
script (+) and (—) denote its positive- and negative-
frequency parts, respectively, defined as in I(2.6) and
I(2.7). The positive- and the negative-frequency parts
may be expressed in the form (cf. footnote 3 of Paper I)

1
ReC(r) = I'——

1
IrnC(r) =+I'—

" ImC(r')
dr

" ReC(r')
—dr

Qo r r

(A1.8)

where I' denotes the Cauchy principal value of the in-
tegral at r'= r.

In particular, if we choose F and G to be the Cartesian
components of the electric or of the magnetic field
operators at the space-time points ri, t and rs, t+r, re-
spectively, we may conclude that all the four correlation
tensors 8,;(r r ,i),srX;;(ri, rs, r), OR;, (ri, rs, r), and

8 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Clarendon Press, Oxford, England, 1948), 2nd ed. , Chap. V.

The equation (A1.6) may be rewritten in the form

(Gf-&(t+ r) Ft+&(t) &= (F(t)G(t+ r)) i-&

—(LP'+&(t),G'-&(t+.)3&, (A1 7)

where $A,A$ denotes the commutator sfB BA. —
It is seen from (A1.5) that the correlation function

C(r) contains only positive-frequency components.
Hence under very general conditions assumed here to
be satisfied, ' C(7) is the boundary value on the real
r axis of a function which is analytic and regular in the
lower-half of the complex r plane. This statement is
equivalent to saying that the real and imaginary parts
of C(r) are Hilbert transforms of each other, ' i.e.,
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K;j(ri, rs, r) are analytic signals. ' Further, it follows from
I(2.20), specialized to stationary fields, that

Re8'j(11 12 r) s(E' (rl t)Ej (r2 t+r))
+-,'(Ej(—&(rs, t+r)E;&+&(ri,t)).

If on the right-hand side we make use of the identities
(A1.5) and (A1.7), we find that

Re8,j(ri, rs, r) =-', (8;(ri,t)Ej(rs, t+r))
——,'(LE;(+&(ri,t),»( &(rs, t+r)]). (A1.9)

Now the term on the right-hand side, involving the
commutator, has a simple interpretation. To see this let
IO) represent the vacuum state, so that

E'+'I»=0 and

The expectation value in the vacuum state of the opera-
tor 8;(ri, t)Ej(rs, t+r), which for short we denote by
A,(1)Ej(2) is

(o IE,(1)E,(2) I
o)= (o I {E,&-&(1)yE, &+&(1)}

X{»' '(2)+»'+'(2) }I o)
= (0

I
LE, (+&(1),Ej( &(2))

I 0), (A1.11)

where (A1.10) was used. Now since the commutator is
a c-number, the expectation value of the commutator on
the right-hand side of (A1.11) may be replaced by its
expectation value with respect to any state of the Geld.
Hence the average of the commutator on the right-hand
side of (A1.9) is the vacuum expectation value (de-
noted by subscript "vac") of the operator E,(ri, t)
XEj(rs, t+r), i.e.,

(LE;(+&(ri t) Ej'(—&(rs, t+r)))
= (E,(ri, t)Ej(rs. t+r)) „. (A1.12)

It follows that (A1.9) may be expressed in the form

Re8;, (ri, r2 r) = (E'(lit)Ej(r2 t+r))
,'(E,(ri, t)Ej(—r2 —t+r)).... (A1.13)

In a strictly similar manner it may be shown that

Re%;, (ri, rs, r) = —',(H, (ri, t)Hj(rs, t+r))
——', (H, (ri, t)Hj(rs, t+r)) „, (A1.14)

ReOR, j(ri, rs r) = s(E;(ri,t)Hj(rs, t+r))
—s(E,(ri, t)8j(rs, t+r)) „, (A1.15)

ReX,j(ri,rs, r) = ,'(8,(r t)-Eij(r t+sr) )
——;(8,(ri, t)Ej(rs, t+r))„,. (A1.16)

With the help of the relations (A1.13)—(A1.16) we
may readily write down simple expressions for quanti-
ties of special physical interest. We have from (3.7) and
(A1.13) and from the fact that, because of (2.27),
8(r,r,o) is real,

8(r,r,o)—=8,,(r,r,o) = -', ({8(r,t) }')—-', ({E(r,t) }').„
9 It follows that each of the quantities U;;, 5;;, U, 5, U, 8, Tg,

and Q;j, detined by E(is. (2.15)—(2.22) is also an analvtic signal.

and
(c/4v-) S(r,r,o)+v.c. (A1.20)

the expectation value of the electromagnetic momentum
density is

(1/47rc) S(r,r,o)+v.c. (A1.21)

Finally, we have from (2.21), (2.15), (A1.13), and
(A1.14) on taking the real part and using (2.36),

T;j(r,r,o) = -,'({E,(r, t)E, (r,t))+(E,(r,t)E,(r, t))
—0;j(Es(r,t)Eg, (r,t))+(H, (r, t)Hj(r, t))
+(8,(r,t)H, (r,t) )—l&;j(Hs(r, t)Hs(r, t) )}+v.c.

so that

the expectation value of the 3/maxwell's electromagnetic
stress tensor is

(1/4v-) T;j(r,r,o)+v.c. (A1.22)

APPENDIX II: LIMITING FORMS OF THE
CONSERVATION LAWS (2.24) AND ((2.25)

A. The Conservation Law (2.24)

Consider first the real part of the conservation law
(2.24), with n=1;

1 t9

ReVi. S(ri,rs, r) =—Re—U(ri, rs, r) .
c 87'

(A2.1)

We examine each side separately. We have, if we use
(2.20), (2.16), (A1.15), and (A1.16),

Rewi S(ri,rs, r)

{E;(l&H,(2& —{&;({&B,(2&&)+v.c.
~r1i

(A2.2)

so that

the expectation value of the electric energy density is

(1/4v. )8(r, r,o)+v.c. , (A1.17)

where v.c. denotes "vacuum contribution. Similarly,
the expectation value of the magnetic energy density is

(1/4v-) X(r,r,o)+v.c. (A1.18)

On combining (A1.17) and (A1.18) and on using (2.17)
and (2.15), we see that the expectation value of the elec
tromagnetic energy density is

(1/47r) U(r, r,o)+v.c. (A1.19)

Further we have from (2.20), (2.16), (A1.15), and
(A1.16), on taking the real part and using (2.35),

S;(r,r,o) = Res,j{,Sjs(r,r,o)
=-.

I ({E( t)XH( «)}')
—({H(r,t) XE(r,t) },)7+v.c. ,

so that

the expectation value of the energy &lux (Poynting vector)
1S
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8
Re—U(rt, rr, r)

878
Eevr. S(r„r„)l„=.,=.. .=,=-,";;, (EII» HP, ))— '

~fi

„BBE BEI,—
E ee2'E EI —82 +V.C.

Bfi Bf '

r1=r2=r; r=o

1 BE „BB
B — v.c. A2.5

2 Bt

On substituting from (A2.5) and (A2.3) into (A2.1)
(taken in the limit which we are now considering), we
obtain the result

Here and elsewhere in this Appendix, the variables not
shown explicitly in the various operators are r, t, e.g.,
E;=E;(r,f), etc.

If we use the operator form I(2.1) and I(2.2) of Max-
well's two main equations, the last equation may be
rewritten in the form

8
(v (EXH HXE))—=—(E'+H'))+—vc (A26).

2c Bt

If we omit the vacuum contribution, (A2.6) is seen to be
the averaged form of the energy conservation law of the
electromagnetic field.

It is quite easy to see that had we started from the
conservation law (2.24) with 6r=2 rather than n=1, we
would have also been led to the conservation law (A2.6).

ReV&. S(rt, rr, r)
~
„=.2=.; .=o=-', (V (EXH—HXE))

1 „BE „B8
+—E +H +v.c. (A23)

2c Bt Bt

Next let us consider the term on the right-hand side
of (A2.1).We have, if we use (2.1/), (2.15), (A1.13), and
(A1.14), B. The Conservation Law (2.25)

As before, the variables (1) and (2) in the various two averages on the right of (A2.4) depend on the two
operators refer to space-time point rt, f and r2, t+r, re- time arguments only through their difference, we ffnd
spectively, and v.c. denotes a vacuum contribution. that"
In (A2.2) we proceed to the limit rt ~ re ——r, r —+ 0 and
obtain the formula

8
Re—U(rt, rr, r)

87
1 8=-—f(Ek(1)EE(2))+(HE(1)H~(2))}+vc (A2 4)
2 87

Next let us consider the real part of the conservation
laW (2.25), With 6r=1:

8 1 8
Re T I(rt, rr, r)= ——Re—S (rt, rr, r). (A2.7)

Bf1l C (AT

We again proceed to the limit r1 —+ r2=r, 7. —+ 0. If we We again examine each side separately. We have, if we

make use of the fact that, because of stationarity, the use (2.21), (2.15), (A1.13), and (A1.14),

8 1 BE„(1) BEI(1) BEE(1)
Ee I r(rr, r, , )=— E&(2) + E (2) —Ir —Ee(2))

Bf1l 2 Bf1l Bf1l ~fll

BB„(1)„BBI(1)„BBE(1)
+— ( H&(2))+( H (2))—

6& ( He(2)) +v.c. (A2.8)

We next proceed to the limit r1 ~ r2= r, v —+ 0 and obtain

8 1 8
Re 2' I(rt, r2, r) =— (EWI+E(E BIMEEE) +—— (H HI+BIH BIAEHE)—

f1l rI=r2=r; r=o 2 nfl

+m +l +(tc m l k v c ~ A2 9

Let us now consider the term on the right-hand side of (A2.7).We have from (2.20), (2.16), (A1.15), and (A1.16),

8 8
Re—S„(rt,rr, r) =-', e„&I—f (EE(1)82(2))—(8),(1)E~(2))}+v.c. (A2.10)

Next we proceed to the limit r1 —+ r2 ——r, w —+0 and use an argument similar to that employed in connection

"Actually, for a stationary 6eld, considered here, this term vanishes identically. This result follows from the relation U(r, r,7-)

U*(r, r, —r) that can be deduced from (2.17) and (2.30).
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with (A2.5). We then find that"

8
Re—S„(rt,rs, r)

Br rI=r2=r; v=0

V.C.

i 8= —— —((rx&t&.-ot&(s&.&)2 Bf

( BII i BZ&'&&

+le-ki I &k &k —
I

+vc (A211)
Bt Bt I

or, if we use the identity I(3.2),

„8
etnkl Zk = c(btagbbk 8tnb8~k) Ek

Bt 81'

Now with the help of the operator form of Maxwell's
equations LI(2.1)-I(2.4)j the terms in the last line in
(A2.11) may be rewritten in the same form as some of
the terms in (A2.9).We have, if we use the f&rst Maxwell
equation, I(2.1),

et~i
emkl 8k = csmklseb& +k

Bt ~~a

If we omit the vacuum contribution, (A2.14) is seen to
be the averaged form of the momentum conservation taro of
the electromagnetic fbeld

It is not dificult to see that had we started from the
conservation law (2.25) with n=2 rather than (r=1,
we would have also been led to the conservation law
(A2.14).

We can summarize the result of the calculations
carried in this Appendix by saying that we have shown
that if vacuum contributions are neglected, the real
parts of the conservation laws (2.24) and (2.25) reduce
in the limit ry ~ r2, r ~ 0 to the averaged form of the
energy and the momentum conservation laws, respec-
tively, of the electromagnetic field.

APPENDIX III: NON-NEGATIVE-DEFINITENESS
CONDITIONS FOR THE CROSS-SPECTRAL

TEN SORS

In this Appendix we will establish the non-negative-
definiteness conditions (3.10) and (3.27), which the
cross-spectral tensors satisfy and we will discuss their
relationship to the non-negative-definiteness conditions
which are obeyed by the field correlation tensors.

We again make use of the inequality

tr(pAtA) ~& 0, (A3.1)= —C 8 I — I

=C Em ZIt:

which holds for any arbitrary operator A. for which the
left-hand side exists, because the density operator p is

(A2.12) non-negative-definite. In particular, let us choose

Here, in going to the last line we also used the Maxwell
equation I(2.3).

In a strictly similar manner we obtain the identity

V+kv/2

v—d, v/2

dv d'r f (r)e;(+&(r,v), (A3.2)

where f;(r), (i= 1, 2, 3), are arbitrary functions of the
space point r, for which the integrals in the equations
which follow are well defined and (v——,'Av, v+ —',Av) is an
arbitrarily small frequency interval. As before, summa-
tion over repeated dummy indices is implied. From
(3.3), (A3.1), and (A3.2) it follows that

Finally on substituting from (A2.9) and (A2.11) into
(A2.7) (taken in the limit ri ~ rs, r —+ 0), and on using
the identities (A2.12) and (A2.13), we obtain the result

v+Av/2

v—lhv/2

dv d'ri d'rs f,*(ri)

XW,,('&(rirs, v)f, ( )&~rs0. (A3.3)

(&Mi+&A t&iWAk—
Bfl

+8Wi+8&H bidfaH, &)—
8—(ZX+—+XX)~ +v.c. (A2.14)

C Bt

"A similar remark applies here as in connection with Eq.
(A2.5): For a stationary field considered here, this term vanishes
identically. This result follows immediately from the relation
S (r,r,r)=S *(r, r, r), that can be deduce—d from (2.20) and
(2.sr}.

Since this inequality holds for integration over an
arbitrarily small frequency range, it follows that the
electric cross-spectral tensor W,, ('&(ri, rs, v) obeys the
non-negative-definiteness condition

d'ri d'rs f;*(ri)W;, '&(ri, rs, v)fJ(rs) ~& 0, (A3.4)

which is (3.10).
If instead of the operator (A3.2) we started with the
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